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Abstract: There is currently no widely agreed detailed general method for licensing a novel plant incorporating 
novel materials (or materials being deployed in novel environments); in many such situations, there are no 
directly applicable engineering code cases for decision-makers (including regulators) to rely on. It may be 
possible to develop an approach to licensing such a plant that is based on the Reliability and Integrity 
Management (RIM) approach delineated in ASME BPVC Section XI Division 2. NRC Regulatory Guide 
1.246, Rev.0, endorses, with conditions, the subject portion of the ASME Code. But that portion of the ASME 
code is written at a very high level, and there are fundamental technical challenges associated with applying it 
literally to licensing a real plant. In the RIM approach, applicants need to do the following (among other 
things): 

• Allocate target reliabilities to structures, systems, and components (SSCs) that collectively 
support the top-level plant safety and availability objectives; 

• Understand failure modes of those SSCs, and the degradation mechanisms that could lead to 
those failure modes; 

• Develop and propose a program of surveillances that will identify degradation prior to failure 
of SSCs; 

• Provide a means of reporting results, taking actions for anomalous or undesirable conditions, 
and give the regulator assurance of continued safe operations.   

Applying RIM in a specific case will call for advances in the state of practice of relating physical observables 
to functional reliability of certain component types.  Except where a given level of damage corresponds to a 
failed (or nearly failed) state, it is not practical to establish a precise quantitative relationship between physical 
observables and reliability.  This paper focuses on managing risk of passive component failures based on 
observable damage parameters.  A simple approach to cumulative damage modeling will be illustrated with a 
view to possible use in RIM applications. 
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1.  INTRODUCTION 
 
This paper explores the applicability of cumulative damage modeling (CDM) to Reliability Integrity 
Management (RIM) as described in [1]. 
 
The RIM approach manages the risks associated with novel materials/designs/operating conditions through a 
carefully considered application of Monitoring and Nondestructive Examination (MANDE), including repair 
or replacement if necessary, to maintain the reliability of in-service components based on the degradation 
mechanisms that may exist throughout the life of the plant.  In the RIM approach, applicants need to:  

• Allocate target reliabilities to structures, systems, and components (SSCs) that collectively support 
the top-level plant safety and availability objectives;  

• Understand failure modes of those SSCs, and the degradation mechanisms that could lead to those 
failure modes; 

• Develop and propose a program of surveillances that will identify degradation prior to failure of 
SSCs; 

• Provide a means of reporting results, taking actions for anomalous or undesirable conditions, and 
give the regulator assurance of continued safe operations. 

 
RIM shares with the Licensing Modernization Project (LMP) [2] the idea that the component-level allocations 
are to be derived from plant-level targets.  But the emphasis of RIM is on formulating and executing the 
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component-level treatments that make sure that the component-level targets - and therefore the plant-level 
targets - are in fact met.   
 
Refer to Figure 1, which is loosely based on [3].  Per RIM, component-level reliability targets are allocated, 
as suggested in the “Reliability Space” portion of the figure; and MANDE is formulated and executed with a 
view to assuring satisfaction of the target, or detection of failure to satisfy the target.  MANDE operates in 
“Observables Space;” this is suggested in Figure 1 by the plot of a hypothetical “damage” variable being 
monitored under MANDE.  It is necessary to establish a relationship between the reliability target and current 
MANDE observations.  This paper will not complete that task, but will offer a tool for addressing it. 
 

 
Figure 1. Mapping Between “Reliability Space” and “Observables Space” 

 
At the leadership level, stakeholder expectations concerning the plant risk posture (accident risk, generation 
risk, …) may be qualitative. However, adherence to such a risk posture is easier if it is formulated at a high 
level in terms of allocatable quantities. For high-priority objectives, it is expected (in LMP and in RIM) that 
stakeholders’ qualitative risk tolerances will tend to be translated into quantitative risk tolerances as an integral 
part of the Systems Engineering process, and those risk tolerances are then partitioned down to the level of 
verifiable requirements and specifications (e.g., as margins, operating limits, quality controls, etc.) [4]. This is 
what RIM calls for.   
 
