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Abstract: Considering that serial systems based on small-lot production operate in a customized mode, we 

investigate the maintenance decision-making problem of quality degrading machines in these serial systems. 

To obtain the optimal maintenance policies, intelligent optimization algorithms are only applicable for small 

systems which have a few degrading machines. However, these algorithms cannot be directly implemented as 

the search space of a large system with many degrading machines exponentially increases. Therefore, in this 

work, value-based deep reinforcement learning algorithm QMIX, is adopted to obtain real-time optimal 

maintenance policies by regarding each degrading machine as an agent. Specifically, system states are defined, 

and three types of actions are introduced to maintain degrading machines. A reward function is established 

based on the maintenance action cost along with the system states. Our conducted simulation study 

demonstrates that QMIX method is valid to optimize maintenance policies for serial production systems with 

degrading machines. Taking completion time as an indicator, a contrast experiment indicates that maintenance 

policies learned by QMIX can shorten the completion time. 
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1.  INTRODUCTION 

 

Product quality problems are the focus of production systems engineering. To ensure that production systems 

operate efficiently, sustainably and steadily, it is of critical significance to maintain degrading machines 

appropriately [1]. Degrading machines need to be maintained in a real-time manner during machining 

processes. To obtain optimal maintenance policies, maintenance cost, time and completion time are the main 

indicators which need to be optimized [2]. Previous works are resorted to intelligent optimization algorithms 

for optimizing maintenance policies [3]. However, because there are many degrading machines in practical 

production systems and the search space of maintenance actions is large, intelligent optimization algorithms 

are not applicable anymore. Therefore, to extend production systems with limited number of degrading 

machines to general ones, it is important to study optimal maintenance policies through deep multi-agent 

reinforcement learning [4].  

 

In real production systems, there are two facets of reasons contributing to product problems. On one hand, 

products are perishable which means that they cannot stay in production lines for long time [5,6]. On the other 

hand, due to the characteristics of the machine itself, some work-in-process cannot meet quality standards [7,8]. 

In the latter case, to reduce defective parts, inspection machines are introduced to remove defective parts in 

production systems timely. These production systems operate in a customized and small-lot mode for fulfilling 

product quality requirement. In this production mode, systems are dynamic and different from steady systems. 

They cannot be analyzed using steady system analysis methods [9]. Aiming to address this problem, a model 

with geometric machines in production systems is established and approximate algorithm is proposed [10]. 

Based on small-lot production assumptions, Bernoulli serial production lines are established, and transient 

performance is analyzed [11].  

 

However, in actual production processes, the life and processing conditions of degrading machines can degrade 

to a failed state as the running time increases [2,12]. To ensure that production systems operate efficiently, 

taking maintenance actions to degrading machines becomes critical. The common maintenance actions include 

corrective maintenance (CM) and preventive maintenance (PM). For example, based on degrading machines 

and batch production assumptions, a production-driven opportunistic maintenance policy is proposed [13]. In 

semiconductor manufacturing, mixed-integer programming models are formulated for scheduling all due PM 

tasks [14]. Based on the proposed discrete-time Markov decision model, optimal maintenance policies are 

obtained by considering average cost [15]. However, these works do not consider action space explosion 

problems as the number of degrading machines increases.  
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Therefore, reinforcement learning (RL) shed lights on dealing with this problem [16,17]. Considering aging 

machines in serial production lines, a reward function is formulated by taking advantage of double deep Q-

network (DDQN) to obtain optimal maintenance policies [18]. As an extended work, an improved multi-agent 

reinforcement learning (MARL) named value decomposed actor-critic (VDAC) is proposed to solve 

maintenance decision-making problems [19,20]. For flow line systems, condition-oriented maintenance 

scheduling is investigated based on reinforcement learning [21]. Nguyen et al. propose a weighted-QMIX-

based optimization method to carry out maintenance activities for multi-component systems [22]. Although 

the above literature considers multiple machines maintenance problems from a system level, few work involves 

with product quality problems.  

