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Abtract: Fault Tree Analysis is a powerful technique used in a wide variety of fields to perform both 
quantitative and qualitative analysis of complex systems. Among the capabilities of Fault Tree Analysis, one 
of the most critical and computationally expensive is the identification of Minimal Cut Sets. With the ever-
growing demand for more efficient, sustainable, and safe systems, we can expect the computational complexity 
of finding minimal cut set configurations to increase even further. To prepare for this challenge, this paper 
explores the feasibility of finding minimal cut set configurations in standard, coherent fault trees using a novel 
quantum-based optimization approach. The approach, previously proposed to find satisfying clauses for 3-
SAT problems in general settings, is modified to accommodate the context of Fault Tree Analysis. To validate 
the proposed approach, we perform numerical tests on a quantum computing simulation environment. The 
results show that while the identification of minimal cut sets is feasible, challenges arise when the size of the 
fault tree increases.  
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1. INTRODUCTION 

Fault Tree Analysis (FTA) is one of the most well-known techniques currently used in reliability engineering 
to find the root causes of a system’s failures. Over the years, FTA has been widely applied across various 
sectors, including health, nuclear power, aerospace, and many others. One of the most important capabilities 
of FTA is the identification of Minimal Cut Sets, defined as irreducible configurations of basic events whose 
failure induces the failure of the overall system [1]. The identification of these important configurations stands 
as one of the most computationally challenging tasks within FTA. Moreover, with the ever-increasing demand 
for more efficient, sustainable, and safe systems, the expectation is for the complexity of this task to grow at 
an accelerated pace.  

From a mathematical point of view, the identification of minimal cut sets can be categorized within the broad 
spectrum of problems known as SAT (Boolean satisfiability) problems. Identifying all the minimal cut sets in 
a fault tree can be recognized as a subcategory of SAT problems, known as ALL-SAT, where the objective is 
to find all configurations of Boolean variables that satisfy an expression composed of logical operations. Due 
to the complexity induced by this problem [2], existing methods present non-linear scaling in their time to 
solution concerning the number of variables, making the identification of critical scenarios in complex systems 
a relevant, but very demanding task. 

As a novel algorithmic paradigm, Quantum Computation has been heralded over the last few years as a 
promising candidate to tackle problems that exceed our current computational capabilities. While still nascent, 
the field has shown exciting results in areas such as Machine Learning [3], Probabilistic Inference [4], and 
Combinatorial Optimization [5]. This motivates the following question: can these techniques be used in the 
solution of SAT instances, and in particular, for the identification of Minimal Cut Sets? 

The literature shows that general SAT problems have been tackled using two main approaches within the 
context of Quantum Computation. The first technique applies a sampling approach to the SAT problem, where 
the objective is to generate a probability distribution that with high likelihood generates satisfying 
configurations. In this pursuit, these approaches make use of the Grover Algorithm [4], a quantum computing 
technique designed to selectively increase the likelihood of a set of outcomes in a discrete probability 
distribution. As an example, Campbell et al. [6] provides an extensive exploration of Grover-like approaches 
in the solution of constrained satisfaction problems. The second technique uses a combinatorial optimization 
approach to solve the SAT problem, where an objective function that assigns a higher cost to unsatisfying 
configurations is generated. In a quantum computation context, this approach is usually solved through the 
Quantum Approximate Optimization Algorithm (QAOA) [5]. As an example, Boulebnane and Montanaro [7] 
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propose a framework to use the QAOA for the solution of combinatorial optimization problems with hard 
constraints, which can be easily related to SAT instances. 

However, the application of these techniques to the solution of SAT problems currently has several 
shortcomings. On one hand, the use of the sampling approaches uses an excessive amount of quantum 
resources, far exceeding the capabilities of current quantum devices. On the other hand, the QAOA is notorious 
for getting trapped in local minima of the objective function, a problem known in the literature as “barren 
plateaus” [8], returning suboptimal solutions that may not even satisfy the original satisfiability problem. For 
this reason, a recent trend is to combine both approaches to alleviate some of their disadvantages. An example 
of this combined approach was proposed by Zhang et al. [9] for the general context of 3-SAT problems. 
However, to the best of the author’s knowledge, an experimental verification of this technique within the field 
of FTA has not been explored. 

