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Abstract: With the goal of maximizing plant reliability and availability, complex systems such as nuclear 
power plants continuously monitor and record the performance and health status of many components, assets, 
and systems. Such data may take the form of online monitoring data, condition reports, and maintenance 
reports, and they can provide system engineers with insights into anomalous behaviors or degradation trends 
as well as the possible causes behind them and predict their direct consequences. The analysis of such data 
however poses a few challenges. While some of these challenges are technical in nature (i.e., data are often 
distributed over several physical servers or databases), others are conceptual (i.e., data elements come in 
different formats, numeric or textual) and measured values have different scales (e.g., vibration spectra and oil 
temperature). This paper directly tackles these challenges and focuses on integrating all these data elements to 
assist plant system engineers in analyzing component, assets, and systems performances and optimizing 
maintenance activities. This is performed by extracting knowledge from textual data via technical language 
processing methods and quantifying system, asset, and component health from numeric condition-based data. 
We rely on model-based system engineering (MBSE) models of systems and assets to identify their 
architecture and functional (i.e., cause and effect) relations. Numeric and textual data elements are then 
associated with an MBSE graph element, based on their nature. This bonding of MBSE models and data 
elements constitutes a first-of-its-kind knowledge graph of a nuclear power plant system, with data elements 
being organized in a structured manner that enables system engineers to identify cause-effect trends in data 
elements and carry out appropriate actions in response. 
  
Keywords: Natural language processing, condition monitoring, MBSE. 

 

1 INTRODUCTION 
The rapid development and deployment of advanced condition-based monitors and data analytics 

techniques (e.g., anomaly detection, diagnostic, prognostic methods) is considerably helping system engineers 
and plant operators to monitor the performance of several assets that constitute complex systems. Similarly, 
digitizing operation and maintenance activities allows them to keep track of events at the system or plant level 
(e.g., plant planned shutdown or system taken out of service) and, more important, observed asset abnormal 
conditions and operations that have been performed on such assets (Coble, 2015; Xingang, 2021). As a 
drawback, engineers and operators are now facing the challenge of processing the amount of equipment 
reliability (ER) data being continuously generated, which is not only extremely large but also appears in 
different forms: textual and numeric. 

This paper addresses this challenge by presenting methods to assist engineers and operators in extracting 
knowledge from ER data. The first point we claim here is that all the ER data elements described earlier equally 
provide indications about asset and system performance, and, hence, they cannot be analyzed separately. The 
second claim is that generating knowledge from data requires the ability to put data into “context.” Here, 
context is the additional piece of information needed by ER data analysis tools to understand what these data 
elements are referring to. 

Here, we employ model-based system engineering (MBSE) models of systems and assets to capture their 
architectural and functional (i.e., cause-effect) relations. With that, ER data elements (both textual and 
numeric) are processed by identifying first which elements of the developed MBSE elements they are referring 
to. For numeric ER data, this task is fairly easy while we employ technical language processing (TLP) methods 
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to “extract knowledge” from textual elements. Filtering abnormal behaviors can then be performed from 
numeric (through anomaly detections and diagnostic and prognostic methods) and textual elements (by 
understanding their semantic nature). Such abnormal instances, which are associated to a specific MBSE 
element, are then stored in a relational database. Such a database takes the form of a graph where the main 
skeleton is the actual system MBSE model and abnormal instances are “linked” to such skeleton. At this point, 
both numeric and textual data elements are integrated and put into context. From here, graph-based analysis 
methods can be employed to perform “machine reasoning,” which include identifying abnormal patterns and 
the root cause behind such patterns. 

Since this work was performed in collaboration with a nuclear utility, the data elements and corresponding 
figures reported in this paper have been intentionally altered to hide proprietary information. 

2 CONSIDERED SYSTEM 
The system under consideration in this paper is the circulating water system (CWS) of an existing nuclear 

power plant. Typically, this system is used in many types of power plants (e.g., coal, gas, oil) and is designed 
to remove the residual heat from the turbine-condenser system and release it into the environment. 

