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Abstract: This paper presents an in-depth analysis of how recovery time distributions are determined for the 
water supply systems at Olkiluoto 1 and Olkiluoto 2 boiling water reactors (BWR) at the Olkiluoto nuclear 

power plant (NPP). The paper begins with an introduction to the importance of recovery times in the context 

of the Level 2 probabilistic risk assessment (PRA). The methodology for determining recovery times is 
detailed, including the processing of initial values from Level 1 PRA, and the use of the Latin Hypercube 

Sampling (LHS) method for the formation of random sample. The random sample is used for the calculation 

of log-normal distribution parameters, which are then used in actual Level 2 PRA model. While the log-
normal distribution generally provides a good fit, it is not perfect, with some exceptions mainly due to the 

presence of difficult-to-recover maintenance packages, fires, and seismic events which distort the random 

sample to be less log-normal. The concept of dependencies and system availability derived from recovery 

time analysis are also discussed, since they are crucial for determining recovery times in the level 2 PRA 
model. However, these parameters do not influence the calculation of log-normal parameters and were not 

analyzed further. The paper concludes that while the log-normal distribution is a useful model, it has its 

limitations and suggests further research could explore other distribution models or goodness-of-fit measures 
and analyze dependencies and system availability derived from the recovery time analysis further. 
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1.  INTRODUCTION 

 
In probabilistic risk assessment (PRA), accurately determining recovery times for plant damage states 

(PDSs) is essential for accurate accident progression analysis in a Level 2 PRA. This paper describes the 

methodology for determining the parameters of log-normal distributions that are used to estimate the 

recovery times of three water supply systems, specifically the containment spray (CS) system, the low-
pressure reactor core spray (LPRCS) system, and the auxiliary feedwater (AFW) system. The focus is on 

Olkiluoto 1 and Olkiluoto 2 boiling water reactors (BWR) at the Olkiluoto nuclear power plant (NPP). 

 
The entire procedure for computing the parameters of the log-normal distribution is depicted in figure 1. This 

paper will provide more comprehensive instructions in the subsequent sections. In short, the procedure starts 

by identifying the 100 most significant minimal cut sets (MCSs) for each PDS from a Level 1 PRA. The aim 

is to find fault combinations within the PDS MCS that could prevent the safety function of any of the three 
water supply systems. If a fault combination is found, a recovery time is determined for it. Once each MCS 

of the PDS has been processed, all unique recovery times are collected in a table, and their cumulative share 

of the total frequency of all MCS of the PDS is calculated. Using this method, we create an initial value 
matrix for each system in each PDS. 

 

From the initial values we create a random sample using the Latin Hypercube Sampling (LHS) method, 
ensuring that the sample represents the actual variation of the data set. This sample is then used to calculate 

the parameters of the log-normal distribution. 

 

The accuracy of the log-normal distribution is then evaluated by comparing the created random sample to the 
values produced by the log-normal distribution. 

 

In the conclusion, the paper addresses the following two research questions: 
 

RQ1 How can the recovery times for different systems in different PDSs in a nuclear power plant be 

determined? 
RQ2 How well does the log-normal distribution model the recovery times in different PDSs? 
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Figure 1. The entire procedure for computing the parameters of the log-normal distribution for one system in 

one PDS. 

 

2.  DETERMINATION OF RECOVERY TIMES 

 
2.1.  Analyzing the MCSs to determine recovery times 

 

For each PDS, MCSs that lead to core damage are obtained from the Level 1 PRA model. The 100 most 
significant MCSs are considered in the analysis, as they cover the largest part of each PDS’s core damage 

frequency, thus providing a sufficiently representative picture of the most significant combinations of faults 

leading to core damage or core melt. Of the 13 PDSs, nine were considered in the analysis. These are 
underlined in table 1. 

 

1. Identify the most significant minimal cut sets (MCS) for the plant damage state (PDS) from a Level 

1 Probabilistic Risk Assessment (PRA).

2. For the PDS, obtain the MCSs that lead to the loss of the safety function of the system under 

consideration.

3. Process each MCS of the PDS. If any MCS that would lead to the loss of the safety function of the 

system is found within the PDS's MCS, a recovery time is determined for it.

4. Collect all unique recovery times in a table. For each unique recovery time, calculate its share of the 

total frequency of all PDS's MCSs. This share is calculated by dividing the sum of frequencies of all 

MCSs that have the same recovery time by the sum of frequencies of all MCSs.

5. Create another table, which has the unique recovery times above zero, and calculate their cumulative 

share from the total share, from which the cumulative share of zero has been subtracted.