To address this relevant gap, we adopt the approach proposed by Mandl et al. [10], adapting it with a quantum 
operator capable of recognizing MCS in Fault Trees. This operator was introduced by the authors in a paper 
recently published as a preprint [11]. By combining our operator with the approach presented by Mandl et al., 
we make possible the application of QAOA in the context of FTA. To validate our approach, we perform 
numerical tests on a quantum computing simulation environment, executed on a traditional computer.  

The paper is organized as follows. Section 2 presents the mathematical foundations behind quantum 
computation, stating the concepts required to understand the rest of the paper. Then, Section 3 describes the 
original QAOA, as proposed by Fahri et al. in 2014. Section 4 presents the fundamentals behind the QAOA 
modification proposed by Mandl et al., followed by a brief description of how we apply that technique to the 
context of FTA. Section 5 presents the case studies used to experimentally verify the proposed technique. 
Finally, Section 6 described our concluding remarks, outlining future avenues for research in the area. 

2. BACKGROUND: QUANTUM COMPUTATION 

In this section, we review the general principles of quantum computation. For this, we base our exposition on 
a probabilistic interpretation of the field, abstracting physics as much as possible from the discussion. For a 
complete discussion regarding quantum computation, the reader is referred to [12]. 

2.1. Mathematical Foundations 

Through this section, we denote a quantum system with the symbol 𝜓, and the state in which that system 
resides as |𝜓⟩. The ket notation |𝜓⟩ is used in quantum computation to denote a complex vector. The state-
space of a quantum system is represented as the finite set {|𝑒!⟩}!"#$%&, where |𝑒!⟩ is the 𝑖-th standard vector of 
an 𝑁-dimensional space. This definition enables us to represent the uncertainty about the current state of a 
quantum system as a linear combination of its state space, |𝜓⟩ = ∑ 𝑐!|𝑒!⟩$%&

!"# . With this formulation, the 
likelihood of finding the system 𝜓 in the state |𝑒!⟩ is defined as |𝑐!|', i.e., the square modulus of the 
corresponding complex coefficient. For this reason, valid quantum states are unit-length vectors, with a set of 
complex coefficients {𝑐!}!"#$%& fulfilling the relationship ∑ |𝑐!|'$%&

!"# = 1. The use of complex numbers instead 
of real numbers to represent uncertainty is one of the main differences between quantum computation and 
traditional computation.  

Quantum states can be modified through their multiplication with unitary matrices known as quantum 
operators. Unitary matrices, denoted as 𝑈, are matrices that fulfill the condition 𝑈𝑈( = 𝑈(𝑈 = 𝐼. There are 
two relevant considerations about unitary matrices within the context of quantum computation. First, unitary 
matrices preserve the norm of the vectors upon which they upon, maintaining the validity of quantum states. 
Second, unitary matrices are closed under matrix multiplication, enabling the composition of very intricate 
operators by multiplying simpler unitary matrices together.  

How quantum states and quantum operators are defined enables the use of a very useful probabilistic 
interpretation of quantum computation. To see this, note that a quantum state can be interpreted as a probability 
distribution over a discrete set of 𝑁	outcomes, where 𝑁 is the dimensionality of the quantum state. This 
probability distribution is given by 𝑝(𝑒!) = |𝑐!|', 𝑖 ∈ {0,1, … ,𝑁 − 1}. Moreover, the transformation of a 
quantum state by a quantum operator effectively modifies this probability distribution. By carefully designing 
the operator 𝑈, quantum computation enables the redistribution of probability mass towards states that 
represent the solution of a particular problem. Consequently, the process of determining the coefficients of the 
matrix 𝑈 is known as quantum algorithmic design.  
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The remainder of this section is focused on linking these concepts with the practicalities involved in gate-based 
quantum computation, one of the main hardware implementations of the theory. 

2.2. Gate-based Quantum Computation 

Quantum computers are physical machines that apply the principles of quantum computation to solve 
computational tasks. In doing so, they must impose certain limitations on the theory described in Section 2.1. 
These limitations are reviewed below. 

