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Abstract: A significant factor contributing to the seismic risk in a nuclear power plant is seismic-induced 

dependencies. However, no universally accepted method for seismic dependency modeling exists yet. This 

paper aims to summarize the dependency modeling methods with open-source codes for seismic probabilistic 

risk assessment in nuclear power plants. Specifically, we demonstrate the application of four state-of-the-art 

methods for dependency modeling using a numerical example of a three-component system, including the 

Monte Carlo simulation (MCS), Reed-McCann, COREX, and Bayesian network methods. All source codes 

are developed with the R programming language and are publicly accessible on GitHub: 

https://github.com/tzhou4/PSAM_seismic. Finally, this paper seeks to improve the understanding of seismic 

dependency modeling and promote transparency, collaboration, and innovation in probabilistic risk assessment 

research. 
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1.  INTRODUCTION 
 

Seismic events are paramount to the safe operation of nuclear power plants [1]. These events can trigger ground 

displacement and rupture, which poses severe risks to the plant’s critical structures, systems, and components 

(SSCs). Strong spatial dependencies are imposed on SSCs in reactor units that are either the same or separate 

from one another when an earthquake occurs. As such, some SSCs fail concurrently due to the dependencies 

arising from similarities in ground motion, seismic demand, and seismic capacity [2]. Therefore, it is crucial 

to properly assess the risk profile associated with the plant's location to design robust safety measures and 

infrastructures to withstand seismic events.  

 

The seismic risk in nuclear power plants is typically quantified using the methodology of seismic probabilistic 

risk assessment (SPRA) [3]. SPRA involves a systematic analysis that integrates data on seismic hazards, 

structural engineering, and system vulnerabilities. By considering uncertainties in seismic hazard 

characterization and the response of SSCs to seismic forces, SPRA provides insights into the likelihood and 

consequences of different levels of seismic-induced accidents. Notably, SPRA often relies on simplifying 

assumptions to represent inter-dependency behavior, which is that seismic failures are either entirely 

independent or fully dependent. While these simplifications may be necessary for computational tractability, 

they can introduce uncertainties and limitations in the accuracy of risk estimates since the actual dependencies 

should be partial [4]. 

 

A considerable effort has been dedicated to studying the impact of seismic dependencies on nuclear power 

plant operations. For instance, a study of the correlation of seismic performance in Similar SSCs was reported 

by the U.S. Nuclear Regulatory Commission (NRC) [5]. Particularly, there are two main tasks to accomplish 

seismic dependency modeling [6]: (a) specify the degree of dependencies between the SSCs of interest, which 

mainly relies on the separation-of-variable-approach by grouping the similar attributes in the fragility 

development; (b) assess the system risk by incorporating the dependent effects into the system-level model. 

This can be achieved by a fully simulation-based approach or a hybrid approach by combining the simulation-
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based approach and the conventional CCF modeling. Interested readers can refer to a comprehensive review 

of seismic dependency modeling [6].  

 

This paper aims to present an overview of state-of-the-art methods for seismic dependency modeling in nuclear 

power plants, with open-source codes publicly available. Section 2 briefly summarizes the current practice of 

seismic PRA. Section 3 demonstrates the application of four methods for seismic dependency modeling using 

a numerical example and the source codes are made publicly accessible. Section 4 provides conclusions and 

recommendations. Note that we develop this paper fully based on one of our previous papers [7] published in 

the Journal of Reliability Engineering & System Safety, but provide additional details specifically in the source 

codes used to generate the findings and conclusions. 

 

 

2.  BACKGROUND ON SEISMIC PROBABILISTIC RISK ASSESSMENT 
 

Seismic risk is estimated in terms of conditional failure probability by the systematic integration of seismic 

hazard analysis and seismic fragility evaluation in SPRA. For the completeness of the discussion, the 

subsequent section presents a brief background of seismic hazard analysis and seismic fragility evaluation.  

