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Abstract: Utilizing the existing natural gas pipeline network for hydrogen transportation is a primary
approach in the field. However, introducing hydrogen into natural gas alters the operational conditions of
pipelines and equipment, leading to a reduction in the lower limit of natural gas explosion and an increase in
leakage diffusion rate. Consequently, this poses more severe risks of gas leakage and explosions.
Conventional detection methods solely provide numerical values representing gas concentration, lacking
intuitive judgment capability.This paper employs an infrared gas imaging leakage detection method to
visualize leaking gas and designs an intelligent detection algorithm for hydrogen-blended natural gas leaks
based on image processing. To obtain more infrared gas imaging data, a hydrogen-blended natural gas
leakage experimental platform was constructed, and experimental validation was conducted. The results
show that after training the model on a self-constructed hydrogen-blended natural gas leakage imaging
dataset, the detection accuracy reached 98%, providing a viable solution for gas leakage detection.
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1. INTRODUCTION

The use of pipelines for hydrogen transportation, due to its advantages of long-distance, economical,
and large-scale, is becoming an inevitable choice to promote the development of hydrogen energy storage
and transportation. Hydrogen blending with natural gas utilizes existing infrastructure to enable cost-
effective and large-scale hydrogen transport, but it also increases the risk of gas leakage. After hydrogen is
blended, the gas leakage rate increases, and its density decreases, thereby increasing the diffusion efficiency
of the gas in the air[1]. Furthermore, hydrogen-blended natural gas has a lower explosion limit, significantly
increasing the explosion risk. Therefore, effective gas leakage detection is crucial for preventing explosive
accidents and reducing the damage caused by such accidents.

Optical gas imaging (OGI) infrared thermography can capture environmental temperature changes
caused by gas leakage to detect leakage points and display the leakage situation through images[2]. Non-
contact gas leakage detection technology based on infrared imaging can achieve quick response and long-
distance monitoring, covering a wide range and providing intuitive results. However, currently, it is limited
to displaying images of gas leaks, and the occurrence of leaks still relies on subjective judgment by
personnel, failing to achieve automated detection[3]. Subjective judgment depends on the level and
experience of the inspection personnel, leading to high labor costs and varying judgment results under the
same conditions, lacking standardized evaluation[4].

With the advancement of technology, many researchers have combined optical gas imaging with
artificial intelligence to achieve intelligent gas leak detection[5-8]. This integration has reduced labor costs
and made pipeline transportation safer and more efficient. Techniques such as Faster R-CNN[9] and SSD[10]
are prominent examples. Faster R-CNN offers higher accuracy but is computationally more complex and
time-consuming. SSD, while better suited for small object detection and offering a good balance between
accuracy and computation speed, still struggles to achieve real-time detection. Therefore, infrared imaging
detection of hydrogen-blended natural gas leaks faces the following challenges:

a) lack of high-quality datasets for model training.
b) Improving detection speed to achieve real-time performance while maintaining accuracy.

2. LEAKAGE EXPERIMENT
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To address the above issues, this paper proposes an intelligent detection algorithm for hydrogen-
blended natural gas leakage based on object detection algorithms. The algorithm improves the accuracy of
detection by addressing the issues of low resolution, grayscale images, and blurry edge contours in infrared
gas images. To obtain more infrared gas imaging data, an experimental platform for simulating hydrogen-
blended natural gas leakage was constructed in proportion, and experimental verification was conducted. The
flowchart is shown in Figure 1, with the steps as follows:

a) Construct an experimental platform for hydrogen-blended natural gas leakage, simulate leakage
detection under different conditions, and obtain infrared images of hydrogen-blended natural gas leakage.

b) Based on the infrared imaging characteristics of hydrogen-blended natural gas leakage, outline and
label the location of the leaking gas during the image preprocessing stage.

c) During the model training stage, train the data of hydrogen-blended natural gas leakage images and
optimize the model using the YOLOv5 convolutional neural network algorithm.

d) Evaluate the real-time leakage detection model of hydrogen-blended natural gas.