The first limitation is related to the allowed dimensionality of quantum states. Quantum computers are 
machines that implement large-scale quantum states through the combination of smaller, two-dimensional 
quantum states known as qubits, denoted as |𝑞⟩. The combination of 𝑁 qubits into a larger quantum state is 
computed through the Kronecker product, following Eq. (1). The Kronecker product of 𝑁	vectors with 
dimensionalities 𝑑&, 𝑑', … , 𝑑$ produces a resulting vector with a dimensionality equal to 𝑑& ⋅ 𝑑' ⋅ … ⋅ 𝑑$. 
Consequently, quantum states are limited to dimensions equal to 2$ , 𝑁 ∈ ℕ)&	. 

 
|𝜓⟩ =>|𝑞!⟩ ∈ ℂ'

!
$%&

!"#

 (1) 

The second limitation is related to the approach used to generate quantum operators. While in theory any 
unitary matrix can be used as a valid quantum operator, quantum devices usually implement only a limited 
number of small-scale unitary matrices. These small-scale unitary matrices, commonly referred to as quantum 
gates, only operate over subsystems composed of at most one or two qubits. The approach used by quantum 
computers to combine quantum gates into matrices that can be applied to a quantum state also makes use of 
the Kronecker product. Because of this limitation, the design of quantum algorithms is reduced from defining 
the coefficients of a 2$ × 2$ matrix to select the order and location for the application of the set of available 
quantum gates. However, for this paper, we can ignore the complexities imposed by this limitation and focus 
on the effects produced by applying a quantum operator over a quantum state. For every new quantum operator 
we introduce, we shall point the interested reader towards a suitable reference that details its implementation 
as a set of basic quantum gates. 

The third, and final limitation produced by the implementation of quantum computation as a physical device 
involves how quantum states are observed. Due to restrictions imposed by quantum mechanics, the set of 
complex coefficients that compose a quantum state cannot all be observed simultaneously. Instead, the 
quantum computer performs a process known as measurement, in which the quantum state is collapsed, 
producing as an output one of the states |𝑒!⟩	following its underlying probability distribution. Consequently, 
by repeatedly preparing and measuring a quantum state, the measurement operation provides an approach to 
estimating the square amplitude of its complex coefficients. 

The output of the measurement operation can also be interpreted in an alternative manner. For this, recall that 
a quantum state is generated as a combination of the independent states of 𝑁 qubits. Consequently, measuring 
the quantum state is equivalent to measuring each one of the qubits. As a two-dimensional system, the output 
of a qubit’s measurement can be interpreted as a binary variable. Without loss of generality, let us refer to 
these states as 0 or 1. Then, it follows that measuring the quantum state results in a bitstring |𝑥⟩ ∈ {0,1}$. 
Matter of fact, it can be proved that if the measurement of a quantum state results in the state |𝑒!⟩ ∈ ℂ'

!, then 
the corresponding bitstring |𝑥⟩ will match the bit representation of integer 𝑖. 

This correspondence between the resulting bitstrings and the set of possible states in a quantum system has an 
additional implication. Since there exists a bijective relationship between the sets of bitstrings |𝑥⟩ ∈ {0,1}$ 
and the set of standard vectors {|𝑒!⟩}!"#'!%&, the quantum state can be represented as |𝜓⟩ = ∑ 𝑐!|𝑥!⟩'!%&

!"# , where 
|𝑥!⟩ is the bitstring representation of integer 𝑖. We will use this notation to interpret how a quantum operator 
modifies the probabilities associated with each measurable bitstring in a quantum state. 

3. QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM (QAOA) 

The QAOA, originally proposed by Fahri et al. [5], is one of the main techniques used in quantum computation 
to solve combinatorial optimization problems. Originally designed to solve Quadratic Unconstrained Binary 
Optimization (QUBO) problems, recent advances have modified the QAOA to enable its application to a wider 



17th International Conference on Probabilistic Safety Assessment and Management & 
Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

4 
 

class of discrete, combinatorial problems. By encoding a set of binary variables {𝑥!}!"#$%& into the states of an 
𝑁-qubit registry, the QAOA uses the probabilistic interpretation of quantum states to find a quantum operator 
that assigns a higher probability mass to those bitstrings that minimize (or maximize) a given objective 
function.  

