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Abstract: Dynamic Probabilistic Risk Assessment (DPRA) is acknowledged to be an important tool 

complementary to static Boolean approach in those cases where physics or timing of events may play an 

important role into the system evolution and, thus, into the risk estimate. 

Although, the methods and the tools classified as Dynamic PRA (DPRA) are becoming more and more known 

and common in the last few years, some key challenges remain and should be addressed to make DPRA 

industrially applicable. 

The results presentation and post-processing is one of these challenges that may impact the potential 

connection with PRA world. A DPRA model returns thousands or even tens of thousands of dynamic 

sequences that are inaccessible to be analyzed one by one and require therefore some post-processing to obtain 

insights and quantify figures of merit. Furthermore, since Monte Carlo is often used for model simulation, 

sequences binning is necessary to obtain probabilistic quantification. PRA instead returns a rank of minimal 

cut sets (MCS) which are the minimal static combinations of basic failures leading to the undesired events. 

The challenge in DPRA is twofold. On one hand, it is necessary to condensate the information coming from 

all the sequences in a form such that results are still accessible and dynamic aspects can still be appreciated. 

On the other hand, in order to be used in connection with traditional PRA, the post-processing should get to a 

result that is similar to a minimal cut sets.  

It is a trade-off problem where a level of detail of post processed sequences too high (limit having all sequences 

separately) does not allow for getting insightful quantitative information while a level of detail too coarse (limit 

to the level of MCS) risk losing the “dynamic“ information coming with the sequences. 

In this paper, we will present a post processing framework that allows DPRA resulted sequences to be analyzed 

and, at the same time, “compared” to a static PRA approach. This post-processing, although it may be 

considered “basic” in terms of approaches, has been developed for a real case study. 
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1. INTRODUCTION 

Dynamic methods allow for more realistic modeling of accidental scenarios. They have demonstrated to be 

useful in some particular cases such as those cases where the event timing and/or the physics plays a key role, 

reparations, passive systems, etc. [1][2][3]  

Different dynamic methods and tools exist, however, in general a dynamic analysis is often characterized by 

thousands of simulated sequences, using Monte Carlo simulations. When having to deal with such a great 

number of simulated sequences, post-processing is necessary to extract the most of information and quantify 

the expected figures of merit. The analysis of the sequences one-by-one is impossible. 

Although, several possible post processing approaches has been proposed in literature (see §2), the question 

remains of how to deal with results coming from a dynamic analysis order to make them accessible by 

Probabilistic Risk Assessment (PRA) practitioners that are used to Minimal Cut Sets (MCS) ?  

In this paper, we propose a framework to post process results coming from a dynamic analysis that does not 

simulate physics but only time of event occurrence. In a context where the static PRA is the standard practice, 

the reason behind the use of dynamic methods for an industrial case was to challenge the static PRA modeling. 

On one hand, the goal is to find coherent results with PRA in terms of sequences/cutset to comfort us in the 

modeling choice. On the other hand, all differences in the results and all the insights could point us towards 

scenarios missing in our static model. 

This post processing approach has been elaborated in collaboration with PRA practitioners of our engineering 

division for a real industrial application. The approach can be generalized for any dynamic methods simulating 
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sequences. The challenge is twofold: on one hand, we want to highlight most of the dynamic information as 

this is the added value with respect to a traditional PRA approach, on the other hand the goal of getting closer 

to PRA form of results (e.g., minimal cut sets) in order to make the results accessible to PRA analysts, goes in 

the direction of masking the dynamic information. 

Since the approach has been applied to an industrial case [1], all the results presented on this paper are fictious 

for purpose of examples. 

 

2. LITERATURE REVIEW 

As we mentioned in the introduction, several dynamic tools exist such EMRALD [4], RAVEN [5], ADAPT 

[6], GRIF [7], DICE [8], BDMP [9], etc. adopting different dynamic approaches. These tools have been 

developed for reliability and PRA applications, therefore, they mostly provide results in some post-processed 

form (e.g., BDMP provides the most probable sequences [10]) or, in some cases, they provide post-processing 

capabilities (e.g., clustering) for the user to apply (e.g., RAVEN). 

Some works can be found in literature proposing some post-processing techniques that can be useful to 

interpret results and simulations coming from dynamic analysis. Zio et al, for example, propose clustering 

technique to identify Safe, Near Missed and Failed simulations [11][12]. 

In this work, we faced two challenges for post-processing: 

1. Our dynamic analysis does not consider physics, our sequences therefore consist of discrete sequences 

of timestamp and event. In other words, we did not have continuous variables temporal series 

simulated. 

2. The modeling approach we used [1] is not specific to reliability and PRA applications. This gave us 

the opportunity to construct post-processing from scratch.  