 

Therefore, in this work, based on small-lot production mode and finite buffer capacity assumptions, we 

establish Bernoulli reliability machines with machining quality degradation. Given that the stochasticity and 

complexity of production systems, one single degrading machine is regarded as an agent. Maintenance actions 

are specified. According to the current states of agents and all kinds of maintenance cost, a reward function is 

formulated. Optimized maintenance policies are obtained through QMIX [23]. The numerical study 

demonstrates that production systems after applying optimal maintenance policies can shorten the completion 

time.  

 

2.  MODELS 

 

2.1.  Assumptions 

 

In this work, serial production lines consisting of Bernoulli machines, degrading machines, inspection 

machines and finite buffer capacity are modelled in Figure 1. In machining processes, there are a variety of 

reasons leading machines to degrading such as flexible fixture location errors and cutting tool wear. Defective 

parts can be produced in this way and be transferred to the downstream buffer. Once they are inspected by 

inspection machines, they will be removed from serial production lines.  

 

 
Figure 1. Serial Production Lines with Degrading Machines 

 

Assumptions for this model in Figure 1 are specified below. 

(1) This serial production line consists of 𝑀 machines (𝑚1, … ,𝑚𝑀) and 𝑀 − 1 buffers (𝑏1, … , 𝑏𝑀−1). 

(2) Machines have identical cycle, and work at the beginning of each cycle. 

(3) Buffers have limited capacity, i.e., 1 ≤ 𝑁𝑖 < ∞, 𝑖 = 1,… ,𝑀 − 1. Parts in buffers can be transferred randomly. 

(4) Machines follow Bernoulli reliability model. Specifically, in one cycle, machine 𝑚𝑖, 𝑖 = 1, … ,𝑀  can 

produce a part with probability 𝑝𝑖 , cannot work with probability 1 − 𝑝𝑖, if and only if the machine is not 

either starved or blocked. 𝑝𝑖  is called the efficiency of machine 𝑚𝑖. For ease of expression, we introduced 

𝐼𝑞 and 𝐼𝑖𝑛𝑠𝑝 to represent index sets of degrading machines and inspection machines. 

(5) Degrading machines 𝑚𝑖 , 𝑖 ∈ 𝐼𝑞  follow degradation model. Quality efficiency 𝒈𝑖  =  [𝑔𝑖,1, … , 𝑔𝑖,𝐹]  can be 

degraded through matrix 𝑫𝑖 (see equation (1)). Under (4), 𝑚𝑖 can produce a non-defective part with 𝑔𝑖,𝑗, 

and produce a defective part with 1 − 𝑔𝑖,𝑗.  

(6) During one cycle, if machine 𝑚𝑖  is up and buffer 𝑏𝑖  has 𝑁𝑖  parts, and the downstream of them cannot 

process parts, machine 𝑚𝑖 is blocked. If machine 𝑚𝑖 is up and buffer 𝑏𝑖 − 1 is empty, machine 𝑚𝑖 is starved. 

Machine 𝑚1 is never starved and 𝑚𝑀 is never blocked.  

(7) The serial production system needs to finish one batch non-defective parts. Time to complete one batch is 

called completion time, denoted by 𝐶𝑇. 
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        𝑫𝑖 =

[
 
 
 
 
𝑑1,1 𝑑1,2 0 ⋯ 0 0

0 𝑑2,2 𝑑2,3 ⋯ 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑑𝐹−1,𝐹−1 𝑑𝐹−1,𝐹

0 0 0 ⋯ 0 1 ]
 
 
 
 

.                                        (1) 

 

2.2.  Maintenance Rules 

 

As shown in Figure 1, machine 𝑚1  and 𝑚𝑀−2  are degrading machines. The degradation processes and 

maintenance rules can be described in Figure 2. The transition probabilities among these states are defined by 

the matrix 𝑫𝑖.  