In our case, water is collected from a body of water (e.g., lake or a river) through service gates. Then, using 
traveling screens, the water is cleaned of debris, water life, and foreign bodies that might damage CWS 
components. Screen wash pumps provide spray water to remove accumulated debris on the screens. The CWS 
also contains a vacuum priming system that removes any air from the system. Then, water is pumped through 
heat exchangers located in the plant secondary loop and removes heat from the turbine-condenser system. 
Lastly, the same water is then released downstream of the same body of water. Depending on the environmental 
conditions, a portion of this water is released back into the service gates to avoid any ice formation that would 
block water flow. Several systems support the CWS, such as alternating current systems (4,160 and 480 V) 
and water-cooling systems. 

From an operational standpoint, even though the CWS does not directly support a plant safety function, 
any performance degradation or abnormal behaviors may directly affect power generation (either in power 
derate or power shutdown) and, consequently, plant economic revenues. 

3 ER DATA 
Based on the considerations presented in Section 2, CWS operational conditions are continuously 

monitored in order to detect early signs of degradation and proactively perform maintenance to restore system 
operations and guarantee system availability. In this respect, Table 1 provides a list of the available monitoring 
variables collected over the past decade; note these variables not only provide indications of performance of 
the CWS pumps and condenser but also of systems interfacing with the CWS. Note that plant environment 
variables are also available (water body and air temperature); Section 6 provides considerations about the 
importance of environment variables to remove seasonal (i.e., periodic) trends from CWS plant monitoring 
variables when performing anomaly detection. 

Table 1. List of CWS monitoring variables. 

Variable IDs Description 

𝑥!
"#$",#&'( , … , 𝑥)

"#$",#&'( Monitoring variables associated with 
CWS pumps of a specific plant unit 

𝑥*
+,&-,#&'( , … , 𝑥.

+,&-,#&'( Monitoring variables associated with the 
condenser of a specific plant unit 

𝑥!/#&'( , … , 𝑥!0#&'(	 
Monitoring variables associated with 
systems interfacing with the CWS 

𝑇12(34 and 𝑇2'4 Plant environment variables 
 

In addition to the numeric data described in Table 1, the considered nuclear power plant has also recorded 
in its databases all operational events as follows: 

• Reactor operator shift logs: major events that have caused deviations from normal plant 
operations; 
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• CWS condition reports: abnormal events that occurred in the CWS; 

• CWS work orders: maintenance operations performed to the CWS; 

• Plant outage data: time instances where the plant was shut down for either planned or unplanned 
outages. 

Note that all these events recorded in textual form (while the data elements described in Table 1 are in 
numeric form) provide indications not only about the historical reliability performance of the CWS but also 
precise information about the nature of the recorded abnormal events and corresponding operations performed 
to restore CWS operations. 

Lastly, the provided design documents gave us precise information about the architecture and functional 
relations between the CWS, the rest of plant, and the assets that are part of the CWS. 

4 ANALYSIS OF ER DATA 
Figure 1 shows our approach to process and analyze CWS historical performances provided the ER data 

elements (numeric and textual) described in Section 3. Constructing the knowledge graph starts by performing 
four different workflows: 

• Step 1: MBSE workflow. System architecture information provided by plant and CWS design 
documents is translated into MBSE models (see Section 5). 

• Step 2: Numeric workflow. CWS anomalies are inferred from CWS numeric monitoring data (see 
Section 6). 

• Step 3: Textual workflow. CWS related events reported from operator shift logs, conditions, or 
maintenance reports are processed using TLP methods (see Section 7). 

• Step 4: Event to time series correlation analysis. Based on the temporal occurrence of the inferred 
anomalies (see Step 2) and reported events (see Step 3), we test whether the occurrence of these 
events had a cause-effect relation with observed monitoring data. 