The QAOA consists of three main steps. In the first step, a special quantum state is generated as |+⟩ =
𝑈*|0⟩⊗$. In the previous expression,  |+⟩ represents the quantum state where all complex coefficients have 
the same value, |0⟩⊗$ represent an initial quantum state in which all qubits are deterministically prepared in 
the state identified as 0, and 𝑈* is the quantum operation that results from joining 𝑁 Hadamard gates together. 
For more details about the Hadamard gate and the operation 𝑈*, the reader is referred to [12]. From a 
probabilistic point of view, this quantum state assigns equal probability to all bitstrings. From an optimization 
point of view, this is equivalent to assuming that we do not have prior knowledge about which solutions are 
more optimal, i.e., all possible bitstrings are equally likely solutions to the optimization problem. 

The second step consists of the application of the quantum operation 𝑈,-.- over the quantum state, assigning 
higher probability mass to configurations that are deemed more optimal following an objective function 𝐹. 
This operation is formed by repeatedly composing two parameterized sub-operations, 𝑈,-.-D𝛾⃗, 𝛽H =
∏ 𝑈/(𝛾!)𝑈0(𝛽!)1
!"& , where 𝑈/(𝛾!) encodes the objective function of the optimization problem, and 𝑈0(𝛽!) 

controls which states are visited with a higher frequency during the optimization process. For this reason, the 
operations 𝑈/  and 𝑈0 are commonly referred to as cost and mixer operations, respectively. The repeated 
application of 𝑈/  and 𝑈0 can be interpreted as an exploitation and exploration routine over the candidate space, 
a technique commonly found in other iterative optimization methods. The resulting quantum state after the 
application of 𝑈,-.- is shown in Eq. (2): 

 
J𝜓D𝛾⃗, 𝛽HK = LM𝑈/(𝛾!)𝑈0(𝛽!)

1

!"&

N |+⟩	 (2) 

The form of the operation 𝑈/  is problem-dependent, as it needs to encode the objective function of the original 
optimization problem. However, the general effect of applying 𝑈/  over a quantum state can be written as 
𝑈/(𝛾!)|𝜓⟩ = ∑ 𝑐!𝑒%!2"3(5⃗")|𝑥!⟩'!%&

!"# , i.e., it applies a complex phase to each possible state that depends on its 
objective function value. For the application toward minimal cut set identification, we briefly describe its 
formulation in Section 5. For an overview of the encoding process of general objective functions as quantum 
operators, the reader is referred to [13]. 

Eq. (2) clearly shows the dependence of the quantum state, and consequently of its underlying probability 
distribution, on the parameter vectors 𝛾⃗	and 𝛽⃗. The determination of these parameters is the main objective of 
the third step in the algorithm. For this phase, the quantum state J𝜓D𝛾⃗, 𝛽⃗HK is repeatedly prepared and measured, 
generating a set of candidate solution vectors {𝑥⃗!}!"&8 . The expectation of the objective function as a function 
of the parameters 𝛾⃗ and 𝛽 can be estimated following a traditional Monte-Carlo approach as: 

 
𝔼
5⃗∼:;<2==⃗ ,?==⃗ @A

[𝑓(𝑥⃗)] =
1
𝐾
T𝑓(𝑥⃗!)
8

!"&

	 (3) 

Eq. (3) enables the interpretation of the QAOA approach as the transformation of a discrete optimization 
problem into one that is continuous. This interpretation allows the use of varied continuous optimization 
algorithms, including powerful gradient-based methods such as Stochastic Gradient Descent, to determine the 
parameters 𝛾⃗ and 𝛽. 

However, as mentioned in the introduction, there are three main shortcomings regarding the application of 
QAOA to SAT problems. First, the cost operation 𝑈/  was originally designed to incorporate QUBO functions. 
These types of expressions are different in nature from Boolean functions and, therefore, a different encoding 
approach is required. The second shortcoming is the difficulty in finding the parameters 𝛾⃗	and 𝛽 through the 
optimization cycle, in part due to the linear scaling with the number of circuit repetitions, 𝑃. The third, and 
final shortcoming is related to the mixing operator, 𝑈0. It results that in its original form, the application of 𝑈0 
results in quantum states that assign a different measurement probability to bitstrings with equal objective 
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function values, adding noise to the computation of Eq. (3). Several authors have proposed approaches to 
tackle these challenges. While some of these approaches are based on modifying the optimization cycle itself, 
others are based on changing the forms of 𝑈0	and 𝑈/ . The algorithm we explore in this paper belongs to the 
latter category, and it is reviewed in the following section. 