 

 
Figure 2. Machines Degrading States and Maintenance Rules Diagram 

 

In Figure 2, PM operation can make states of degrading machines restore to the former states, i.e., quality 

efficiency 𝑔𝑖,𝑗 to 𝑔𝑖,𝑗−1. For machine 𝑚𝑖, the cost and time of PM are 𝑝𝑑𝑖 and 𝑝𝑐𝑖, respectively. The machine 

under PM is idle. CM operation can make states of degrading machines restore to completely new, i.e., quality 

efficiency 𝑔𝑖,𝑗 to 𝑔𝑖,1. For machine 𝑚𝑖, the cost and time of CM are 𝑐𝑑𝑖 and 𝑐𝑐𝑖, respectively. Machine under 

CM is idle. If no action exerts on degrading machines, it is called do nothing (DoN). 

 

3.  MULTI-AGENT MAINTENANCE DECISION-MAKING 

 

In this section, to overcome maintenance action space explosion, we take advantage of MARL to search 

optimal maintenance decisions over the planning horizon. The main task is to formulate multiple degrading 

machines maintenance decision-making as an MARL problem. 

 

3.1.  Markov Game 

 

Simulation-based methods can describe the production environment specified exactly [24]. Time 𝑡 indicates 

the simulation time step. At each simulation episode, degrading machines start to work without degradation. 

Then, they degrade following their own transition probability matrix 𝑫𝑖  as shown in Figure 2. In this 

simulation-based production environment, Markov decision processes (MDP) can be utilized to describe the 

system operation. When the system produces 𝐵 non-defective parts, the simulation of this production system 

is finished.  Each agent means a degrading machine 𝑚𝑖, 𝑖 ∈  𝐼𝑞. The partial observation 𝑜𝑡
𝑖
 of agent 𝑚𝑖 needs to 

consider the current degrading state 𝑠𝑑𝑡
𝑖 ∈ {1, … , 𝐹𝑖} and the remaining maintenance time 𝑟𝑑𝑡

𝑖 ∈ {0,1, … , 𝑐𝑑𝑖}. 

When 𝑟𝑑𝑡
𝑖 > 0, degrading machines are idle and cannot process parts from their upstream. The system state 

denoted by 𝑆𝑡  ∈  𝑆. At each time step, an agent is taken an action 𝑢𝑡
𝑖  and the action set of all agents is 𝒖 ∈  𝑼. 

A transition on this environment is generated by state transition function 𝑃(𝑠’|𝑠, 𝑢): 𝑆 × 𝑼 × 𝑆 → [0,1]. A reward 

function for all agents is expressed by 𝑟(𝑠, 𝒖): 𝑆 × 𝑼 → ℝ and discount factor is denoted by 𝛾 ∈ [0,1).  

 

In this environment, each agent can obtain its own partial observation 𝑜 ∈ 𝑂. During simulation, each agent 

can obtain an action-observation trajectory 𝜏 ∈ 𝑇. Based on this, a stochastic policy 𝜋𝑖(𝑢𝑖|𝜏𝑖): 𝑇 × 𝑈 → [0,1]. 

Following a joint policy 𝜋 , the action-value function can be given: 𝑄𝜋(𝑠𝑡 , 𝑢𝑡) = 𝐸𝑠𝑡+1:∞,𝑢𝑡+1:∞
[𝑅𝑡|𝑠𝑡 , 𝑢𝑡] . 

𝑅𝑡 indicates the discounted return: 𝑅𝑡 = ∑ 𝛾𝑖𝑟𝑡+𝑖
∞
𝑖=0 . 

 

3.2.  Model Formulation 

As discussed in section 3.1, the local observation for agent 𝑚𝑖  is: 𝑜𝑖  =  [𝑠𝑑𝑖 , 𝑟𝑑𝑖]. The global state of this 

system is defined as: 𝑠 =  [𝑜1, 𝑜2, … , 𝑜|𝐼𝑞|, 𝐾], where 𝐾 is the number of non-defective parts produced by the last 

machine. The maintenance actions can be formulated by Equation (2).  
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    𝑢𝑡
𝑖 = {

0,    take PM on machine 𝑚𝑖 ,
1,    take CM on machine 𝑚𝑖,
2,    leave machine 𝑚𝑖  as it is.