• Step 5: Knowledge graph construction. The construction of the knowledge graph starts by 
translating the system MBSE model into a graph structure where each node of this graph is a 
physical entity of the CWS (e.g., pump, traveling screen). Each edge in such a graph represents a 
physical connection between two entities where the nature of such connection can be of different 
types (mechanical, electrical, hydraulic, digital). Then, the set of anomalies derived from Step 2 
and the events processed in Step 3 are digitally associated with one (or more) node of the graph 
derived from the MBSE model (see Section 5). 

 

 
Figure 1. From ER data to knowledge graph: a graphical description of the workflows. Analysis methods are 

highlighted in dark grey while generated and input data is highlighted in light grey. 
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Table 2. Functional description of workflows designed to construct a knowledge graph from ER data. 

# Workflow Input Output 

1 MBSE modeling 
Design documents describing 
system architecture (form and 
functional description)  

MBSE models for the 
considered system and derived 
graph structure 

2 Anomaly detection System monitoring data 
(labeled or unlabeled) 

List of inferred anomalies  

3 TLP processing 
Textual event data (e.g., 
operator shift logs, condition 
reports, maintenance reports) 

Graph representation of event  

4 Event to time series correlation 
analysis 

System monitoring data, 
anomalies identified in 
Workflow 2, events processed 
in Workflow 3 

List of events correlated to time 
series variations; list of events 
correlated to identified 
anomalies 

5 Knowledge graph construction Data elements generated in 
Workflows 1, 2, 3, and 4 

Graph structure 

 

5 SYSTEM DIGITAL REPRESENTATION 
From a reliability standpoint, it is vital to identify the causal relationships among ER data, maintenance 

activities, and failure modes. This is typically neglected in the state of practice in current ER data analysis 
methods based on machine learning (ML) methods. This limitation is due to the fact that data are not enough 
to identify such causal relationships. Instead, system models are needed to perform such a discovery. 

In this respect, MBSE (Borky, 2018) methods afford several solutions for modeling systems, assets, and 
components from both a form (i.e., which elements are part of the structures, systems, and components) and a 
functional (i.e., how systems and assets interact with each other, and which functions they support) standpoint. 
These solutions are based on MBSE languages that represent system and asset form and functional elements 
via a set of diagrams. The most commonly used languages are Object-Process Methodology (OPM) (Dori, 
2002), Lifecycle Modeling Language (LML) (LML, 2022), and Systems Modeling Language (SysML) 
(Friedenthal, 2008). 

For the scope of this project, we have chosen LML and OPM since they provide the basic modeling 
elements we sought and because—more importantly—digital data structures (i.e., graphs) can be automatically 
generated from LML and OPM diagrams. Each element of an OPM and LML diagram can be either a function 
(e.g., an action or a transformation) or form (e.g., a physical entity) element. In addition, function and form 
elements in an OPM diagram are connected to each other through a set of links designed to convey precise 
meanings (Dori, 2002). 

Figure 2 shows the LML diagram of the considered CWS. Note that each asset included in the LML 
diagram of the CWS may be further described by its own separate LML or OPM diagram. In other words, a 
network of LML and OPM diagrams can be constructed to refine and further detail the architecture of the 
considered system. For example, in the CWS LML diagram in Figure 2, the centrifugal pumps are indicated 
as pertaining to a different OPM diagram that represents the pump architecture in greater detail. 

6 ANOMALY DETECTION METHODS 
The amount of anomaly detections (applied to any scientific or technological context) available in the open 

literature is vast, and it is not within the scope of this paper to provide an exhaustive overview of such methods 
to compare performances for the considered system. Such methods can rely on classical statistical, ML, or 
deep learning methods with different pros, cons, and ranges of operability. The main requirements for the 
choice of anomaly detection methods were fast computation, ability to deal with period patterns and missing 
data, ability to identify anomalies defined over time instance or time intervals, scalability, and interpretability. 
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Figure 2. LML model of the considered CWS. The figure has been intentionally edited graphically to hide any 
proprietary information. 