 

The goal of seismic hazard analysis is to produce a seismic hazard curve, which describes the annual 

exceedance frequency of earthquakes at a certain intensity of ground motion (i.e., peak ground acceleration, 

PGA) [8]. Generally, the power-law relationship can represent the seismic hazard curve in Equation (1), where 

𝑃𝐺𝐴 denotes the ground motion intensity in units of the gravitational acceleration, g, 𝑓(𝑃𝐺𝐴) is the annual 

exceedance frequency of a ground motion intensity 𝑃𝐺𝐴, 𝑘0and 𝑘 are empirical constants.  

 

𝑓((𝑃𝐺𝐴)) = 𝑘0 ∙ (𝑃𝐺𝐴)−𝑘 (1) 

 

Upon a seismic event with a specific ground motion intensity, seismic fragility evaluation aims to determine 

the conditional failure probability of an SSC by estimating its seismic capacity, known as seismic fragility [9]. 

Typically, the seismic capacity of an SSC is defined in terms of a ground motion intensity measure, referred 

to as ground acceleration capability. As shown in Equation (2), the seismic capacity, 𝐴, is modeled as a product 

of the median ground acceleration capacity 𝐴𝑚, the randomness and uncertainty components of the median 

estimates, which are 𝜖𝑅 and 𝜖𝑈 respectively.  

 

𝐴 = 𝐴𝑚 ∙ 𝜖𝑅 ∙ 𝜖𝑈 (2) 

 

Note that 𝜖𝑅  and 𝜖𝑈  are assumed to be lognormally distributed variables with unity as the median and 

logarithmic standard deviations 𝛽𝑅 and 𝛽𝑈. An SSC will fail once the ground motion intensity 𝑎 exceeds its 

ground acceleration capability 𝐴. As such, the fragility function can be described by the cumulative lognormal 

distribution in Equation (3), where 𝛷  is the cumulative standard normal distribution, 𝛷−1  is the inverse 

cumulative standard normal distribution, and 𝑄  is the confidence level. Equation (4) shows the other 

commonly used fragility function is expressed in terms of the total uncertainty, β
C

, without splitting into 

randomness and uncertainty [3].  

 

𝑃(𝑎 > 𝐴) = 𝛷 [
𝑙𝑛 (

𝑎
𝐴𝑚

) + 𝛽𝑈𝛷−1(𝑄)

𝛽𝑅
] (3) 
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3.  NUMERICAL EXAMPLE 
 

This section illustrates the application of seismic dependency modeling using an example of a three-component 

system recommended by the U.S. NRC [5]. Section 3.1 describes the component properties, system 

configuration, and seismic hazard data. Sections 3.2, 3.3, 3.4, and 3.5, discuss the results of Monte Carlo 

simulation (MCS), Reed-McCann, COREX, and Bayesian network methods, respectively. All the methods are 

implemented using the open-source R programming language [10] on a laptop with an Intel Core i7-12700H 

CPU and 32.00 GB RAM. The source codes are publicly available on GitHub: 

https://github.com/tzhou4/PSAM_seismic.  

 

3.1.  Problem Description 

 

In this study, we establish four cases by varying the system configuration (i.e., series or parallel system) and 

the existence of dependencies (i.e., independent or partial dependent), as shown in Table 1. Specifically, the 

system comprises three safety-related components located in two separate buildings [5]. The components’ 

fragility properties are shown in Table 2, and their dependencies are characterized by the group dependencies 

as displayed in Table 3. Note that the degree of seismic-induced dependencies is varied given the components’ 

type, manufacturer, and location. Interested readers can find more details on the problem setup in Reference 4.  

 

Table 1. Four cases to be considered in the numerical example 

 

 

 

 

 

 

 

 

 

Table 2. Properties of the three components in the system 

 

 

 

 

 

 

 

 

 

Table 3. Common attributes within the group of dependent components 

 

 

 

 

 

 
 

 

This study adopted the seismic hazard data developed for the Eastern United States and fitted to a power 

function of the form: 𝑓(𝑃𝐺𝐴) = 1 × 10−5 ∙ 𝑃𝐺𝐴−1.61. Furthermore, as displayed in Table 4, we divide the 

seismic hazard curve into ten PGA intervals and choose the upper limit of each interval as the reference PGA. 