4. GROVER-INSPIRED QAOA 

Mandl et al. [10] proposed the modification of both the cost and mixing operators to tackle the challenges 
mentioned in Section 3. These modifications are inspired by a well-known quantum computing algorithm 
known as the Grover algorithm. For that reason, the resulting algorithm is denoted as “Grover-inspired 
QAOA”. In this section, we describe these modifications and how they are used to tackle each one of the 
challenges. 

For the first challenge, Mandl et al. propose a key modification to the operator 𝑈/  to incorporate Boolean 
functions into the QAOA. Recall that the general effect of the operator 𝑈/  over a quantum state |𝜓⟩ is given 
by 𝑈/(𝛾!)|𝜓⟩ = ∑ 𝑐!𝑒%!2"3(5⃗")|𝑥!⟩'!%&

!"# , where 𝐹 is the objective function of the optimization problem. In an 
SAT context, we define 𝐹: {0,1}$ → {0,1} as: 

 
𝐹(𝑥⃗) = X1, 𝑖𝑓	𝑥 ∈ ℱ&0, 𝑖𝑓	𝑥⃗ ∈ ℱ#

 (4) 

where ℱ& and ℱ# are two mutually exclusive, collectively exhaustive subsets of the space {0,1}$. The approach 
depends on the generation of a quantum operator 𝑈3, which encodes the original Boolean function 𝐹. The 
operator 𝑈3, when applied over a quantum state composed of 𝑁 + 1 qubits, uses the measurement of the first 
𝑁 qubits to compute the result of 𝐹, which is stored in the last qubit of the registry. Mathematically, this 
operation can be written as 𝑈3 ∑ 𝑐!|𝑥! , 0⟩'!%&

!"# = ∑ 𝑐!|𝑥! , 𝐹(𝑥⃗!)⟩'!%&
!"# . Under the assumption that the Boolean 

function of interest can be encoded as a unitary operation to generate 𝑈3, Mandl et al. propose to re-define 𝑈/  
as: 

 
𝑈/(𝛾!) = 𝑈3

(𝑃(𝛾!)𝑈3 (5) 

where 𝑃	is a phase operator that selectively applies a phase 𝑒%!2" to those states in which the last qubit would 
have been measured as 1. For details on the implementation of 𝑃 from a set of basic quantum gates, the reader 
is referred to [10]. The application of this modified cost operator over a quantum state results in the following 
expression: 

 
𝑈/(𝛾!) T 𝑐!|𝑥! , 0⟩

'!%&

!"#

= 𝑈3
(𝑃𝑈3 T 𝑐!|𝑥! , 0⟩

'!%&

!"#

= 𝑈3
(𝑃 T 𝑐!|𝑥! , 𝐹(𝑥⃗!)⟩

'!%&

!"#

= 𝑈3
( T 𝑒%!2"3(5⃗")𝑐!|𝑥! , 𝐹(𝑥⃗!)⟩
'!%&

!"#

= T 𝑒%!2"3(5⃗")𝑐!|𝑥! , 0⟩
'!%&

!"#

 

(6) 

Note that the operation shown in Eq. (6) divides the original quantum state into two subsets, ℱ& and ℱ#, based 
on their corresponding complex phase. Moreover, this complex phase depends exclusively on the Boolean 
function 𝐹, thus encoding its effect as an objective function. For a maximum separation between states, Mandl 
et al. propose to fix 𝛾! = 𝜋, resulting in: 

 
𝑈/(𝛾!) T 𝑐!|𝑥! , 0⟩

'!%&

!"#

= T 𝑐!|𝑥! , 0⟩
5"	∈	ℱ#

− T 𝑐!|𝑥! , 0⟩
5"	∈	ℱ$

 (7) 

Eq. (7) clearly shows that the effect of applying the modified cost operator 𝑈/ 	to the quantum state is to add a 
negative phase to those bitstrings that verify the original Boolean function, thus encoding the original Boolean 
function and overcoming the first shortcoming of the traditional QAOA methodology. As an added benefit, by 
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fixing 𝛾! = 𝜋, this cost operator also halves the number of parameters required in the optimization cycle, 
eliminating the need for  𝛾⃗, and thus also tackling the second shortcoming. 