                                                      (2) 

 

During time step 𝑡, the joint action can be described as: 𝑢𝑡 = [𝑢𝑡
1, … , 𝑢𝑡

|𝐼𝑞|
]. In this setting, there are three types 

of actions. For centralize learning process, the dimension of actions of all agents is 3|𝐼𝑞|. When increasing the 

number of action types, the dimension of actions space will grow exponentially. In our work, we consider 

decentralized policies that allow each agent to select its own action independently based on its own action-

observation trajectories. To design a reasonable reward function, some conflicting factors need to be balanced. 

On one hand, frequent maintenance actions can lead machines to producing non-defective parts with high 

probabilities. On the other hand, redundant maintenance action can delay the whole production processes and 

increase total cost. Therefore, the reward function designed in this work consists of states of degrading 

machines, PM cost, CM cost. At time step 𝑡, the reward function is defined as follows: 
 

𝑟𝑡 = 𝜔 ∑
1

𝑠𝑑𝑡
𝑖

|𝐼𝑞|

𝑖=1
− ∑ 𝐶𝑖

𝑃𝑀𝟙𝑖
𝑃𝑀(𝑡)

|𝐼𝑞|

𝑖=1
− ∑ 𝐶𝑖

𝐶𝑀𝟙𝑖
𝐶𝑀(𝑡)

|𝐼𝑞|

𝑖=1
,                                              (3) 

 

where each item is explained below: 

𝜔 is the assigned weight for degrading states. 

𝑠𝑑𝑡
𝑖  is the current state of machine 𝑚𝑖 at time step 𝑡. 

Therefore, 𝑤 ∑
1

𝑠𝑑𝑡
𝑖

|𝐼𝑞|

𝑖=1
 denotes the total benefits of at time step 𝑡. 

𝐶𝑖
𝑃𝑀 is the cost of exerting PM on machine 𝑚𝑖, i.e., 𝐶𝑖

𝑃𝑀 = 𝑝𝑐𝑖 + 𝑝𝑑𝑖. 

𝟙𝑖
𝑃𝑀(𝑡) is an indicator function, expressing whether PM is taken on machine 𝑚𝑖. If 𝟙𝑖

𝑃𝑀(𝑡) = 1, PM is taken on 

machine 𝑚𝑖. Otherwise, 𝟙𝑖
𝑃𝑀(𝑡) = 0. 

𝐶𝑖
𝐶𝑀 is the cost of exerting CM on machine 𝑚𝑖, i.e., 𝐶𝑖

𝐶𝑀 = 𝑐𝑐𝑖 + 𝑐𝑑𝑖. 

∑ 𝐶𝑖
𝑃𝑀𝟙𝑖

𝑃𝑀(𝑡)
|𝐼𝑞|

𝑖=1
 means the total cost of PM on all degrading machines. 

Similarly, ∑ 𝐶𝑖
𝐶𝑀𝟙𝑖

𝐶𝑀(𝑡)
|𝐼𝑞|

𝑖=1
 means the total cost of CM on all degrading machines. 

 

4.  QMIX THEORY AND NETWORK  

 

For multi-agent cooperative problems, decentralized policies can overcome the difficulty of joint action spaces 

explosion. MARL in the centralized training and decentralized execution fashion is adopted for this work. 

However, this method also exists some challenges. The action-value function 𝑄𝑡𝑜𝑡 is dependent on the global 

state and joint action. This function is hard to learn.  

 

4.1.  QMIX Theory 

 

Among these MARL algorithms, one easy way is to forgo the centralized action-value function as 𝑄𝑡𝑜𝑡 is hard 

to represent and use. Alternatively, independent Q-learning is proposed to assign each agent to an individual 

action-value function 𝑄𝑖 [25]. But this method cannot obtain the global optimum because of forgoing 𝑄𝑡𝑜𝑡. 