Depending on the type of seismic dependency method, the ground motion intensity would either need to be 

sampled from each ground motion interval or adjusted to match the reference PGA. Also, the following 

sections examine the results by referring to the impacts of dependencies for either parallel or serial system 

configuration. As all the components are positively correlated, we can establish the criteria [12] for 

examination purposes that the system fragility of Case 2 is always less than Case 1; the system fragility of 

Case 4 is always greater than Case 3.  

 Dependency System Configuration (Failure Logic) Description 

Case 1 
Independent 

Series System (1/3) At least one component fails 

Case 2 Parallel System (3/3) All three components fail 

Case 3 Partial 

Dependent  

Series System (1/3) At least one component fails 

Case 4 Parallel System (3/3) All three components fail 

Component  

Total Variability Unique Variability Median Capacity 

𝜷𝑪𝒊
 𝜷𝑼𝒊

 𝜷𝑹𝒊
 𝜷𝑪𝒊

′  𝜷𝑼𝒊

′  𝜷𝑹𝒊

′  𝑨𝑴𝒊
 

a 0.85 0.60 0.60 0.38 0.28 0.26 0.9g 

b 0.71 0.50 0.50 0.50 0.30 0.40 1.0g 

c 0.72 0.40 0.60 0.44 0.19 0.40 1.1g 

Group 
Components Common Variability Composite Correlation 

𝒊 𝒋 𝜷𝑪𝒊𝒋

∗  𝜷𝑼𝒊𝒋

∗  𝜷𝑹𝒊𝒋

∗  𝝆𝒊𝒋 

1 a b 0.50 0.40 0.30 0.42 

2 a c 0.57 0.35 0.45 0.53 
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Table 4. Seismic hazard data and its discretization in the numerical example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.  Monte Carlo Simulation-Based Results 

 

The MCS method is widely used to propagate uncertainty from ground acceleration capacity and ground 

motion interval to assess the seismic risk in terms of system fragility. The four fundamental steps of the MCS 

method for assessing seismic risk are as follows: 

 

1) Identify the group of components with common sources of randomness and uncertainty. 

2) Generate a sample set of ground motion intensity based on the power function of the seismic hazard curve 

to propagate the uncertainty of the seismic hazard;  

3) Generate a sample set of ground acceleration capacity using the multivariate normal distribution or a more 

generic joint probability distribution using copulas when dependencies exist;  

4) Use the random sample sets of ground motion and ground acceleration capacity to determine the 

component state in accordance with the limit-state function and quantify the system risk in terms of 

conditional failure probability considering the configuration of the system. 

 

In this study, we follow the recommendations from Reference 6 to use the self-normalized importance 

sampling technique to propagate the uncertainty in each ground motion interval and use the Gaussian copula 

to construct a multivariate distribution that characterizes the mutual dependencies among components. Table 

5 displays the results based on the MCS method, which satisfies the criteria as defined in Section 3.1. 

 

Table 5. Results of the Monte Carlo Simulation Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Motion Interval 
PGA Interval (g) 

Reference PGA (g) 
Lower Limit Upper Limit 

PGA-1 0.05 0.25 0.25 

PGA-2 0.25 0.45 0.45 

PGA-3 0.45 0.65 0.65 

PGA-4 0.65 0.85 0.85 

PGA-5 0.85 1.00 1.00 

PGA-6 1.00 1.10 1.10 

PGA-7 1.10 1.20 1.20 

PGA-8 1.20 1.30 1.30 

PGA-9 1.30 1.40 1.40 

PGA-10 1.40 1.50 1.50 

Ground Motion Interval 

Series System Parallel System 

Independent 

(Case 1) 

Dependent 

(Case 2) 

Independent 

(Case 3) 

Dependent 

(Case 4) 