Figure 1. Hydrogen-blended Natural Gas Leak Recognition Detection Process

This experiment employs infrared thermography detection technology to detect hydrogen-blended
natural gas leakage. The basic principle of gas infrared thermography is based on the infrared absorption
spectrum characteristics of the gas, relying on temperature differences to distinguish between the leaking gas
and the background. The thermal imager detects the infrared wavelength band that includes a specific
absorption peak of the gas, displaying the leaking gas image in grayscale to show radiation changes that are
invisible to the human eye. Research has found that the factors affecting the detection results of gas infrared
thermal imagers are mainly as follows: (1) Temperature difference between the gas and the background.
When the background temperature is higher than the leaking gas temperature, the gas appears dark in the
image, and vice versa, it appears bright. The imaging effect is influenced by the temperature difference
between the two. (2) Imaging distance. Detection distance is the most important parameter affecting
detection accuracy. As the detection distance increases, atmospheric radiation loss also increases, thereby
reducing the radiation difference between the gas and the background, affecting the imaging effect. (3) Gas
concentration. The distribution of gas concentration in space is uneven. According to the Beer-Lambert law,
gas concentration and gas path length affect the spectral transmittance. When the concentration is higher and
the path length is longer, the gas absorbs more background radiation, making the imaging effect more
apparent.

Based on these factors, a hydrogen-blended natural gas leakage experiment can be designed by setting
experimental variables according to the factors affecting gas infrared thermal imaging. This approach
enriches the dataset samples for subsequent model training. The experiment is conducted at the Hydrogen
Energy Experimental Base in Shandong Province, China, where a hydrogen-blended natural gas pipeline
leakage experimental area is set up as shown in Figure 2. This area can introduce pre-mixed gases with
different hydrogen blending ratios, with a pipe diameter of 40mm and different orifice sizes to simulate
leakage. The gas infrared imaging equipment used is the GL1000i refrigerated gas leak detector produced by
Ke Yi Optoelectronics, capable of clearly observing gas leakage under different environments. It is primarily
designed for the oil and petrochemical industry to detect gas leaks. Equipped with a cooled detector with a
resolution of 320×256 and a high sensitivity of up to 15mK, it can clearly observe gas leaks under various
environmental conditions. Relevant parameters are shown in Table 1.
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Figure 2. Hydrogen-blended Natural Gas Pipeline Leakage Pilot Area

Table 1. Relevant Parameters of the Infrared Leakage Detector
content Technical Indicators

Types of detectors Refrigeration detector

Infrared resolution 320×256

sensitivity 15mk

Work band 3.2~3.5µm

Temperature measurement range -20℃~+350℃

Digital zoom 1-16x continuous zoom

Data is collected under two conditions: direct sunlight at noon and low nighttime temperatures without
external light sources. Three different imaging distances are set: 2m, 5m, and 8m. The gas leakage rate is
adjusted by changing the inlet pressure and orifice size. Experiments are conducted with hydrogen blending
ratios of 5%, 10%, and 15%. The overall experimental variables and parameters are shown in Table 2.

Table 2. Experimental Variants and Parameters
variant parameters

Lighting (shooting time) 10：00~14：00 21：00~23：00

Whether the lens is moving Handheld device forward shot Fixed-camera shooting

Shooting Distance 2m 5m 8m

hydrogen blending ratio 5% 10% 15%

leakage rate 3~5SLM 5~7SLM 7~10SLM

To include all different variables, there should be 108 sets of conditions, with each condition being
filmed twice, and a fixed filming time of 20 seconds. Since the gas plume may be unstable at the beginning
and end of the video, the first 5 seconds and the last 5 seconds of the video are excluded, capturing only the
middle 10 seconds to obtain stable gas leakage images. Ultimately, a dataset containing 216 videos is
obtained (with a frame rate of approximately 15 frames per second, recording a total of about 32,400 frames).
The collected infrared imaging pictures of hydrogen-blended natural gas leakage are labeled using Labelimg,
resulting in a complete dataset.

Figure 3. Hydrogen-blended Natural Gas Leakage Images
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3. INTELLIGENT ALGORITHM DETECTION TECHNOLOGY

Deep learning-based object detection algorithms primarily focus on two directions: two-stage
algorithms such as the R-CNN series and one-stage algorithms such as YOLO and SSD. One-stage
algorithms directly predict the class probabilities and position coordinates of objects without the refinement
step, making this method faster in detection. The YOLO series of algorithms innovatively integrate
classification, localization, and detection into a single network, making it faster to operate and avoiding the
misjudgment of background as targets, thereby reducing false detection rates. Due to its fast detection speed,
YOLO is often used in fields such as video and surveillance for real-time detection. In this paper, due to the
requirement for quick response time in gas leakage detection, the YOLO algorithm is selected for object
detection to achieve real-time detection.