Based on the global action-value function 𝑄𝑡𝑜𝑡, Rashid et al. proposed an MARL algorithm QMIX [23]. As 

shown in Equation (4), the result of a global argmax for 𝑄𝑡𝑜𝑡 is the same as a set of individual argmax for each 

𝑄𝑖. According to this equivalency, each agent can select its own action based on 𝑄𝑖 . 

 

argmax
𝑢

𝑄𝑡𝑜𝑡(𝜏, 𝑢) = (
argmax

𝑢1
𝑄1(𝜏1,𝑢1)

⋮
argmax

𝑢𝑛
𝑄𝑛(𝜏𝑛 ,𝑢𝑛)

).                                                   (4) 

 

Compared with value decomposition networks (VDNs) [26], QMIX can be used by a larger family of 

monotonic functions. Monotonicity needs to be ensured by a constraint as follows: 

 
𝜕𝑄𝑡𝑜𝑡

𝜕𝑄𝑖
 ≥ 0, ∀𝑖 ∈ 𝑛.                                                           (5) 
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4.2.  QMIX Network 

 

To meet this constraint, QMIX expresses 𝑄𝑡𝑜𝑡 through a set of networks. As shown in Figure 3, this architecture 

consists of agent networks, a mixing network and hypernetworks [23]. Agent networks have same architecture 

to output their own value functions 𝑄𝑖(𝜏
𝑖 , 𝑢𝑖). They use deep recurrent Q-networks (DRQN) inputting their 

observations 𝑜𝑡
𝑖 and last action 𝑢𝑡−1

𝑖  [27]. To satisfy this constraint, the weights in this mixing network are set 

to be non-negative. Each hypernetwork takes the global state as input and generates the weights of each layer. 

These hypernetworks are composed of a single linear layer followed by an absolute value activation function 

to ensure that the weights are non-negative. The biases can be generated in the same way, but it does not have 

to be guaranteed to be non-negative. The global state is used as an input of the hypernetworks so that the full 

information of the system can be integrated into the joint action value estimate. 

 

 
Figure 3. QMIX Network Architecture [23] 

 

To minimize loss function of QMIX, we use end-to-end way to train: 

 

ℒ(𝜃) = ∑ [(𝑦𝑖
𝑡𝑜𝑡 − 𝑄𝑡𝑜𝑡(𝝉, 𝒖, 𝑠; 𝜃))2]𝑏

𝑖=1 ,                                         (6) 

 

where 𝑏  is the batch size of defined replay buffer, and 𝑦𝑡𝑜𝑡 = 𝑟 + 𝛾 max
𝒖′

𝑄𝑡𝑜𝑡(𝝉
′, 𝒖′, 𝑠′; 𝜃−)  and 𝜃−  are the 

parameters of a target network as in deep Q-network (DQN) [28]. Since Equation (4) holds, 𝑄𝑡𝑜𝑡  can be 

maximized. It has linear relationships with 𝑄𝑖, thus avoiding the dimension explosion problems. 

 

5.  NUMERICAL STUDY 

 

To verify the QMIX-based maintenance policies, QMIX-based experiments are carried out and explained. 

Then, comparing with baselines, it is shown that QMIX-based policies are better.  

 

5.1.  Experiment Description 

 

We firstly verify the convergence of this algorithm during training course. Specifically, QMIX is applied to a 

six-machine five-buffer serial production system through training to obtain optimal maintenance policies. Next, 

the optimal policies are compared with two baselines. Run-to-Failure (R2F) policies indicate that machines 

are taken CM when they are in the worst state. The other one is that we take no actions on degrading machines, 

i.e., DoN policies. Parameters of this system are listed below including machine parameters (Table 1), buffer 

parameters (Table 2), degrading quality efficiencies and degrading transition matrices (Equation (7)-(8)). 