6. Create a random sample based on the table from step 5. 

7. Calculate the parameters of the log-normal distribution using the random sample.

8. Evaluate the accuracy of the log-normal distribution by comparing the created random sample to the 

values produced by the log-normal distribution.
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Table 1. Abbreviations and descriptions for each PDS. 

Number Abbreviation for the PDS Description, where the words explaining the abbreviations are bolded 

1 CBP A large containment by-pass path exists before core damage (low power 

operation modes only) 

2 RCO Reactivity control is totally lost. The insertion of control rods fails followed 

by unsuccessful boration. 

3 ROP Very early reactor overpressurization prevents core cooling  

4 COP Very early containment overpressurization destroys pipe works thus 

preventing core cooling. 

5 HPL An early core melt at high primary pressure, initiated by a loss-of-coolant 

accident (LOCA). 

6 HPT An early core melt at high primary pressure, initiated by a transient. 

7 LPL An early core melt at low primary pressure, initiated by a LOCA. 

8 LPT An early core melt at low primary pressure, initiated by a transient. 

9 RHL A late core melt caused by the depletion of auxiliary feedwater or loss of 

residual heat removal, initiated by a LOCA. 

10 RHT A late core melt caused by the loss of residual heat removal, initiated by a 

transient. 

11 VLL Successful very late venting without core damage or very late core damage 
caused by very late leakage or rupture of containment due to unsuccessful 

venting. 

12 FCF Fuel cladding failure terminated with boration or control rod insertion. 

13 ACH Transient initiated core melt begins, when water reserves have been used 

from the high-pressure alternate coolant injection system (ACIS) and 

depressurization of reactor coolant system (RCS) has been unsuccessful. 

 

For each PDS, MCSs that lead to the loss of the safety function of the three water supply systems (CS, 

LPRCS and AFW) are also obtained. 
 

The next step is to search for combinations of faults affecting the operation of the water supply systems, i.e., 

the MCSs of the water supply systems, within the MCSs of the PDSs. The MCSs of the PDSs are examined 
one by one, and if a combination of faults within the MCS of the PDS is found that disables the required 

number of subsystems for the execution of the safety function, this MCS of the PDS is considered in the 

determination of recovery times. 
 

The recovery time is listed for the basic event of the MCS of the PDS with the shortest recovery time which 

recovers the system’s safety function. In the case of common cause failures (CCF), the recovery time of a 

single basic event is multiplied by two. The rationale behind this is, that if we simply used the recovery time 
of a single basic event for the CCF, it might underestimate the complexity and coordination required to 

address multiple simultaneous failures. In contrast, multiplying the repair time by the number of basic events 

included in the CCF could overestimate the time needed, as some recovery activities might overlap or be 
streamlined. Therefore, multiplying the recovery time by two provides a more balanced estimate. 

 

The recovery time for each basic event is obtained from the input data of the PRA model. If the recovery 
time has not been defined for some basic event, an appropriate recovery time is estimated for it. For example, 

in the case of a severe seismic event, a long recovery time of 48 hours is used, as it is assumed that the 

systems most likely cannot be recovered during such event. However, if the MCS of the PDS does not affect 

the execution of the safety functions of the systems, a recovery time of zero is listed for the last basic event 
of its MCS. An example of this procedure is shown in figure 2. 
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Figure 2. Example: Identifying recovery times for the CS system in an example PDS’s MCSs. The fault 

combination outlined in yellow causes CS system’s safety function to fail, and one outlined in black does 

not. 

 
In figure 2, within the MCS of the PDS marked in blue, there is a MCS that causes CS’s safety function to 

fail (outlined in yellow). To restore the CS system’s safety function, one train out of four must be restored. In 

this example case, it has been estimated that the CCF of three pumps is faster to restore than the maintenance 

package, so the recovery time (8 h) is listed for the CCF. Inside the MCS marked in red, there is no MCS that 
causes the CS system’s safety functions to fail, so zero is recorded for the last event (outlined in black). In 

our analysis, this process is done using an automated script. 

 
Once each MCS of the PDS has been processed, all unique recovery times are collected in a table, and their 

cumulative share of the total frequency of all MCSs of the PDS is calculated. The cumulative share 

represents the proportion of the total frequency corresponding to each recovery time. This allows us to create 

an initial value matrix, show in table 2. 
 

Table 2. Example: Initial value matrix of recovery values for CS system in LPL PDS. 