As mentioned in Section 3, the third shortcoming of the original mixing operator is that it does not assign equal 
likelihood to states with the same objective function value, resulting in an irregular optimization process. As a 
solution, Mandl et al. propose the definition of an alternative mixing operator as 𝑈0(𝛽!) = 𝑒%!?"|F⟩⟨F|, where 
|𝑎⟩⟨𝑏| represents the outer product between the quantum states |𝑎⟩ and |𝑏⟩, and |+⟩ was defined as a uniform 
quantum state in Section 3. For the implementation of this mixing operator as a series of quantum gates, the 
reader is referred to [10]. The effect of this modified operator is to assign equal probability amplitude to all 
bitstrings that have the same objective function value, thus solving the third shortcoming present in the 
traditional QAOA methodology.  

In principle, the approach proposed by Mandl et al. is directly applicable to finding Boolean variable 
configurations that satisfy a given expression. However, the main gap preventing the application of this 
technique towards FTA is the lack of a suitable unitary operation 𝑈3 . To overcome this gap, we propose the 
use of our recently developed quantum operator 𝑈I/J, capable of identifying minimal cut sets in standard, 
coherent fault trees, thus enabling the application of G-QAOA towards FTA.  

In the remainder of this section, we briefly describe the motivation behind the definition of the operator 𝑈I/J. 
For a detailed algorithm explaining its implementation as a series of basic quantum gates, the reader is referred 
to our preprint [11]. The definition of our operator 𝑈I/J is based on the following definition of a minimal cut 
set configuration, presented in Definition 1. 

Definition 1: Minimal cut set configuration 

 A given configuration of basic events, represented as a bitstring  𝑥⃗, is a minimal cut set if and only if: 

1. Configuration  𝑥⃗ causes the occurrence of the TOP event, i.e.,  𝑥⃗ is a cut set. 
2. Preventing the failure of any failed basic event in  𝑥⃗ also prevents the failure of the system, i.e., 

configuration  𝑥	is irreducible as a cut set. 

As seen in section 5, the Grover-inspired QAOA, proposed by Mandl et al., requires a suitable Boolean 
objective function, 𝐹, to be implemented as a quantum operator 𝑈3. In this section, we propose a novel 
approach to generate a quantum operator 𝑈I/J, which encodes a Boolean function 𝐹I/J: {0,1}$%&	 → {0,1} 
that is only satisfied when the input 𝑥⃗ is a minimal cut set configuration of a fault tree with 𝑁0K basic events. 

This definition enables us to write the following minimal cut set identifier Boolean function, 𝐹I/J: {0,1}$%&	 →
{0,1}, shown in Eq. (8). 

 𝐹I/J(𝑥⃗) = 𝐹3L(𝑥) ∧ ^ 𝐹3L_____D𝑠(𝑥⃗, 𝑖)H
!	∈	3M!NOPQR(5⃗)

 (8) 

In Eq. (8), 𝐹3L is the underlying Boolean function representing the fault tree, 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑥⃗) is a collection of 
the indices of failed basic events in configuration  𝑥⃗, 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑥⃗) = d	𝑗|𝑥S = 1f, and 𝑠(𝑥⃗, 𝑖) is a switching 
function that flips the state of basic event 𝑖 in configuration 𝑥⃗.   

In a previous paper [14], we described the approach used to encode the fault tree function 𝐹3L into a quantum 
operation 𝑈3L over a quantum system composed of three sub registries of lengths 𝑁0K, 𝑁TK, and 1 qubits. In 
this encoding process, the state of each basic event is identified with the quantum state of one of the qubits in 
the first registry. Then, the series of logic gates that define each one of the intermediary events in the tree are 
encoded into the quantum operator, storing their result in the qubits allocated for the second registry. Finally, 
the TOP event state is encoded similarly into the state of the third registry.  

Note that Eq. (8) requires |𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑥⃗)| 	+ 	1 evaluations of the fault tree Boolean function 𝐹3L to identify 
whether configuration  𝑥⃗ is a minimal cut set. In each evaluation, the input is slightly changed by using the 
switching function 𝑠, to test whether the prevention of one of the failing basic events would prevent the failure 
of the overall system. The approach used to generate a quantum operation 𝑈I/J uses a similar idea by repeating 
the application of 𝑈3L using in each application a slightly different set of qubits representing the basic events. 
This enables the generation of a quantum state that when measured, carries a minimal cut set identifying signal 
in one of its qubits. As shown at the beginning of this section, this operation can be used in the approach 
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proposed by Mandl et al. to directly apply the G-QAOA toward qualitative FTA.  In the next section, we 
describe the case study used to experimentally verify this approach, along with the results obtained by 
executing the technique in a quantum simulation environment. 