 

Table 1. Machine Parameters 
 

Parameters 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 𝒎𝟔 

Efficiency 𝒑𝒊 0.9 0.96 0.97 0.93 0.91 0.92 

PM cost 𝒑𝒄𝒊 2 - 2 2 - - 

PM time 𝒑𝒅𝒊 1 - 1 1 - - 

CM cost 𝒄𝒄𝒊 8 - 8 8 - - 

CM time 𝒄𝒅𝒊 2 - 2 2 - - 
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Table 2. Buffer Parameters 
 

Parameters 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 

Buffer capacity 𝑵𝒊 3 5 5 3 3 

 

𝒈𝑖 = {

[0.9, 0.7,0.5,0.25],               𝑖 = 1,
[0.9,0.7,0.5,0.25],                𝑖 = 3,
[0.9,0.7,0.6,0.5,0.25],         𝑖 = 4.

      (7) 

 

𝑫1 = [

0.8 0.2 0 0
0 0.8 0.2 0
0 0 0.7 0.3
0 0 0 1

], 𝑫2 = [

0.9 0.1 0 0
0 0.7 0.3 0
0 0 0.6 0.4
0 0 0 1

],  𝑫3 =

[
 
 
 
 
0.9 0.1 0 0 0
0 0.7 0.3 0 0
0 0 0.6 0.4 0
0 0 0 0.5 0.5
0 0 0 0 1 ]

 
 
 
 

.      (8) 

 

For each simulation episode of serial production systems, the number of non-defective parts required is set to: 

𝐵 = 10. In this experiment, the weight of the defined reward function is specified: 𝜔 is equal to 0 when DoN 

is applied to degrading machines, and 𝜔 is equal to 10 when degrading machines are under maintenance. Each 

agent network has a gated recurrent unit (GRU) with a 64-dimensional hidden state and is connected by fully 

connected layers. The optimizer during training course is root mean square propagation (RMSprop) with a 

learning rate 𝛼 = 5 × 10−4. The discounted factor 𝛾 is 0.98. The mixing network includes a hidden layer of 32 

units with parameters given by hypernetworks. An exponential linear unit (ELU) activation function acts on 

the output of the hidden layer. Each hypernetwork consists of a feedforward network, a 64-unit hidden layer 

and a rectified linear unit (ReLU) activation function sequentially. This model is trained by 6.5 × 104 epochs. 

In the first 5000 epochs, actions are selected by 𝜖-greedy. 𝜖 decrease from 1 to 0.05 linearly. A mini-batch size 

is set to 32 sampling from replay buffer with size 100. 

 

5.2.  Experiment Results 

 

The training results can be shown in Figure 4. As one can see, the reward of this system is convergent within 

40, 000 training epochs. Evidently, it can reach a higher value. To display the effectiveness of QMIX-based 

policies, we compare with R2F and DoN policies. These two policies are run by 6.5 × 104 epochs and show 

the average value of reward and 𝐶𝑇. As shown in Figure 5, there are some fluctuations of 𝐶𝑇 using QMIX-

based policies because of the interaction between the stochastic nature of production systems and the generated 

policies. In general, this method can obviously shorten 𝐶𝑇. As to reward, it is higher compared to average 

reward of R2F. It should be noted that the reward is always 0 under DoN. The results provide some insights 

that R2F policies are not efficient for industrial maintenance. 

 

 
       Figure 4. Training Results          Figure 5. Comparison Results 
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6.  CONCLUSION 

 

In this work, maintenance decision-making problems for the serial production lines with degrading machines 

are solved through MARL. We firstly established the serial production lines model with degrading machines 

and defined maintenance actions. Then, maintenance decision-making problems for this model can be 

formulated by MARL. In the small-lot production mode, the completion time is very important. Therefore, it 

is key to balance the completion time and maintenance cost. Therefore, an MARL algorithm which has good 

performance in cooperative problems is adopted and is suitable for this decision-making problems in this paper. 

Finally, the convergence of this model and comparison experiments are verified.  

 

In future work, for the maintenance decision-making problems of production systems, degraded machines 

subject to different degradation models and different production systems structures will be studied. Due to the 

complexity and nonlinear characteristics of the system, novel multi-agent reinforcement learning algorithms 

will be studied for optimizing maintenance decisions. 
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