PGA-1 1.59E-02 1.48E-02 1.13E-06 2.36E-05 

PGA-2 2.19E-01 1.89E-01 6.50E-04 3.40E-03 

PGA-3 5.04E-01 4.29E-01 9.67E-03 2.77E-02 

PGA-4 7.20E-01 6.27E-01 4.19E-02 8.50E-02 

PGA-5 8.40E-01 7.49E-01 9.41E-02 1.58E-01 

PGA-6 8.92E-01 8.13E-01 1.43E-01 2.17E-01 

PGA-7 9.22E-01 8.51E-01 1.85E-01 2.65E-01 

PGA-8 9.43E-01 8.80E-01 2.31E-01 3.13E-01 

PGA-9 9.58E-01 9.05E-01 2.77E-01 3.60E-01 

PGA-10 9.70E-01 9.24E-01 3.23E-01 4.05E-01 
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3.3.  Reed-McCann Method-Based Results 

 

The Reed-McCann method was first proposed by Reed et al. [4] and was endorsed by the U.S. NRC [5]. There 

are three main parts for assessing the system's fragility as follows: 

 

1) Determine which components have a common source of uncertainty and randomness. 

2) Generate a sample set of the median capacities, considering the dependencies among uncertainties, for 

instance, by applying the Latin Hypercube Sampling (LHS) method.   

3) Integrate the dependencies among randomness based on a multiple-integration approach to compute the 

system fragility without directly using the correlation.  

 

In this study, we implement the Reed-McCann method as described by the NUREG/CR-7237, and the results 

are shown in Table 6. It is observed that some results in bold red violate the criteria we established in Section 

3.1. This implies that the Reed-McCann technique has certain limitations when accurately assessing the 

contribution from seismic-induced dependencies. This was also demonstrated in the authors’ previous research 

[7, 12] and Segarra et al. [11]. 

 

Table 6. Results of the Reed-McCann method 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

3.4.  COREX Method-Based Results 

 

The COREX method [13] is a hybrid approach that applies simulation-based techniques to derive the CCF 

probabilities at the group level of dependent components and then integrate those CCF probabilities into the 

system-level model for assessing system fragility [6]. The COREX method has four fundamental steps as 

follows:   

 

1) Use simulation-based techniques (i.e., MCS or Reed-McCann method) to calculate the seismic failure 

probabilities of all possible combinations for each group of dependent components. 

2) Formulate a system of equations, i.e., seismic failures probabilities are the dependent variables and       

seismic CCF probabilities are the independent variables;  

3) Solve the system of equations to estimate seismic CCF probabilities of all the possible combinations.  

4) Input the seismic CCF probabilities to the system-level model developed using the CCF module of the 

standard PRA software tools. 

 

In this study, we implement the COREX method using the MCS method, as discussed in Section 3.2 in the 

first step, and the results are displayed in Table 7. It is worthwhile noting that explicitly treating seismic CCF 

probability enables handling the asymmetrical CCF problems, achieving a balance between risk estimation 

accuracy and computational simplicity.  

Ground Motion Interval 

Series System Parallel System 

Independent 

(Case 1) 

Dependent 

(Case 2) 

Independent 

(Case 3) 

Dependent 

(Case 4) 

PGA-1 1.11E-01 1.18E-01 2.08E-02 6.77E-04 

PGA-2 3.84E-01 3.34E-01 3.87E-02 2.08E-02 

PGA-3 6.44E-01 5.30E-01 6.80E-02 7.84E-02 

PGA-4 8.18E-01 6.81E-01 1.21E-01 1.56E-01 

PGA-5 9.00E-01 7.67E-01 1.77E-01 2.17E-01 

PGA-6 9.39E-01 8.12E-01 2.20E-01 2.59E-01 

PGA-7 9.69E-01 8.51E-01 2.67E-01 3.00E-01 

PGA-8 9.93E-01 8.83E-01 3.16E-01 3.41E-01 

PGA-9 1.01E+00 9.10E-01 3.66E-01 3.81E-01 

PGA-10 1.03E+00 9.33E-01 4.16E-01 4.19E-01 
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Table 7. Results of the COREX method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Results of the Bayesian Network Method 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.  Bayesian Network-Based Results 

