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Abstract: The multi-unit issues of nuclear power plants (NPPs) have emerged during the construction and 
operation phases since the Fukushima Daiichi accident. This changing environment has enabled the 
probabilistic safety assessment (PSA) in Korea to broaden its scope from focusing solely on single units to 
encompassing multi-unit or site assessments. Until now, Korea’s multi-unit risk assessment has been based 
on the traditional single-unit PSA. This approach struggles to accurately capture the complex dynamics 
inherent in multi-unit accident scenarios. Extensive computational efforts have been required to analyze 
thermal-hydraulic (TH) codes, representing a significant challenge in precisely modeling multi-unit accident 
progression. To address the long computation times associated with TH codes, we propose the development 
of a meta-modeling utilizing deep learning technology, which has show exceptional capabilities in various 
fields. By implementing this meta-model, we can significantly reduce the computation timed required for TH 
codes by effectively incorporating the characteristics or multi-unit scenarios. This method facilitates a more 
realistic and precise analysis and evaluation of multi-unit risk, enabling the identification of critical 
vulnerabilities within multi-unit NPPs. Ultimately, this purpose in formulating strategies that markedly 
enhance the overall safety and risk assessment of multi-unit or site. 
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1.  INTRODUCTION 
 

The Fukushima Daiichi accident has brought the importance of multi-unit issues in nuclear power plants 
(NPPs) to the forefront. This shift in focus has expanded the scope of probabilistic safety assessment (PSA) 
in Korea from solely focusing on single units to encompassing multi-unit or site assessments. However, the 
current approach to multi-unit risk assessment in Korea, which is based on traditional single-unit PSA, 
struggles to accurately capture the complex dynamics inherent in multi-unit accident scenarios [1, 2]. 
Complex dynamic accident scenarios between multi-unit NPPs lead to a multifaceted progression of 
accidents, which is challenging to adequately reflect using existing methods. 

To overcome limitations and enhance the accuracy of multi-unit risk assessment, the development of 
innovative technologies is crucial. While various techniques have been developed, their application to real-
world NPP-level PSA models remains hindered by the extensive time and effort required for thermal-
hydraulic (TH) simulations, among other significant challenges. To comprehensively address the dynamic 
features of multi-unit PSA, a method capable of resolving the following aspects is necessary: 

 
- The timing and sequence of various events occurring in each unit 
- The availability and success/failure times of systems and components in each unit 
- The availability and performance of human and organizational factors as the accident progresses 
 
The timing and sequence of events in each unit are not predetermined, making it difficult to analyze using 

event trees. The variability in the state of systems and components under multi-unit scenarios is similar to the 
research in dynamic PSA. However, the dynamic approach requires numerous simulations, and its 
application is practically impossible to perform in its entirety. In this paper, we suggest the introduction of a 
meta-model to address this challenge [3]. 

The term "meta-model" is similar to the surrogate model, which is designed to capture the essential 
behavior of the original model (real state) while reducing computational requirements. In this study, we have 
developed a meta-model with the primary objective of identifying core damage or OK as an early stage of 
introducing meta-modeling. The developed meta-model is able to classify the occurrence of core damage 
based on the conditions of dynamic accident scenarios. To create dynamic accident scenarios and training 
data for the meta-model, we analyze loss of offsite power (LOOP) and station blackout (SBO) scenarios that 
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can lead to multi-unit accidents. The data used in this study were generated by the Modular Accident 
Analysis Program (MAAP) 5 code, which enables the analysis of physical phenomena associated with severe 
accidents at NPPs. 

The meta-model is based on deep learning, which is one of the artificial neural networks and has shown 
remarkable achievements recently. The data used in this paper have the characteristic of small input size; 
thus, to achieve accurate results with small input size, we have employed a combination of 1D convolutional 
neural networks and an adapted Inception architecture. The developed architecture includes inception-n for 
capturing narrow feature regions, inception-w for capturing wide feature regions, and inception-a for 
focusing on important features. 

After this chapter, the paper is constructed as follows: Chapter 2 describes creating dynamic accident 
scenarios, Chapter 3 presents the developed model structure, Chapter 4 discusses the results of the developed 
model, and finally, the conclusion is described.  
 