Given these requirements, we have chosen to build the anomaly detection methods based on the matrix 
profile algorithm (Yeh, 2016). In simple terms, this algorithm is a distance-based approach over a sliding 
window; here, the considered time series is progressively scanned by identifying the smallest distance between 
the portion of the time series limited within the considered time window and the set of time windows previously 
processed. An example of anomalies detected is shown in Figure 3 where the matrix profile algorithm has been 
applied to the time series of two monitored variables of the CWS. Here, two time series are considered (shown 
in blue in Figure 3), 𝑇12(34 and 𝑋!

"#$", and the corresponding temporal matrix profiles are shown in red in 
Figure 3. Anomalies are identified by looking at the regions characterized by high values of the matrix profiles. 

 
Figure 3. Example of anomalies detected by matrix profile algorithm when applied to the time series of the 

monitored variable 𝑋5 of the CWS. 

Once an anomaly is detected, it is digitally recorded by observing the time interval under which it is 
detected and the set of variables employed to detect it. More precisely, a generic anomaly An is defined as a 
specific entity, which is defined as An =([vars], tin, tfin) where [vars] corresponds to the list of 
variables under which the anomaly was observed, while tin and tfin define the temporal duration of such an 
anomaly. 
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7 TLP KNOWDLEDGE EXTRACTION METHODS 
Issue reports (IRs) and work orders (WOs) are valuable data sources for tracking asset health histories, 

identifying health trends, and performing root-cause analyses. These data sources, typically obtained in text 
form, are usually available in digital repositories. Natural language processing methods (Lane, 2019) have 
been developed over the past two decades to enable ML models to analyze textual data and classify textual 
elements based on their nature (e.g., safety-related vs. non-safety-related). In the context of the present work, 
we are not interested in solving any type of classification problem but rather in extracting actual knowledge 
from textual data. This is a harder task, as it requires the development of context-dependent models and 
vocabularies. The medical field is leading the way in this area by developing methods to extract knowledge 
from textual data (e.g., for diagnostic purposes or to estimate the performance of specific treatments). When 
applied to the nuclear field, knowledge extraction consists of several tasks, including identifying: 

• Plant-specific entities, such as systems, assets, and components (e.g., centrifugal pump, accumulator 
system, and pump shaft) 

• Temporal attributes that characterize events (e.g., the occurrence, duration, and order of events) 

• Measured quantities (i.e., a numeric value followed by unit of measure) 

• Phenomena (e.g., material degradation or asset functional failure) 

• Causal relations between events. 

This process of knowledge extraction is enabled by a series of data, models, and methods. The developed 
series of TLP methods was designed to identify all elements listed above, using a mixture of rule-based and 
ML algorithms. These methods (Wang, 2024) heavily rely on data dictionaries and plant, system, and asset 
models. Data dictionaries containing a large number of keywords related to the nuclear field were partitioned 
into several classes (e.g., materials, chemical elements and compounds, degradation phenomena, and electrical, 
hydraulic, and mechanical components). 

The ability of system engineers to analyze textual data is enabled by their knowledge of the architectural 
scheme of the components and assets that comprise the system. In simpler terms, they know what physical 
elements comprise a given asset or system, along with their functional relations and dependencies. Without 
such information, knowledge extraction from textual data is very difficult, as putting the text into context 
becomes much harder. For the present study, our methods were designed to check whether OPM entities (see 
Section 3) are mentioned in ER textual data elements. 

Figure 4 provides an example of knowledge extraction from an ER textual data element. Based on the 
developed libraries, the asset (i.e., pump) and reactions (i.e., cracking and failure) mentioned in the text are 
identified, along with a specific pump MBSE entity (i.e., shaft). Furthermore, additional elements are captured: 
the existence of a conjecture and the temporal attribute associated with pump failure. 

 
Figure 4. Example of natural language processing knowledge extraction from an ER textual data element. 