3.1. Network Model Construction

As an open-source code, YOLOv5 has been continuously improved, making it easier to use, train, and
deploy. Therefore, this paper selects YOLOv5 for hydrogen-blended natural gas leakage detection. Its
network structure is shown in Figure 4 and is mainly divided into three parts: the backbone, the neck, and the
head. The input image size for the model is 3×640×640, and in the head part, it can output images in three
sizes (255×80×80, 255×40×40, 255×20×20). The other network modules are introduced as follows:

Figure 4. YOLOv5 Model Network Structure

a) Backbone
The Focus module performs initial processing on the input image, focusing on different parts of the

image to improve the effect of subsequent processing. Conv-1 to Conv-4 are all convolutional layers used to
extract low-level features of the image. BottleneckCSP-1 to BottleneckCSP-4 are connected after the
corresponding convolutional layers, used to build deep residual learning for the model, maintaining network
depth and performance while reducing computational complexity. After Conv-4, there is an SPP module,
which is a spatial pyramid pooling layer that can extract features of different sizes, enhancing the model's
ability to adapt to targets of various sizes.

b) Neck
The Conv-5 to Conv-8 convolutional layer modules further process the features, increasing their depth

and complexity. The UpSample layer, a top-down approach, enlarges the feature map size, allowing the low-
resolution deep-layer feature maps to match the large-size shallow-layer feature maps. The Contact feature
concatenation module is also used to enhance the feature representation capability.
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c) Head
Finally, the convolutional layers output the final detection results, including the position of the

bounding boxes, the class of the objects, and the confidence scores.

3.2. Model Training

The official YOLOv5 code provides five versions: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. Based on the performance test diagrams of these models pre-trained on the COCO dataset,
comprehensive analysis shows that YOLOv5s achieves higher AP indicators while maintaining a relatively
fast inference speed. Therefore, this study selects the YOLOv5s model for dataset training. Through transfer
learning, the trained model parameters are transferred to the new model to assist in training, so that the
model training does not start from scratch, thereby shortening the training time to a certain extent. This paper
uses the yolov5s.pt file for pre-training. The model training parameters are set as shown in Table 3.

Table 3. Typeset of Papers

a) Epochs
In deep learning, the number of epochs typically refers to the number of times all batches of data are

processed by the model in a training cycle (epoch). The performance of the model gradually stabilizes and
reaches an optimal state as the number of epochs increases, because more epochs mean the model has more
opportunities to learn the data details and features, which helps the model converge. However, if the number
of epochs is too high, the model may start to learn noise in the data, leading to overfitting, which results in
poor performance when predicting new data. Additionally, the number of epochs affects the time and
computational resources required to train the model, so a suitable balance must be found in practical
applications. After tuning, it was found that if the number of epochs is too high, overfitting occurs and the
training time is too long; if the number of epochs is too low, the training effect is unstable. Therefore, in this
experiment, the number of epochs is set to 60, which is a good balance.

b) Batch Size
Batch size represents the amount of data processed by the network in each iteration. In deep learning, an

epoch consists of multiple batch sizes. Processing more data in one iteration can improve memory utilization
and training speed because more data can be processed in parallel. However, this requires higher
computational hardware facilities and may lead to insufficient memory. A smaller batch size can provide
better training stability and convergence, but it may affect the gradient stability during training and result in
longer training time. After multiple training sessions, it was found that when the batch size is set to 8, the
computer performance can be well utilized without exceeding the running memory.

c) Confidence Threshold (conf_thres)
This parameter controls the confidence threshold for identifying objects during the detection stage,

determining which objects are included in the model's detection results. When the confidence threshold is
high, the model will only report detection results that it is very certain about, improving precision because it
is more conservative, reducing false positives. However, this may also lower the recall rate. The confidence
threshold varies with different needs. After practical adjustment, it was found that when the confidence
threshold is around 0.25, the precision and recall are at the best balance.

d) IOU Threshold (iou_thres)
Intersection over Union (IOU) is a metric used to measure the overlap between two bounding boxes.