 
2. DYNAMIC ACCIDENT SCENARIOS FOR SECURING DATA 
 

In this section, the dynamic accident scenario for securing data to develop meta modeling is explained. 
The dynamic scenario is established in associated with operating time sampling of electrical component and 
mechanical components during loss of offsite power (LOOP) and station black out (SBO). A LOOP accident 
occurs when the reactor is shutdown due to damage to the offsite grid or switchyard, and power supply to 
power plant is eliminated. That is, it refers to an accident where the reactor is shutdown due to electrical 
issues in the transmission grid or switchyard, resulting in a loss of power, which in turn triggers the start-up 
of the associated emergency diesel generators (EDG). The SBO accident covers the all accident which is 
occurring two EDGs failure after the LOOP. Because the LOOP and the SBO are possible to occur multi-
unit accident, these accidents are considered in this paper. Analyzing sequence of the LOOP and the SBO, 
component list affecting to dynamic accident scenario as below Table 1. In addition, the Figure 1 shows the 
flow diagram by considering dynamic scenario for LOOP and SBO.  

 
Table 1. Component list of dynamic accident scenario 

Variables Description 
EDG Emergency Diesel Generator 

Offsite Power Offsite Power 
AAC DG Alternate AC Diesel Generator 

AFW-TDP Turbine Driven Auxiliary Feedwater Pump 
AFW-MDP Motor Driven Auxiliary Feedwater Pump 

HPSI High Pressure Safety Injection 
PSV Pressurizer Safety Valve Reclose 

RCP-Seal Reactor Coolant Pump Seal Leakage 
CSR Containment Spray Recirculation 

 

          
Figure 1. Flow diagram to dynamic scenario for LOOP and SBO 
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The operation times of the variables excluding PSV and RCP-Seal in Table 1 were randomly sampled 

between 0 and 72 hours. This provides a simple example to understand how to create a dynamic accident 
scenario. Assuming that the random sampling is selected as shown in Table 2. The operation time of the 
electrical system and the associated components should overlap. Consequently, in the case of HPSI and CSR, 
the actual operation time spans from 13.842 to 29.126 hours, during which they are operated once. 
Additionally, they operate twice more from 63.32 to 72 hours. For AFW-TDP, the activation period is from 
4.193 to 8.193 hours. These instances serve as thermal-hydraulic (TH) input conditions for the simulation, 
however, in the operation times may vary depending on the system’s operating environment. For example, 
the actual injection time of HPSI can differ based on the pressure in the primary side. Therefore, the sampled 
times generated above represent the available operation times rather than the actual operation times. 

 
Table 2. Simple example for dynamic accident scenario 

Variables Sampling Operation Time 
EDG On time: 0, Off time:4.193 

Offsite Power On time: 64.32, Off time: 72 
AAC DG On time: 10.474, Off time: 29.126 

AFW-TDP On time: 0, Off time: 8.193 
AFW-MDP On time: 12.142, Off time: 12.142 

HPSI On time: 13.872, Off time: 72 
PSV Success PSV reclose 

RCP-Seal No RCP seal leakage 
CSR On time: 13.842 Off time: 72 

 
The input features for predicting core damage were considered insufficient, we augmented the model input 

by incorporating additional event tree (ET) sequences. This approach combines traditional PSA 
methodologies with machine learning techniques, providing a more comprehensive representation of 
potential accident progressions. The dataset consists of 10,000 dynamic accident scenarios, each analyzed 
using the MAAP 5 code. The simulation time extends to 72 hours, which is time for PSA considering severe 
accident, with simulation time step of 50 seconds (72hours/50seconds). The normal code step is 5,180 steps 
while scenarios below 5,119 steps are truncated (about 5% of total number of simulation). The ratio of 
training, validation and test is 80%, 10% and 10%, respectively. The output of model represents the core 
state, evaluated using peak cladding temperature (PCT) as metric of core state. Core damage is defined as 
occurring when the PCT exceeds 1,255 K. This threshold is consistent with established safety criteria in 
nuclear engineering.  
 
 
3. META MODEL 
 

This chapter describes the characteristics of the developed model. The main feature of the developed 
model is its ability to predict core status with relatively small input. A convolutional layer is a fundamental 
building block in convolutional neural networks (CNNs), primarily used for feature extraction from input 
data. It applies a series of filters (kernels) that slide over the input, performing element-wise multiplication 
and summing the results to produce feature maps. These feature maps capture spatial hierarchies and patterns, 
making convolutional layers highly effective in tasks like image and signal processing. 

In 1D convolution, the convolutional operation is applied along a single spatial dimension, making it 
particularly useful for processing sequential data such as time series or language. By applying 1D 
convolutions, the network can generate various combinations of the input features, effectively capturing local 
dependencies and patterns within the data. This ability to explore diver feature combinations enhances the 
model’s capacity to learn meaningful representations, crucial for tasks such as sequence classification, signal 
processing, and language modeling. 