5. CASE STUDY AND EXPERIMENTAL VALIDATION 

In this section, we present a numerical validation of the approach described in Section 4. For this, we make 
use of a quantum simulator, which is a specialized software environment that can replicate the operations 
performed by a quantum computer in a traditional device. The quantum simulator used in this paper is the 
Python library PennyLane v0.34.0, executed on a computer equipped with 128 GB of RAM. 

The fault tree used to validate the proposed approach is depicted in Figure 1. The structure of the fault tree was 
chosen to enable the increase in the number of basic events and minimal cut sets, without incorporating 
additional challenges related to its structure. 

 
Figure 1. Fault tree structure used in this paper. Note that the number of minimal cut sets in this fault tree is 

easily computed as 𝑁I/J = 2$%&/'	. 

For this validation, we compare two optimization models. The first model, henceforth denoted as 𝑀&, uses 
𝑈I/J	as the quantum operation encodes the objective function, but it does not utilize the modified mixing 
operator proposed by Mandl et al, using the mixing operator originally proposed for the QAOA. The second 
model, henceforth denoted as 𝑀', uses both 𝑈I/J as the objective function, and the modified mixing operator. 
The objectives behind this model selection are two. First, by observing the results of both models 
independently, we seek to test the hypothesis that quantum-based optimization approaches can be used to 
identify minimal cut set configurations in fault trees. Second, by comparing the models against each other, we 
explore whether the modified mixing operator can enhance the optimization process and therefore assign a 
higher likelihood to minimal cut set configurations. 

Due to limitations related to the exponential scaling of quantum states and their impact in memory usage for 
their simulation, only systems up to 32 qubits can be simulated. This severely limits the fault tree sizes that 
can be tested numerically to 𝑁0K ≤ 10. However, the optimization process requires for the quantum states to 
be prepared and measured multiple times. Thus, the number of basic events that can be realistically simulated 
in our hardware is 𝑁0K ≤ 6. For this reason, we present results concerning two fault trees following the 
structure presented in Figure 1. The first one use 𝑁0K = 4, while the second fault tree uses 𝑁0K = 6. For both 
fault trees, we compare the average probability of sampling a minimal cut set obtained using either model, 
after the optimization process is finalized. To study the effect of the number of circuit repetitions on the final 
sampling probability, we test the cases 𝑃 = {1,2,3,4,5}. Since the optimization process may be highly 
dependent on the initial values for 𝛽, we performed 10 rounds of optimization for each value of 𝑃, sampling 
the initial vector 𝛽 uniformly from the hypercube [−𝜋, 𝜋]1, reporting both the average result and the associated 
standard deviation. The optimization technique used in this paper is the Constrained Optimization by Linear 
Approximation (COBYLA) method, a common choice for the QAOA. The results are summarized in Figure 
2, where the error bar indicates the standard deviation obtained after the 10 executions. 

	𝐵𝐸0 	𝐵𝐸1

	𝐼𝐸0, 𝑂𝑅

	𝐵𝐸𝑁𝐵𝐸−2 	𝐵𝐸𝑁𝐵𝐸−1

	𝑇𝑂𝑃, 𝐴𝑁𝐷

	𝐼𝐸𝑁𝐼𝐸−1, 𝑂𝑅

	𝐵 2 	𝐵𝐸3

	𝐼𝐸1, 𝑂𝑅
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(a) 𝑁0K = 4 

 
(b) 𝑁0K = 6 

Figure 2. Average sampling probability obtained with models 𝑀& and 𝑀'. (a) case where 𝑁0K = 4. (b) case 
where 𝑁0K = 6. 

The first fault tree, observed in Figure 2a, consists of 2V = 16 possible configurations of basic events, with 
only 4 recognized as minimal cut sets. As such, if we would uniformly sample configurations, we would expect 
to obtain a minimal cut set with a probability of 1/4. Similarly, the second fault tree, observed in Figure 2b, 
consists of 2W = 64 configurations, with 8 of them being recognized as minimal cut sets. As such, the 
probability of obtaining a minimal cut set through uniform sampling is 1/8. 