8 EVENT TO TIME SERIES CORRELATION ANALYSIS 
Sections 6 and 7 have presented methods of analyzing numeric and textual ER data elements, and we 

explained how MBSE diagrams can be employed to identify possible causal relationships between ER data 
elements. The word “possible” is intended to indicate that two events sharing an OPM-based direct relation 
may in fact exist independently from each other. The first step in testing such dependence is to observe their 
temporal correlation. Our work extends that presented by Luo (2014), in which the temporal correlation 
between time series and events is formulated in terms of a two-sample problem (Gretton, 2006). Our extension 
includes three relevant items: a modification to the testing process structure, a different two-sample testing 
algorithm, and the handling of events defined over an interval (as opposed to a time instant). 
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In its original formulation by Luo (2014), the temporal correlation was measured between a set of identical 
events and the time series. In the scope of the present work, we often deal with single events (e.g., abnormal 
behavior of an asset) rather than sets of events. The algorithm presented by Luo (2014) was based on measuring 
the statistical difference between the portions of the time series pertaining to both before and after (indicated 
as 𝑙6

74,&( and 𝑙64324, respectively [see the left-hand plot in Figure 5]) an event (as defined over a temporal 
instant). Our extension, which enables dealing with events defined over a temporal interval (see the right-hand 
plot in Figure 5), requires the additional time series portion that corresponds to the duration of the event itself: 
𝑙6-#4. We employed the maximum mean discrepancy algorithm (Gretton, 2006) to perform such testing. 

  
Figure 5. Temporal correlation of a time series with an instantaneous (left plot) and interval (right plot) event 

𝐸. 

 

Algorithm 1: Identification of the temporal relation between event and 
time series—time instant case  

Input: Event (𝐸, 𝑡6), time series 𝑆 = (𝑠!, 𝑠0, … , 𝑠$) 

Output: Temporal correlation flag 𝑅, direction 𝐷 

1. Initialize 𝛩 
2. Determine 𝑙6

74,&(, 𝑙64324 from 𝑡6 
3. Test 𝑇2𝛩, 𝑙6

74,&(3, and	𝑇(𝛩, 𝑙64324) 
• Results are denoted as: 𝐷7 , 𝐷4 

4. Test 𝑇2𝛩, 𝑙6
74,&( ∪ 𝑙643243 

• Result is denoted as 𝐷74 
5. Test 𝑇2𝑙64324 , 𝑙6

74,&(3 
• Result is denoted as 𝑑74 

6. If 𝐷4 = 𝑇𝑟𝑢𝑒	&	𝐷7 = 𝐹𝑎𝑙𝑠𝑒: #E1 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝐸 → 𝑆 

7. Elif 𝐷4 = 𝐹𝑎𝑙𝑠𝑒	&	𝐷7 = 𝑇𝑟𝑢𝑒: #E4 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and 𝐷 = 𝑆 → 𝐸 

8. Elif 𝐷4 = 𝑇𝑟𝑢𝑒	&	𝐷7 = 𝑇𝑟𝑢𝑒: #E2 and E3 
• Return 𝑅 = 𝑇𝑟𝑢𝑒 and D = S;E 

9. If 𝐷74 = True: 
• Return R = True and D = S;E 

10. Elif 𝑑74 = 𝑇𝑟𝑢𝑒: 
• Return R = False and D = S?E 

11. Else 𝑑74 = 𝐹𝑎𝑙𝑠𝑒: 
• Return 𝑅 = 𝐹𝑎𝑙𝑠𝑒 and D = S!E 

 

The plots in Figure 5 were adapted from those by Luo (2014) and provide an overview of the set of cases 
observable when testing the temporal correlation between time series and events. When indicating the time 
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series with 𝑆, we can look at the left-hand plot in Figure 5 and intuitively infer that 𝐸! → 𝑆, 𝑆 → 𝐸0, 𝐸8 → 𝑆, 
and 𝑆 → 𝐸). Note that the symbol → here indicates a temporal relationship between an event 𝐸 and 𝑆 but does 
not necessarily imply a causal relationship between the two. Without a loss of generality, let us consider an 
event	𝐸—defined over either a time instant (𝐸, 𝑡6) or time interval (𝐸, 𝑡6 , ∆𝑡6)—and a time series 𝑆 (either 
univariate or multivariate). Algorithm 1 presents the identification of the temporal relation between 𝐸 and 𝑆 is 
presented in detail. 