To achieve this, we adopted the inception structure, which has shown exceptional performance in image 
recognition models. The Inception architecture is a powerful and innovative neural network model that 
effectively learns complex patterns through multi-scale feature extraction, efficient parameter utilization, and 
flexible structure design [4]. This approach allows the network to capture intricate data representations 
across various scales, optimize computational resources, and adapt to diverse problem domains, making it a 
versatile and high-performing solution for complex machine learning tasks. 
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The developed structure consists of three types: inception_n, inception_s, inception_w, and inception_a. 
The characteristics of each structure are as follows and illustrated from Figure 2 to Figure 5: 

 
a) inception_n 

- Suitable for capturing features in narrow regions 
- Uses 1x1, 3x3 convolutions and average pooling 

 
 

 
 

Figure 2. The architecture of inception_n  
 
b) inception_s  

- Suitable for capturing features in narrow regions 
- To avoid gradient vanishing, the output channel is half of inception_n 

 
 

 
Figure 3. The architecture of inception_s 
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c) inception_w (w) 

- Suitable for capturing features in wider regions 
- Uses larger kernel sizes such as 15x15 and 17x17 

 
 

 
 

Figure 4. The architecture of inception_w  
 
d) inception_a  

- Adds self-attention mechanism to the inception_n structure 
- Helps capture global context information 

 
 

 
 

Figure 5. The architecture of inception_a  
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In the inception_a (a) module, the self-attention mechanism, a key feature of the transformer architecture, 

has become fundamental to many recent deep learning models [5]. It utilizes multiple attention mechanisms 
in parallel to extract information from various perspectives. This approach has significantly contributed to 
performance improvements across diverse deep learning tasks. 

Additional features of the model include the use of the Gaussian Error Linear Unit (GELU) activation 
function to increase non-linearity [6], and the implementation of batch normalization and residual 
connections to enhance learning stability [7]. The developed model is capable of extracting features at 
various scales and can emphasize important features through the attention mechanism. 

Through extensive experimentation with various hyperparameters and performance testing, the final 
structure of the model consists of three repeated blocks, each followed by a fully connected layer. The 
structure can be described as follows: 

 
(1) Three repeated blocks, each comprising: 

- Inception_s (s) 
- Inception_n (n) 
- Inception_n (n) 
- Batch Normalization (b) 
- Inception_a (a) 

 
(2) After the three blocks, a fully connected layer with 1024 units is added. 
 
This can be represented compactly as: 3 × [s-n-n-b-a] + FC(1024). This structure balances different 

inception modules and incorporates regularization techniques to achieve optimal performance.  
 
4. RESULTS 

 
The performance of the developed deep learning model was evaluated and compared with traditional 

machine learning methods using the same dataset. The results are presented in a confusion matrix, as shown 
in Figure 2. 

 

 
Figure 2. The confusion matrix of developed model. 
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The 0 means the OK and 1 means the core damage in the confusion matrix, thus, row indicates true value 
and column indicates predicted value. The confusion matrix displays the model's predictive performance, 
with 219 true negatives, 667 true positives, 5 false positives, and 8 false negatives. This visual representation 
helps in understanding the model's classification accuracy across different classes. the developed deep 
learning model demonstrated performance across all metrics in Table 3: 

 
Table 3. Model Performance of developed model 

Metrics Value 
Accuracy 98.55 % 
Precision 99.26 % 

Recall 98.82 % 
F1 Score 99.04 % 

 
To benchmark the model's performance, it was compared against several established machine learning 

algorithms, all of which underwent hyperparameter optimization to ensure fair comparison. The results of 
these comparisons are as follows in Table 4: 

 
Table 4. Compared model performance 

Metrics Value 
Random Forest 87.52 % 

Linear Regression 58.35 % 
Support Vector Machine 75.28 % 

Gradient Boosting 80.87 % 
Fully Connected Layer 74.83 % 

 
 
 
6. CONCLUSION 
 

This study presents a novel approach to multi-unit PSA through the development of a meta-model utilizing 
deep learning techniques. By combining 1D convolutional neural networks and a modified Inception 
architecture, our meta-model effectively predicts core damage states based on dynamic accident scenarios. 

The meta-model demonstrates exceptional performance, achieving an accuracy of 98.55% in classifying 
core damage states. Furthermore, it exhibits superior performance compared to traditional machine learning 
algorithms, including Random Forest, Linear Regression, Support Vector Machine, and Gradient Boosting. 

In future research, we intend to employ the meta-model to investigate multi-unit effects. Additionally, we 
plan to develop a regression model that can better reflect the time-series characteristics of a wider range of 
accident scenario outcomes, taking into account the specific attributes of the model. This advancement will 
further enhance our ability to analyze and predict complex nuclear safety scenarios. 
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