Recovery time [h] Cumulative share 

0 0.4261 

0.17 0.4263 

0.5 0.5734 

2 0.7124 

6 0.8223 

8 0.8746 

10 0.8804 

18 0.8822 

20 1 

 

2.2.  Other parameters derived from the recovery time analysis 

 

By applying the analysis shown in previous chapter, dependencies can also be calculated. Dependencies 

mean what is the probability that two systems fail due to the same fault. When this happens, both systems 
will have the same recovery time. The dependency between two systems is the sum of the frequencies of the 

PDS MCSs affecting two systems divided by the sum of the frequencies of all PDS MCSs. For example, in 

the case of LPL, there is a 97% dependency between the CS and LPRCS systems, a 99% dependency 

between the LPRCS and AFW systems, and a 97% dependency between the CS and AFW systems. Thus, in 
the LPL PDS, if any of these systems fail due to some fault combination, the other systems are also most 

likely out of order. 

 
The probability of availability for each system in each PDS can also be calculated based on initial values. It 

is simply the cumulative proportion of zero recovery time. For example, the availability for the CS system, 

visible in table 2, is approximately 43% in the LPL PDS. 

 
Dependencies and availabilities need to be considered in the level 2 PRA model when determining recovery 

times for the systems, but they do not affect or are considered in the calculation of the log-normal 

parameters. 
  

MCS number Frequency Name Description Recovery time [h]

1 3.10E-08 INT-S2 Small coolant leak

322P001D1AZ-BCD 3x CCF pump does not start 8

322P001..H Maintenance package

2 1.60E-08 INT-S1 Medium coolant leak

213V225B2AZ-ABCD 4x CCF valve does not open 0
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3.  PARAMETERS OF THE LOG-NORMAL DISTRIBUTION 

 
3.1.  Processing of initial values 

 

Since a recovery time of zero is not considered from the values of table 2, we calculate what is the 
cumulative share of other recovery times from the total share, from which the cumulative share of zero has 

been subtracted. This value C can be calculated using equation (1) as follows: 

 

  C=
c-c0 

1-c0 
 (1) 

 

where c is the cumulative share of the value to be calculated from the set of recovery times, which 

also includes zero, and 
  c0 is the cumulative share of zero from this set. 

 

Using equation (1) for all recovery times above zero in table 2, we can form table 3. 

 
Table 3. Example: The cumulative share of the LPL PDS’s recovery times as a proportion of the total share, 

after subtracting the cumulative share that equals zero. 

Recovery time [h] Cumulative share 

0.17 0.0004 

0.5 0.2566 

2 0.4988 

6 0.6904 

8 0.7815 

10 0.7916 

18 0.7948 

20 1 

 

3.2.  Creation of a random sample 

 

Using the values calculated by equation (1) from table  3, a random sample is formed using the LHS method, 

which ensures that the random sample represents the actual variation of the data set. However, in this case, 

the random sample is not shuffled as it normally would be, since shuffling does not affect the calculation of 
log-normal parameters. 

 

The random number p is calculated using the LHS method with equation (2) as follows [1]: 
 

 
 p=

i-1+Rnd 

n
 (2) 

 

where  i is the index of the random sample and it ranges from 1 to n, 
  n is the number of random samples, and 

Rnd is a random number in the range [0, 1]. 

 

Using equation (2), a random number p is drawn on the first round from the range [0, 1/n], on the second 
round from the range [1/n, 2/n], …, and on the last round from the range [1-1/n, 1]. In comparison, a random 

number p is drawn on each round from the range [0, 1] in the more common uniform random sampling 

method. 
 

When the random number p is compared to the cumulative proportions in table 3 in the manner indicated in 

table 4, it can be determined what return time has to be used in the calculation of the inverse cumulative 
distribution function (ICDF), also known as the quantile function, for the exponential distribution. The 

exponential distribution is used here because the recovery times are not assumed to be constant, as in the 

initial values, but they vary due to various reasons, such as the type of components affected, the cause of the 

fault, and the repair method, etc. The value x [h], i.e. the recovery time given by the exponential 
distribution’s quantile function with probability Rnd, is calculated as follows [2]: 
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 x=

ln (1-Rnd)

1/β
 (3) 

 

where  Rnd is a random number in the range [0, 1], and 

  β is the recovery time [h]. 
 

Table 4. Example: Choosing β based on p and example values from table 3. 