Setting the IOU threshold determines when two detection boxes are considered to point to the same target.
When multiple bounding boxes detect the same object, the IOU threshold is used to determine which boxes
to keep, filtering overlapping detection boxes. A low IOU threshold may result in multiple close detection
boxes being retained, increasing false positives. A high IOU threshold can reduce this, but it may also miss

model parameter Initialization settings
Epchos 60
Batchsize 8
conf_thres 0.25
iou_thres 0.45
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some correct detections. For gas leakage detection in this paper, the best effect is achieved with an IOU
threshold of 0.45.

3.3. Evaluation Metrics
This model uses mean Average Precision (mAP) to evaluate the quality of the model. In addition, it also

considers other evaluation metrics such as Precision, Accuracy, and Recall. The relevant calculation
formulas are as follows:
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The meanings and relationships of TP, FN, FP, and TN are shown in the table below:

Table 4. Indicator Meaning

Confusion matrix
real value

Positive Negative

predicted value
Positive TP FP

Negative FN TN

TP represents true positives where the instance is true and the prediction is also true; FP represents false
positives where the instance is false but the prediction is true; FN represents false negatives where the
instance is true but the prediction is false; TN represents true negatives where the instance is false and the
prediction is also false. P is the probability of correctly predicting the target for each image, AP is the
average precision for each class, N is the number of images, C represents the total number of classes, and
mAP represents the mean Average Precision across all classes.

3.3. Evaluation Metrics

After 60 iterations of training, the model achieved an accuracy of 98.14% in recognizing hydrogen-
blended natural gas leaks, effectively enabling detection. The training variation curves are shown in Figure 5.
The first and second rows of the first three images represent training loss and validation loss, respectively.
Analyzing the training loss as an example, the train/box_loss plot shows the decreasing trend of bounding
box regression loss during training, indicating that the model's performance in bounding box localization is
gradually improving. The train/obj_loss curve shows a significant decline in object confidence loss,
indicating that the model's ability to distinguish between foreground and background and determine the
presence of objects is improving. Since it is a binary classification problem detecting only the presence of
leaking gas, the train/cls_loss class loss curve remains stable and close to zero. The analysis of validation
loss is similar to the above. The metrics/precision curve shows the proportion of actual positives among the
predicted positive categories, indicating that precision improves gradually with training, and the model
performs well in reducing false positives. The metrics/recall curve measures the proportion of all actual
positive categories detected by the model, and the recall increases gradually, indicating that the model is
missing fewer actual targets. The metrics/mAP_0.5 indicates the mean Average Precision with an IOU
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threshold of 0.5, and metrics/mAP_0.5:0.95 indicates the mean Average Precision calculated over an IOU
threshold range from 0.5 to 0.95. Both show a significant upward trend, indicating that the overall detection
performance of the model is improving.

Figure 5. Training Variation Curves of the Model

After training the model using the self-constructed dataset, a new weight file, best.pt, was generated.
This weight file was applied to the prediction code, making the prediction code more suitable for hydrogen-
blended natural gas leakage imaging detection. The prediction results are shown in Figure 6.

In addition, the model has a preprocessing time of 0.2ms per image, an inference time of 3.4ms, and a
non-maximum suppression (NMS) time of 1.7ms, which is used to eliminate duplicate bounding boxes for
the final detection results. The frames per second(FPS) is 192.215, indicating that the model can process
approximately 192 images per second at the specified speed. These performance metrics demonstrate that the
model can handle input images of size (32, 3, 640, 640) with high processing speed and inference efficiency,
enabling real-time detection and providing ample capacity to manage more complex scenarios and tasks.

Figure 6. Model Prediction Results Display

4. CONCLUSION

This paper establishes a hydrogen-blended natural gas leakage simulation experimental platform,
forming an infrared imaging database of hydrogen-blended natural gas leaks. It proposes an intelligent
detection method for hydrogen-blended natural gas leaks based on YOLOv5. The results show that:
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a) A hydrogen-blended natural gas leakage simulation experimental platform was constructed, and
various scenarios and hydrogen blending ratios were collected, forming an infrared imaging dataset of
hydrogen-blended natural gas leaks, laying a foundation for subsequent research.

b) After training, this method achieved a detection accuracy of 98.14% and an FPS of 192,
enabling real-time detection of gas leaks in various environments. This capability provides a viable
solution for the detection of hydrogen-blended natural gas leaks.
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