Figure 1 notionally illustrates a “LOV Threshold” in observables space.  LOV stands for “Loss of Validity,” a 
term borrowed from aviation [5, 6], and applied in regulatory oversight of fatigue damage in aircraft.  In that 
domain, affected parties are required to:   

Establish a limit of validity of the engineering data that supports the structural maintenance program 
(hereafter referred to as LOV) that corresponds to the period of time, stated as a number of total 
accumulated flight cycles or flight hours or both, during which it is demonstrated that widespread 
fatigue damage will not occur in the airplane. This demonstration must include an evaluation of 
airplane structural configurations and be supported by test evidence and analysis at a minimum and, if 
available, service experience, or service experience and teardown inspection results, of high-time 
airplanes of similar structural design, accounting for differences in operating conditions and 
procedures. [5] 

The curves shown in Figure 1 (Expected, Lower Bound, Upper Bound) represent results from a notional prior 
model of that damage variable’s behavior in time.   If the damage variable is seen (e.g., through MANDE) to 
impinge on the “LOV” region, then corrective action of some kind is warranted.  The determination of the 
LOV region in a particular application depends on the uncertainties affecting that application and on the risk 
posture. 
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The aviation community has been paying attention to this matter for many years, as illustrated in [6].  Those 
authors analyzed fatigue damage in aircraft operating under a range of conditions, addressing a range of 
stressors, some essentially chronic (steady operation) and some episodic (particular maneuvers or events).   
 
Below, we will propose a framework for modeling cumulative damage, and suggest a mode of applying that 
model in a way that generally resembles the thought process sketched above.  Physical observations are made 
and interpreted through a model of cumulative damage that could, when adequately supported by data and 
models, be applied within a sort of “digital twin” paradigm: we make component renewal decisions based on 
a physics-based understanding of component status.   
 
The framework illustrated does not solve the whole problem, but it may help to integrate the insights that seem 
to be emerging from recent advances in materials science. 
 
2.  CUMULATIVE DAMAGE MODELING 
 
This section presents a “cumulative damage model” (CDM) and contrasts it with conventional reliability 
modeling.  The next section will illustrate notional applications of it. 
 
The present CDM is loosely based on a well-known Markovian model of piping reliability due to Fleming [7].  
The model is shown in Figure 2 below:  

 
Figure 2:  A Markovian model of piping reliability, appearing as “Figure 1” of Fleming [7].   

 
Figure 2 is essentially a picture of a classical reliability analysis. A space of states is defined; the occupancy 
of a given state at a given time represents the fraction of systems occupying that state at that time. Transitions 
between states are modeled in terms of rates such as those illustrated in the lower right of Figure 2.  In this 
kind of model, the transition from (say) “flaw” to “leak” does not depend on dwell time in the flaw state; the 
rate of those transitions depends only on the current occupancy of the initial state (e.g., “flaw”) and on the 
specified rate parameter.  The repair rates can be modeled to reflect certain parameters of the MANDE 
program, such as frequency of surveillances and probabilities of failure to detect specific component states.  
Each transition arc in the figure represents a differential equation relating the time rate of change of the initial 
component state in terms of that state’s occupancy and the transition rates to other states.  These equations are 
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solved to quantify time-dependent state occupancies and time-dependent rates of transitions to failed states 
(e.g., rates of rupture).  
 
Meaningful results are obtainable from such a model despite its simplicity.  But here, we begin with the above 
state space, and add certain details with a view to providing more actionable results to MANDE.  The structure 
of the present CDM is shown below in Figure 3.  
 

 
Figure 3.  The Cumulative Damage Model 

 
Although Figure 3 is inspired by Fleming’s Markov model, the underlying CDM is very different.  In the 
CDM, a specific component is in precisely one of the states shown, rather than the system being described in 
terms of state occupancies, as in the Markov model.  Instead of solving differential equations to describe the 
time evolution of average state occupancies, one simulates a large number of time histories describing the 
progression of a given component through the various states (good, flaw, surveillance, leak, etc.), culminating 
in “Restoration” (repair, replacement, …), followed by progression of the renewed component through the 
various states, and so on.  To that degree, the CDM simulation resembles discrete-event simulation, but in 
CDM, transitions from one state to another are not modeled by sampling failure times based on failure rates; 
they occur when specific damage thresholds are crossed.  Damage to the component is modeled as resulting 
from external influences on the component; in the present application, component damage results either from 
a chronic stressor (normal operation) or the incidence of episodic stressors (such as severe thermal transients).  
This approach has been formulated in imitation of [6], and in recognition of the point that if episodic stressors 
are relatively important, but arrive sporadically, then significant variation occurs from one component life 
history to the next even if nothing else changes, and this needs to be reflected in the formulation of the model, 
in interpretation of its results for RIM purposes, and in the approach to tracking damage in real time. 
 