Comparing p to the cumulative share β [h] 

         0 < p ≤ 0.0004 0.17 

0.0004 < p ≤ 0.2566 0.5 

0.2566 < p ≤ 0.4988 2 

0.4988 < p ≤ 0.6904 6 

0.6904 < p ≤ 0.7815 8 

0.7815 < p ≤ 0.7916 10 

0.7916 < p ≤ 0.7948 18 

0.7948 < p ≤ 1 20 

 

3.3.  Calculation of log-normal distribution parameters 

 
Next, the parameters of the log-normal distribution, i.e. the mean μ, variance σ2, error factor EF, expected 

value E, and standard deviation σ, are to be calculated from the random sample formed in the previous 

chapter. They can be calculated using equations (4), (5), (6), (7), and (8) as follows [3, 4]: 
 

 
 μ=

∑ ln(xi)
n
i=1

n
 (4) 

 

 
 σ2=

∑ (ln(xi) -μ)2n
i=1

n-1
 (5) 

 

   σ=√σ2 (6) 

 

 
 E=e

μ+
σ2

2  (7) 

 
  EF=e1.64485·σ (8) 

 

where  i is the index of the random sample, 
xi is the recovery time of the i-th random sample, and 

  n is the number of random samples. 

 

In table 5 are the example results for CS system in LPL PDS. These results are calculated from the random 
sample formed using the values from table 4. 

 

Table 5. Example: Parameters calculated from a random sample (n = 100000) formed using the values from 

table 4. 

Parameter Value 

Standard deviation σ 1.86 

Mean μ 0.59 

Expected value E [h] 10.11 

Error factor EF 21.22 
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4.  EVALUATION OF THE RESULTS 

 
This section presents how the accuracy of the log-normal distribution can be evaluated. This is done by 

comparing the created random sample to the values produced by the log-normal distribution. 

 
First, the values of the random sample are statistically divided into 5-minute (approximately 0.08 h) sections 

for 48 hours. Then we calculate how many data points are in the range (0, 0.08], how many data points are in 

the range (0.08, 0.17], etc. In this way, we can estimate the statistical probability of each interval. For 

example, if there are a total of 100000 iteration rounds and there are 5476 values in the range (0, 0.08], the 
statistical probability s is calculated as follows: 

 

 s(0.08 h)=
5476

100000
=5.48E-2 

 

The statistical value is then compared to the numerical integral (10) of the log-normal density function (9). 
[3] 

 

 

 lognpdf(x)=
e

-1
2

·(
ln(x)-μ

σ
)

2

x·√2·π·σ
 

(9) 

 

where  x is the recovery time [h], 
  μ is the mean, and 

  σ is the standard deviation. 

 

  lognp(xi)≈(xi-xi-1)·lognpdf(xi) (10) 

Using equation (10), a numerical integral can be calculated for the desired interval. This calculation is 
repeated for all intervals up to 48 hours, which covers most of the random sample. As an example, the values 

for the first hour would look like the ones in table 6. In it, lognp(x) is calculated using the values from 

table 5. 
 

Table 6. Example: Statistical probability s(x) and probability lognp(x), which is calculated through the 

numerical integral of the density function of the log-normal distribution. 

x [h] lognp(x) s(x) 

0.00 0.00E+00 0.00E+00 

0.08 5.46E-02 5.48E-02 

0.17 4.72E-02 4.74E-02 

0.25 4.07E-02 4.15E-02 

0.33 3.55E-02 3.67E-02 

0.42 3.15E-02 3.26E-02 

0.50 2.82E-02 2.95E-02 

0.58 2.55E-02 2.64E-02 

0.67 2.33E-02 2.38E-02 

0.75 2.13E-02 2.17E-02 

0.83 1.97E-02 1.98E-02 

0.92 1.83E-02 1.79E-02 

1.00 1.70E-02 1.69E-02 

 

From table 6, it can be seen that the statistical probability s(x) and probability lognp(x) are almost the same. 
However, for a more precise estimate, the R-squared (R2) value Error! Reference source not found. can be 

calculated. It represents the proportion of the variance for a dependent variable that’s explained by an 

independent variable or variables in a regression model. Its value can vary for non-linear regressions in the 
range [-∞, 1] and for a linear regression in the range [0, 1]. 
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 R2=1-

∑ (s(xi)-lognp(xi))
2n

i=1

∑ (s(xi)-s̅)2n
i=1

  

 

where  s̅ is the mean of the statistically recorded probabilities. 

 

Using equation Error! Reference source not found. for the example values in table 6, the R2 value is 0.94, 
which shows that the recovery times of LPL PDS follow the log-normal distribution excellently. For the 

entire 48-hour set, the R2 value was 0.99.  When this is visualized in figure 3, the similarity is even more 

apparent. Only the first 24 hours are plotted in the figure so that the beginning of the curve is more visible. 

 

 
Figure 3. Example plot for the CS system in the LPL PDS. 

 
We can also see that the data does not always follow log-normal distribution perfectly, as evidenced by the 

suboptimal R² value of 0.74 for the CS system in the RHT PDS, shown in figure 4. The difference is mainly 

due to what kind of MCSs there are in the RHT PDS and what is their proportion of the PDS’s total 
frequency. The RHT’s MCSs contain many difficult-to-recover maintenance packages and fires, which have 

a long recovery time. The relatively large proportion of these long recovery times distort the random sample 

to be less log-normal. 