 

3. POST-PROCESSING FRAMEWORK 

The starting point is the results of the dynamic analysis, namely thousand (even hundreds of thousands) of 

generated sequences. In our case they are of type (timestamp, event):  

 
Sequence 1  Sequence M 

T1, Event at T1 

T2, Event at T2 

… 

TN, Event at TN 

… 

… 

T1, Event at T
*
1 

T2, Event at T
*
2 

… 

TP, Event at T
*
P 

 

Sequences terminate because of mission time or because they met a given undesired condition (e.g., core 

damage). They contain all type of events (failures, human actions, systems starting, alarms, etc.).  

Here below a sample of sequence is shown as an example (time indications and events are not real): 

 
… 

03:15:00, Appearance of a break: LOCA accident 

04:25:00, I&C signal to automatically start HPI failed 

04:30:00, Human action to start HPI 

04:30:40, Start of HPI 

07:15:32, Failure in operation of HPI 

…  

09:23:41, Core Damage 

 

From this point on, we adopted a step-by-step approach. 

 

3.1. Estimation of the figure of merits 

This first step is the easiest one as it does not really required manipulation of the generated sequences. 

According to the Monte Carlo simulation, the probability of a given condition is equal to the number of 

sequences ending with that condition divided by the total number of simulated sequences.  

Let’s take the example of the probability of core damage, PCD: 
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𝑃𝐶𝐷 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑒𝑛𝑑𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑒 𝑑𝑎𝑚𝑎𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
=

𝑁𝐶𝐷

𝑁
                (1) 

 

The given level of precision that depends on the number of simulation N and on the estimator �̂� of PCD can be 

estimated using the formula below for a confidence level of 95% [13]: 

�̂� ±
1,96√�̂�(1−𝑝)

√𝑁
                                    (2) 

This precision can be improved by increasing the number of simulations. 

3.2. First event filter on sequences  

The sequences issued from the simulation contain all the events occurring. We decided therefore to apply a 

first filter that removes all those events that are considered redundant, useless, etc. This way we are left with 

sequences that “tell” us the history of the simulated events: I&C, human actions, failures, alarm trigger, etc. 

The representation of sequences in this form is necessary within the verification process: a sample of sequences 

are analyzed in detail to make sure that the way the system evolves and responds to events is coherent with 

reality. 

As we construct our model using a hierarchical approach like statechart [1], this step is necessary in our case 

to “clean up” the sequence and improve readability. We would indeed have condition like: 

00:00:00, state AFW entered 

00:00:00, state AFW_ON entered  

That could be simplified directly as: 

00:00:00, AFW ON 

 

3.3. Second event filter on sequences 

As the MCS contain only failure event, the second filter we apply consist of keeping only unavailability events 

removing all the other events such human action, triggers, successful I&C, that do not imply any 

failure/maintenance events. This way we get to a form of sequence that are similar to MCS.  

If we consider the first example of §3.1, the extract will simply become: 

 
… 

03:15:00, Appearance of a break: LOCA accident 

04:25:00, I&C signal to automatically start HPI failed 

07:15:32, Failure in operation of HPI 

09:23:41, Core Damage 

 

3.4. Binning sequences keeping the order of occurrence of events 

Up to the previous steps, we still analyze via a parsing script one sequence at a time. Since we deal with Monte 

Carlo simulations, as long as we consider one sequence at a time, each sequence has a likelihood of 1/N to 

occur. Therefore, sequences binning is necessary to get numerical insights. 

The question of how to group sequences is to be posed. At this step, we have plenty of sequences containing 

failure events only, however, since we deal with a dynamic analysis, two elements are worth noticing: 

- Order of events appearance in these sequences is important. 

- Each event has a timing associated. 

We will perform the first binning by keeping the dynamic information concerning the order of event 

appearance. Moreover, since timing is still an available information, it is possible to calculate the minimum, 

maximum and mean time of occurrence of these events. 

Results will appear in the form of sequences like: 
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[minT1, meanT1, maxT1], Event1 

… 

[minTN, meanTN, maxTN], EventN 

 

For the extract example: 

[03:15:00,04:23:32,06:58:00],Appearance of a break: LOCA accident 

[03:24:56,05:56:21,07:02:14],I&C signal to automatically start HPI failed 

[04:28:51,07:43:12,09:47:09],Failure in operation of HPI 

[06:04:25,09:53:02,11:45:56],Core Damage 

An html file with hyperlinks keep track of all the simulation included in the bin and allows to go back and 

analyze them one by one in the readable form as in §3.2. These groups sequences have a probability associated 

and can be ranked in the decreasing order of probability. 