 

The Bayesian network has been widely used for external hazard risk assessment due to its advantages in 

dependencies modeling. In this study, we implement the Bayesian network-based method, as suggested by 

Segarra et al. [11]. There are four main steps as follows: 

 

1) Establish the network topology to characterize the state of each component. Particularly, the nodes of 

component states depend on a node of ground motion intensity, a node of earthquake of engineering 

significance (EES) event, and nodes of two sources of variability, which are either component-specific or 

common to multiple components. Note that the node of EES events implies that only the ground motion 

beyond a certain intensity of ground motion can have the potential to meaningfully affect the component 

states. 

2) Discretize continuous variables according to the manner of equal probability or equal width. 

3) Use the MCS method to generate the conditional probability tables (CPTs) for the node of component 

states. 

4) Establish the network topology and CPTs to determine the system state according to its system 

configuration and the states of each component.  

 

We use equal-probability discretization and the MCS method, as discussed in Section 3.2, to address the 

uncertainty within each ground motion interval under the power function of the seismic hazard curve. EES 

events happen when the PGA exceeds 0.05g in this numerical example. The results are shown in Table 8, 

where the bold red results violate the criteria discussed in Section 3.1.  

 

Ground Motion Interval 

Series System Parallel System 

Independent 

(Case 1) 

Dependent 

(Case 2) 

Independent 

(Case 3) 

Dependent 

(Case 4) 

PGA-1 1.59E-02 1.48E-02 1.81E-06 1.85E-05 

PGA-2 2.18E-01 1.89E-01 6.09E-04 3.36E-03 

PGA-3 5.05E-01 4.30E-01 9.76E-03 2.90E-02 

PGA-4 7.19E-01 6.27E-01 4.17E-02 9.34E-02 

PGA-5 8.40E-01 7.50E-01 9.42E-02 1.80E-01 

PGA-6 8.93E-01 8.13E-01 1.43E-01 2.56E-01 

PGA-7 9.22E-01 8.51E-01 1.86E-01 3.18E-01 

PGA-8 9.43E-01 8.81E-01 2.32E-01 3.84E-01 

PGA-9 9.59E-01 9.05E-01 2.76E-01 4.50E-01 

PGA-10 9.70E-01 9.24E-01 3.25E-01 5.15E-01 

Ground Motion Interval 

Series System Parallel System 

Independent 

(Case 1) 

Dependent 

(Case 2) 

Independent 

(Case 3) 

Dependent 

(Case 4) 

PGA-1 3.45E-02 5.79E-03 7.85E-07 1.98E-07 

PGA-2 2.44E-01 1.33E-01 5.59E-04 8.26E-04 

PGA-3 5.21E-01 3.83E-01 9.40E-03 1.45E-02 

PGA-4 7.26E-01 6.17E-01 4.11E-02 6.29E-02 

PGA-5 8.40E-01 7.63E-01 9.34E-02 1.39E-01 

PGA-6 8.93E-01 8.35E-01 1.42E-01 2.06E-01 

PGA-7 9.22E-01 8.76E-01 1.85E-01 2.63E-01 

PGA-8 9.44E-01 9.07E-01 2.32E-01 3.20E-01 

PGA-9 9.59E-01 9.30E-01 2.77E-01 3.77E-01 

PGA-10 9.69E-01 9.47E-01 3.19E-01 4.32E-01 
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4.  CONCLUSION 
 

This paper summarized the state-of-the-art methods for dependency modeling and illustrated their application 

using a numerical example of a three-component system. The R programming language was used to develop 

four methods (MCS, Reed-McCann, COREX approaches, and Bayesian network), and the source codes are 

made available to the public on GitHub. The findings showed that Reed-McCann and Bayesian network 

methods fail to accurately capture the effects of dependencies; the level of conservatism varies quite differently 

across the four methods mentioned above. Therefore, it would be insightful to investigate the performance of 

those methods from the perspective of conservatism and precision of estimates. Interested readers will find a 

critical review and benchmark of the four methods in the authors’ recent research [7]. 
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