 

 
Figure 4. Example plot for the AFW system in the RHT PDS. 

 
Even worse R² value is for the LPRCS system in the RCO PDS, shown in figure 4. It is -0.07, which 

indicates that the data does not follow log-normal distribution at all. This is because in the RCO plant failure 

state, there are many MCSs that include seismic events. For these, a recovery time of 48 hours is used, and 
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since there are hardly any other recovery times observed, the random sample distorts to completely non-log-

normal. The same phenomenon was observed with the ROP PDS, but in the context of fire events. 
 

 
Figure 5. Example plot for the LPRCS system in the RCO PDS. 

 

Three water supply systems were analyzed across nine different PDSs, resulting in a total of 27 figures. To 

conserve space, only three of these figures are included in this paper. Regarding the fits, 

 

• 16 of them had an R² value above 0.9 (indicating a good fit),  

• four had an R² value less than 0.9 but greater than 0 (indicating a poor fit), 

• four had an R² value less than 0 (indicating that the data was completely non-log-normal), and  

• three had an R² value of NaN (indicating that the system is always available in the PDS). 
 

The R² values vary due to the types of MCSs present in each PDS and their respective recovery times. MCSs 

with long recovery times, such as those involving difficult-to-recover maintenance packages, fires, seismic 
events and other hazards, tend to distort the distribution, leading to lower or even negative R² values. 

 

The drawback of the R² value is that it can be misleading with non-linear models. Even though we can 
calculate R² for non-linear regression, it doesn’t provide a clear interpretation in terms of the proportion of 

variance explained by the predictors. This can lead to an overestimation of the goodness of fit indicated by 

the R² value. Despite this drawback, the R² value, when used together with visual inspection, provides a 

quick and easy-to-understand measure of the overall fit of the model, and that is why it is used in this 
evaluation. 

 

It should be noted that when dealing with log-normal distributions, it’s often appropriate to use some 
goodness-of-fit measures other than R² value, that might be more suitable for this type of distribution, such 

as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), as they take into 

account both the goodness of fit of the model and the complexity of the model. However, applying these 
methods would require testing multiple different models, which is outside the scope of this paper. Instead, 

this paper focuses on providing a comprehensive understanding of the basic statistical properties and 

applications of the log-normal distribution. 

 
5.  CONCLUSION 

 

In response to RQ1, this paper has shown that recovery times for different systems in different PDS in a NPP 
can be determined through a detailed analysis of MCSs obtained from the Level 1 PRA model. The process 

involves identifying combinations of faults affecting the operation of the water supply systems within the 

MCSs of the PDSs. Once each MCS of the PDS has been processed, all unique recovery times are collected 

and their cumulative share of the frequency of all MCSs of the PDS is calculated. 
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As for RQ2, this paper has demonstrated that the log-normal distribution models the recovery times in 

different PDS quite well, but not perfectly. The goodness of fit of the log-normal distribution was evaluated 
by comparing the created random sample to the values produced by the log-normal distribution. The R-

squared (R²) value was used together with visual inspection as a measure of the overall fit of the model. For 

most of the data, the R² value was close to 1, indicating an excellent fit. However, there were some 
exceptions, where the R² values were suboptimal or even negative, indicating a poor fit. The difference 

between fits is due to what kind of MCSs there are in the PDS and what is their proportion of the PDS’s total 

frequency. MCSs that contain events with long recovery times, such as difficult-to-recover maintenance 

packages, fires, and seismic events, distort the random sample to be less log-normal. 
 

Chapter 2.2 discusses the concept of dependencies and system availability derived from recovery time 

analysis. Dependency refers to the likelihood of two systems failing due to the same fault. System 
availability, on the other hand, is calculated as the cumulative proportion of zero recovery time for each 

system in each PDS. These parameters are crucial when determining recovery times in the level 2 PRA 

model. However, they do not influence the calculation of log-normal parameters, so they were not analyzed 

further in this paper. 
 

In conclusion, while the log-normal distribution provides a useful model for recovery times in different PDS, 

it is not without its limitations. It is important to consider the specific characteristics of each PDS and the 
types of faults that can occur when applying this model. Further research could explore other goodness-of-fit 

measures, such as AIC or BIC, to find distribution models that might provide a better fit for the recovery 

time data in the cases where the data does not follow the log-normal distribution. In addition, the above-
mentioned dependencies and system availability could be analyzed further. 
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