It may be asked whether it is necessary for a RIM application to consider states such as Cleanup and 
Restoration.  The above framework was developed for a broader class of applications than RIM; in those other 
applications, the Cleanup and Restoration states may be more useful.  The example results shown below are 
provided to illustrate the modeling potential of the cumulative-damage framework, not to suggest realistic 
values for failure times in any particular technology.   
  

Cleanup

Restoration

RtoCL

LtoCL

wi

wi

wd

FtoRest

BS

Surveillance

• FtoRest: Transition from detected flaw to restoration
• LtoCL: Transition from Leak to Cleanup
• RtoCL: Transition from Rupture to Cleanup

• wi: transition from either S or F to 
Scheduled Surveillance

• wd: transition from Surveillance back to S
• BS: Transition back to F after failure to 

detect a flaw

From Restoration to S



17th International Conference on Probabilistic Safety Assessment and Management & 
Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

3.  APPLICATION OF CUMULATIVE DAMAGE MODELING (CDM) 
 
3.1.  Base Case 
 
The model parameters and the implied results are provided strictly to illustrate the properties and possible 
benefits of applying CDM within a RIM program.   The results are not meant to suggest specific conclusions 
for any particular technology.   
 
The key parameters of the model are shown below in Table 1.  The “damage” model is: 
 

Damage=Factor1*Operating Hours + Factor2 *(# of episodic stressors) (1) 
 

“Episodic stressors” are incidents that cause momentary stress (as opposed to something like normal vibration).  
In [6], the analysis considered high-stress aircraft maneuvers, and the present concept of “episodic stressor” is 
analogous to that. For convenience, we measure “damage” in units of the amount of damage caused by one 
hour of normal operation, and all the runs shown in this paper assume Factor1 = 1.  Flaws, leaks, and ruptures 
occur when their time-history-specific thresholds are crossed; if the flaw threshold is 10000, and no episodic 
stressors occur, then a flaw is created after 10000 hours of operation.  If Factor2 is 1000, and two episodic 
stressors occur early on, then a flaw is created after 8000 hours of operation, and so on. 
 

Table 1. Model Parameters 

 
In a given campaign (e.g., 300000 hours, or about 20 component lifetimes), flaw, leak, and rupture thresholds 
are sampled for each new component from Gaussian distributions.  The values shown in Table 1 imply a small 
variability in threshold values from one component to the next; this is done for ease of interpreting the results.  
One case will be shown later where the s for flaw is changed to 2000, and this has a significant effect on the 
viability of particular monitoring approaches. 
 
Figure 4 shows results of a simulation run comprising about 300000 hours in total, which turned out to be 
around 20 component lifetimes, given these parameters.  For reasons explained in [3], the code runs very fast, 
and is capable of generating an enormous amount of output, but the present amount of output is convenient to 
work with, and supports some of the necessary discussions.  (If we were trying to quantify very small 
unreliabilities, a different strategy for data handling would be undertaken, as in [8].) In Figure 4, the first 
component is run to failure (onset of leak) and then renewed, and the next component is run to failure, and 
renewed, and so on.  For ease of viewing, the plotted points are sorted to yield cumulative distributions for 
onset of flaw and onset of leak. 
 
Figure 4 contrasts plotting onset of flaws or leaks versus time at which flaws or leaks occurred with plotting 
versus level of damage at which the subject transitions occurred.  For both flaws and leaks, the distribution of 
onsets versus time is much broader than the distribution of onsets versus damage.  This relates to one of the 
key points about damage modeling. The “damage” plots are narrow because the distributions of damage 
thresholds are narrow, so everything fails at essentially the same damage level; but the time plots are broad 
because some of the component histories have more episodic stressors than others.  The “damage” symbols at 
the upper right of the damage curves are displaced because of an artifact in how the code scores damage; if a 
component is within a few hundred units of a damage threshold, and an episodic stressor occurs, then with 
Factor2 = 1000, the damage exceeds the threshold by several hundred units.  Apart from that artifact, the plot 
of onset versus damage level will generally look the same, regardless of episodic stressor history, while the 
“time” plots will be relatively messy. 