 

3.5. Binning sequences without keeping the order of occurrence of events 

According to the grouping at the §3.4, the two following sequences are considered as different since the order 

of appearance of the two events EDGA failure and EDGB failure is different: 

LOOP, EDGA failed in operation, EDGB failed in operation, CORE DAMAGE 

LOOP, EDGB failed in operation, EDGA failed in operation, CORE DAMAGE 

However, if the goal is to compare the results with some static MCS then these two should be summed up 

together. So, the next binning step consists in grouping together sequences containing same failure events 

independently from their order of appearance. When we sum up the probability of these sequences, then the 

explicit information concerning the dynamic aspects is lost but we get to something that can be in a comparable 

form to static MCS. 

According to our experience, at this point we would find sequences that looks like not minimal one with respect 

to the other. Could we reduce them as in Boolean logic ? The answer is no. The reader should remember that 

into a dynamic analysis, the dynamic information is still there even if it does not appear explicitly.  

Let’s consider the following example:  

SEQUENCE 1: LOOP, EDGA, EDGB, CORE DAMAGE  

SEQUENCE 2: LOOP, EDGA, EDGB, FAILURE OF THE TEST PUMP1, CORE DAMAGE 

In a static model, Sequence 2 would not appear in the results as non-minimal. However, this is not the case in 

a dynamic analysis.  

In Sequence 1, the timing of appearance of failures of the two EDGs is such that when the test pump needs to 

be activated to prevent Seal LOCA, batteries are already drained. This results in the unavailability of the I&C 

to start the test pump, thus of the pump itself, and therefore in a Seal LOCA, leading to the core damage.  

In Sequence 2, the timing of failure of the two EDGs are such that, by the time the test pump needs to be 

started, battery (and thus) I&C are still available. The I&C command is correctly launched but the test pump 

failed on demand leading to the Seal LOCA and therefore to the core damage.  

In this second sequence, if the pump would have worked correctly then no core damage would have occurred. 

This explains why the two sequences are not minimal one with respect to the other. 

 

3.6. Contribution of loss of safety function 

The statechart approach gives us a great flexibility in terms of modeling, since it allows to track all the states 

entered within one sequence. To provide a different perspective and insights, we decided to associate the core 

damage to the loss of one among the modeled safety functions.  

 
1 Test pump ensures the seal injection in Station Black Out sequences. 
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As presented in [1], the final model consists of several components, safety and support systems. Furthermore, 

the safety functions fulfilled by the different safety systems and the core damage state are also modeled. This 

means that we are able to track the path towards the core damage. This tracking allows us to associate each 

core damage to the failure of one of three safety functions. 

In order to quantify the contribution of the loss of each safety function, some assumptions were made. For a 

given sequence: 

1. The loss of a single safety function is considered to automatically lead to the core damage 

2. The earliest safety function lost will be “attributed” to the considered core damage sequence and will 

terminate the sequence. 

This second assumption made possible to quantify how much the loss of each safety function contributes to 

the overall core damage frequency as : 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖 =  
𝑁𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑒𝑛𝑑𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑒 𝑑𝑎𝑚𝑎𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖

𝑁𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑒𝑛𝑑𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑒 𝑑𝑎𝑚𝑎𝑔𝑒
 

 

At the end of the simulation, all core damage sequences have been “attributed” to the failure a given safety 

function. These contributions for the different safety functions can be graphically represented by a pie chart as 

the one shown in Figure 1.  

 

 
Figure 1. Contribution of loss of each safety function to the global risk 

 
This representation is closer to a certain extent to the modelling that we find in event trees. 

 

3.7. Sensitivities 

In a dynamic analysis, all the variables (physics delay, reliability data, thresholds, operator numbers, etc.) are 

parameters that can be changed. This implies that sensitivity analysis of the dynamic model behavior can be 

easily performed. For example, we can perform a sensitivity analysis on the number of fieldworkers available 

for local actions and defines what is the optimal number with respect to the global risk for the given scenario. 

The post-processing would have to be rerun but, for example, insights could come by the observation of how 

the failure of the safety functions changes based on some given parameters’ values. 

 

3.8. Summary 

Figure 2 summarizes the post-processing framework. In yellow are shown the steps where the sequences are 

analyzed one-by-one while in green are shown the steps where sequences that met a given criteria are binned 

together. 
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Figure 2. Summary of post-processing framework 

 

4. CONCLUSION 

In this paper we present a framework to post-process results from a dynamic analysis. The post-process has 

been applied to a real-size industrial case and has been elaborated in collaboration with PRA practitioners from 

the engineering division. The post processing of sequences generated by a dynamic analysis is a necessary step 

to get qualitative (e.g., not previously identified scenarios) and quantitative insights and to make accessible to 

PRA analysts. 

In the next step we will investigate possible methods to associate and connect the outcomes of dynamic analysis 

with the PRA model. 
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