An example of a correlation analysis of events and time series is shown in Figure 6 where a monitored 
variable is correlated to a set of events processed in Section 7. The identified events that have a temporal 
correlation with the time series are indicated red, black, yellow. 

Lastly, note that the reported time of occurrence of an event is assumed to reflect the actual temporal 
occurrence of that event. More specifically, the reported occurrence of an event (e.g., sudden bearing failure 
of a pump) is logged when the event is first observed; however, the actual event may have occurred prior to 
the logged date (i.e., a temporal delay may exist between the actual and the observed occurrence of an event). 
In such situations, the analysis of the temporal correlation between events and time series may be biased by 
such delays. This situation is currently the subject of study. 

 
Figure 6. Example of correlation analysis of events and time series using notation shown in Algorithm 1. 

9 KNOWLEDGE GRAPH CONSTRUCTION 
Provided the set of processed ER data elements—either textual (see Section 4) or numeric (see 

Section 5)—the goal becomes to organize each element into a graph structure that captures the cause-effect 
relations (logical and temporal) identified in Section 6. Our approach began with the graph structure derived 
from the MBSE models of the system and assets under consideration (see Section 3), then progressed through 
the following steps: 

1. Associate an ER textual data element with one (or more) MBSE entity. 

2. Identify ER numeric data elements that have a logical path to the ER textual data element identified 
in Step 1. 

3. Determine whether there is a temporal relation between the ER textual data element identified in 
Step 1 and the ER numeric data elements identified in Step 2 (see Section 6). 

4. If both the temporal and logical relation have been identified in Step 3: 
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a. Link the portion of the ER numeric data element to its corresponding MBSE element. 

b. Link the data element identified in Step 4a to the ER textual data element identified in 
Step 1. 

5. Repeat Steps 1–4 for each ER textual data element. 

The resulting relational database will take the form of a graph structure reflecting the links between the 
data elements associated with a particular MBSE entity. Again, the actual skeleton of the graph structure is 
directly derived from the MBSE diagram of the system and assets under consideration. In this respect, Figure 
7 shows the CWS graph structure directly generated from the provided MBSE diagram. Note that the graph 
nodes can reflect different data types (form or function), and the same applies to edges. 

For the present article, we focused on the textual portion of the available ER dataset for the considered 
CWS over a 10 year lifespan. The knowledge extraction methods presented in the past sections were employed 
to analyze all shift logs, WOs, and IRs, enabling us to identify the nature of textual elements and the MBSE 
elements associated with them. As an example, Figure 7 graphically shows how the knowledge graph is 
populated by first obtaining the graph from the system MBSE model; then, anomalies identified using the 
methods indicated in Section 6 and the events processed using the TLP methods shown in Section 7 are 
associated to one or more MBSE entity. 

 
Figure 7. Graphical representation of the knowledge graph data structure. 

10 CONCLUSION 
This paper has presented an approach designed to holistically integrate ER data, both numeric and textual, 

into a single knowledge graph. We first employ MBSE models to capture the system architecture (form and 
functional representation based on diagrams), which are translated into graph structures. Then, monitoring data 
are analyzed to identify anomalies while textual data is parsed by TLP methods designed to extract knowledge 
from text and generate a data graph out of textual elements. We also include in our process methods designed 
to correlate events and anomalies with a time series, which capture causal relations (temporal and logical). The 
graph is then populated by associating anomalies and events to specific MBSE entities. The obtained 
knowledge graph merges system architecture and system ER data into a single digital structure. This data 
structure can be then employed to perform several tasks, including the identification of patterns of anomalies, 
diagnosis of causes from a set of anomalies across systems, assessment of historic asset health performances, 
and update of plant PRA models. 
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