Parameters Values 
Factor1 (Damage Model) 1 
Factor2 (Damage Model) 1000 
Parameters (µ,s) of Gaussian  Distributions for Flaw, Leak, Rupture Thresholds:  

Flaw (µ,s) (8760,100) 
Leak (µ,s) (additional damage given flaw) (12000,100) 
Rupture (µ,s) (additional damage given flaw) (14000,100) 

Average rate of episodic stressors (their times are Poisson distributed) 3.42E-4 / hr 
(about 3 per year) 
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3.2.  Onset of Flaws, Bails, and Leaks given Annual Surveillance 
 
Figure 5 shows a campaign history in which surveillance is conducted annually, regardless of whatever has 
happened with the component.  In this history, flaws occur when components are around a year old, but at that 
point, there is not much to see, and even if flaws are identified, they are not modeled as warranting component 
renewal at that point.   
 

 
Figure 4.  Base case:  Results for a series of component lifetimes culminating in failure (in this case, onset of 
leak).  Onset of flaws versus time and versus damage (measured in time units), and onset of leaks versus time 

and versus damage (measured in time units).  No surveillance occurs in this run. 
 
Flaws are expected to occur at a damage level around 8760 (mean flaw threshold) +12000 (mean threshold for 
additional damage beyond flaw), but the times at which flaws appear will be earlier than t=20760 as a result 
of episodic stressors, as explained above, and as suggested in Figure 5. 
 
Given the above parameters, annual surveillance is generally ineffective, but as shown in Figure 5, surveillance 
did manage to identify 3 cases of incipient failure.  The figure refers to these as “Bails,” as in “the plant bailed 
on that particular component because it was near the leak threshold: the plant renewed (repaired or replaced) 
the component before the leak occurred.” 
 

 
Figure 5.  Onset of Flaws, Bails, and Leaks, plotted against time.  In this run, surveillance occurs annually, 

and if observed damage exceeds a specified damage threshold, the component is renewed (“Bail”). 
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3.3.  Onset of Flaws, Bails, and Leaks Given Adaptive Surveillance 
 
Figure 6 presents the results for a case in which surveillance is “adaptive.”  By “adaptive,” we mean that after 
the first surveillance, an attempt is made to plan the next surveillance, based on an estimate of when the 
component would be near (but not quite at) the leak threshold.  In this run, it was assumed that  

• current damage would be measured, and, together with component age, used to estimate the average 
rate of damage accumulation; 

• this average rate would be used to estimate the time at which the component would be near the leak 
threshold;  

• the surveillance was planned and executed accordingly. 
We see that in this campaign, quite a few Bails occurred (representing successful avoidance of a leak), even 
though the estimation of failure time was simplistic.  But several leaks also occurred.  This adaptive scheme is 
not perfect: if that first damage measurement included a number of episodic stressors, then the extrapolation 
will assume a greater than average number of episodic stressors, and the next surveillance will occur needlessly 
soon; but if that first damage measurement included a less-than-average number of episodic stressors, then the 
extrapolation will be off in the opposite direction, and the surveillance may occur too late to prevent a leak.   
 
 

Figure 6.  Onset of Flaws, Bails, and Leaks versus time.  In this run, surveillance is adaptive; in the first 
surveillance, damage is observed, and “damage per unit time” is determined.  Then a linear extrapolation is 

used to determine when component renewal should occur. 
 
3.4.  Onset of Flaws, Bails, and Leaks Assuming a Perfect Digital Twin 
 
Figure 7 shows the case where the form of the Damage Model (eq. 1) is correct, its parameters are known, 
and the plant continuously tracks operating hours and episodic-stressor incidence. 
 
On these assumptions, the plant staff know the current level of damage at all times, and can renew the 
component at the right time.  This concept resembles the “LOV” idea illustrated in Figure 1, and is a case of 
the widely-discussed “digital twin” idea, which was formulated for this sort of application. 
 
However, the favorable result shown in Figure 7 results partly from the low variability in leak threshold (the 
small value of leak s  in Table 1).  We can credit the digital twin with a lot, but it may not be realistic to 
expect it to know specific values of specific properties in a brand-new component subject to variability in 
manufacturing. In the next subsection, we show what happens when we assume significant variability in leak 
threshold. 
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Figure 7.  Flaws and Bails versus time.  In this run, no surveillance occurs at all; rather, it is assumed that the 
damage formula (eq. mm) accurately reflects damage to the component, and when operating history implies 

that the time for component renewal has arrived, the component is renewed.  In this campaign, no leaks 
occur. 