The results clearly show that both models achieve sampling probabilities higher than this, indicating that the 
optimization procedure is capable of recognizing minimal cut set configurations. The analysis of a slightly 
larger tree, shown in Figure 2b, leads to a similar conclusion. However, We can clearly see a relevant decrease 
in the sampling probability of minimal cut sets, from ~1.0 in Figure 2a, to ~0.8 in Figure 2b. This is a clear 
indication that the scale of the fault tree is negatively affecting the complexity of the optimization problem that 
the G-QAOA is attempting to solve. Nonetheless, note that as the fault tree size grows, so does the number of 
possible configurations, and therefore the baseline probability given by random sampling. In Fig. 2a, this 
probability is 1/4, while in Fig 2b, this probability is 1/8. The study of how the sampling probability given by 
G-QAOA scales with respect to the probability given by uniform sampling of the configuration space would 
require a larger number of qubits to reach 𝑁0K > 6, and therefore is left for future research. However, it is 
sensible to expect that improvements over this method will be required to realize this technique in practical 
fault trees. 

When comparing both models against each other, Figure 2 clearly shows that the 𝑀' model presents significant 
advantages over 𝑀& in terms of the minimal cut sets sampling probability. In other words, once trained,  𝑀' is 
more likely than  𝑀& to return configurations that can be identified as minimal cut sets. This is observed for 
both fault trees, and all values of the number of circuit repetitions, 𝑃. From here, we can conclude that for the 
cases tested in this paper, the modified mixer operator proposed by Mandl et al. presents improved performance 
against the mixer operator used in the traditional QAOA methodology.  

Moreover, we observe that the standard deviation obtained for all cases is low, even though the initial vector 
was sampled from a uniform distribution. This indicates that the optimization process easily reaches the same 
local or global optimum, independently of where it starts. The effect of increasing the number of circuit 
repetitions from 𝑃 = 1 to 𝑃 = 5 is almost null for the cases tested in this paper. According to the theory, an 
increment in the value of 𝑃 should result in a better expectation for the objective value. However, this 
theoretical assurance does not indicate how large 𝑃 should be to start observing these benefits.  
A possible explanation for the results obtained in this paper is that for these fault trees, the required value of  
𝑃 is very high, and thus an increase in performance is not captured for the interval tested in this paper. 
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6. CONCLUDING REMARKS 

This paper proposed using quantum-based optimization to identify minimal cut sets in coherent fault trees. To 
achieve this, we proposed the integration of a recently developed quantum operation, denoted as 𝑈I/J, in the 
Grover-enhanced Quantum Approximation Optimization Algorithm (G-QAOA) developed by Mandl et al. 
[10]. This combination allows the experimental exploration of quantum computation in qualitative Fault Tree 
Analysis tasks. 

Overall, the experimental results verify the feasibility of identifying minimal cut sets in standard, coherent 
fault trees using the G-QAOA methodology. However, due to hardware limitations, this verification was only 
conducted in relatively small fault tree models. Regarding the use of a modified mixer operation, as proposed 
by Mandl et al., the results demonstrate significant performance advantages over the mixer operator used in 
traditional QAOA. Therefore, our main recommendation for future studies in this area is to focus on 
incorporating this modified operator into newly developed models.  

As for future research opportunities in the intersection of quantum computation and Fault Tree Analysis, we 
mention two currently underexplored ideas. First, the G-QAOA and QAOA approach are notorious for their 
complicated optimization landscape. Developing methods to navigate this landscape could benefit the 
parameter initialization process and guide the selection of optimization algorithms. Second, our study 
highlights a limitation in the size and complexity of fault trees that can be efficiently simulated. The naïve 
solution to this problem is to use a quantum computer, which would allow us to have a higher number of qubits 
available, enabling the encoding of larger and more complex Fault Trees. However, error-corrected quantum 
computers are yet to be commercially available, and therefore as a research community it is imperative to 
provide solutions that do not depend directly on quantum hardware. For this, we provide as a potential future 
avenues of research the study of GPU acceleration for quantum simulation, given the exponential advances in 
capacity that have occurred in that space over the last decade due to the interest on AI/ML applications, to 
perform large scale quantum operations in a more efficient manner.  
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