 
3.5.  Onset of Flaws, Bails, and Leaks Assuming Large Variance in Flaw Threshold 

 
In Figure 8, we show the effect of assuming much greater variability in the flaw threshold than was used to 
generate Figure 7.  In this model, if flaw occurs earlier, then so, on average, does leak. 
 

 
Figure 8. Onset of Flaws, Bails, Leaks versus Damage. 
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Figure 8 resembles Figure 7 in all but two respects: (1) it is plotted against damage rather than time; (2) a 
relatively large variance (s=2000) has been added to the specification of the flaw threshold (which translates 
into a similarly large variation in leak threshold).  This does not change the average thresholds for onset of 
flaws or leaks, but bailing based on an average leak threshold is much less reliable in Figure 8 than in Figure 
7, and in Figure 8, in 5 out of 21 cases, leaks occurred at a level of damage below the level at which renewal 
would have been carried out. In fact, there is a resemblance between the lower tail of the flaw distribution 
and the lower tail of the leak distribution, and this is not an accident. 

 
4.  DISCUSSION 
 
Unfortunately, satisfaction of quantitative risk indices is not practically observable.  This is one of the factors 
driving the need for “assurance cases:” [9] 
 

The need for assurance case arises when one realizes the properties of the systems in the real world 
can never be completely formalized in a logical theory, but there is always something which is not 
covered by any logical formalization. 

NOTE 1 When the top-level claim is about safety, security, dependability or RAM (reliability, 
availability and maintainability), assurance cases associated with these claims are called safety 
cases, security cases, dependability cases or RAM cases, respectively. 

 
This suggests that we need to use observables to manage risk without necessarily quantifying a reliability 
metric. This is the reason for the question marks on Figure 1.  If we can establish values of physical state 
variables that correspond to low risk of failure, and we can successfully monitor those variables, we can show 
that risk is being adequately managed, even if we do not explicitly quantify a reliability metric.  A program of 
MANDE – and interpretation of MANDE results based on a convincing model of the system – is therefore 
essential to risk management. Applying RIM to management of reliability of a passive component calls for a 
deep understanding of the degradation mechanisms to which the passive component is susceptible, and a 
program of monitoring and nondestructive evaluation that is sufficiently thorough to provide the necessary 
assurance (not proof) regarding satisfaction of component-level reliability targets.   
 
The present paper illustrates the potential benefits of cumulative damage modeling in such an application, and 
the usefulness (technical and economic) of certain types of uncertainty reduction.  But those illustrations are 
predicated on very specific knowledge of current component conditions.  Some of the illustrations took credit 
for surveillance determining “damage” with high accuracy; the dominant uncertainty in those illustrations was 
the timing of episodic stressors.  But when we introduced a significant uncertainty in flaw threshold, the 
difficulty of determining a good renewal strategy without excessive surveillance increased dramatically. 
 
These examples indirectly illustrate the “value of information” concept introduced by Howard. [10] The level 
of accuracy in damage assessment implied in some of the illustrations may not be available currently, but 
understanding of materials behavior (including the ability to image materials at small length scales) is 
advancing rapidly.  With recognition of the costs of leaks and ruptures and the costs and benefits of surveillance 
(well-timed or ill-timed), and with understanding of the uncertainties in damage causation and in damage 
characterization, a “value of information” framework may soon be able to support improved planning of 
surveillance.  
 
5.  CONCLUSION 
 
This paper has argued the potential benefit of a “cumulative damage modeling” (CDM) framework.  Such a 
framework superficially resembles discrete-event simulation based on classical reliability modeling, and in 
some respects resembles probabilistic fracture mechanics (e.g., [8]), but yields results of a different sort, and 
calls for different inputs.  Given those inputs, the modeling is no more difficult than discrete-event simulation, 
but bears more directly on planning surveillance and tracking details of component history.  This comes about 
because the models of component behavior are based on physical observables, rather than on statistical 
abstractions such as “failure rates.” 
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The approach illustrated is presently limited by limits on the level of detail of our understanding, especially of 
novel materials.  The potential value of the approach seems clear.  Whether it can be realized in practice 
arguably depends on developments in our understanding of the issues affecting MANDE. 
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