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Abstract: Condition-Based Maintenance (CBM) involves a continuous oversight and analysis of data from 
sensors to maintain the health and performance of equipment or systems. It aims to enhance operational 
efficiency, reduce downtime, and prevent unexpected failures; thus, playing a crucial role in critical industries, 
particularly in the context of nuclear power plants. To monitoring the power plant in detail, numerous sensors 
are installed leading to a concern on how to maintain these sensor’s reliability over time. Therefore, this paper 
focuses on the validation of sensor measurements. In particular, the sensor signal validation is first identified 
as a nonlinear autoregressive exogenous problem, implying that the model generated value of a signal relies 
on a nonlinear mapping function involving its historical records and external factors. Then, various attention-
based deep learning models are explored, namely, Dual-stage attention-based Recurrent Neural (DA-RNN) 
and Informer model. These models are assessed through a real case study collected from the boiling water 
reactor, encompassing 77 features. Evaluation criteria for the models include the Mean Square Error (MSE), 
providing insights into their effectiveness in signal validation for CBM. All models include an attention 
mechanism which identifies dominant input factors among spatial and/or temporal dimension. The study finds 
that these models yield varied prediction or reconstruction results between different signals. Hypothetically, 
the attention mechanism may unintentionally favor the dominant signal due to high correlations between 
certain signals. 
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1.  INTRODUCTION 
 
Condition-based Maintenance (CBM) is a strategy employed across various industries to minimize failure 
occurrences and costs. CBM comprises four key components: condition monitoring, fault detection, 
diagnostics, and prognostics. During condition monitoring, real-time data is gathered from ambient and/or 
built-in sensors to provide an overview of the process or piece of equipment. This data is analyzed to detect 
faults when parameters exceed set thresholds. If a fault is detected, diagnostics identify its characteristics such 
as location and severity. Prognostics then use the data from the previous stages to predict potential failure 
events, aiding in the creation of a maintenance schedule. This study primarily focuses on the condition 
monitoring and fault detection stages. 
 
Given its distinctive nature, the nuclear industry prioritizes safety intensely. To prevent accidents, both the 
systems and facilities are rigorously monitored and tested. One approach involves the extensive use of sensors. 
In addition to those embedded within the equipment, numerous sensors are installed in the surrounding 
environment. These sensors generate a vast amount of signal data crucial for condition monitoring. However, 
to avoid misleading information and enhance the reliability of the sensor-based approach, it is essential to 
monitor the status of the sensors, particularly to identify any malfunctions. By integrating sensor validation 
into the fault detection process, the Condition-Based Maintenance (CBM) becomes more reliable and 
trustworthy.  
 
This study is a culmination of ongoing efforts that have been informed by a range of past practices, all aimed 
at enhancing the functionality of a toolbox known as PEANO [1]. Initially introduced to the public in 1998 as 
a real-time process signal validation system, PEANO combines fuzzy and possibilistic logic models for 
clustering with Artificial Neural Networks for signal validation. Over time, there have been several endeavours 
to improve the reliability and capability of this system. These efforts include the development of wavelet-based 
denoising filters [2] and the restructuring of the architecture into an ensemble of regression models to address 
large-scale models [3]. As technology has advanced, particularly with the rise of attention-based deep learning 
models following the introduction of Transformer [4], this study seeks to explore the application of this new 
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approach in terms of signal validation and fault detection, in alignment with the ongoing pursuit of refining 
PEANO's capabilities. 
 
Two attention-based deep learning models have been selected for implementation and examination: the Dual-
stage attention-based Recurrent Neural Network (DA-RNN) model [5] and the Informer model  [6]. The Dual-
stage Attention model incorporates two attention mechanisms to extract spatial and temporal properties within 
the input sequence. the Informer model, inspired by the Transformer, uses a self-attention mechanism to 
capture the relevance score of each item. It also introduces a uniform input representation by incorporating 
timestamps into the feature vectors. Both models have demonstrated promising results in handling long 
sequence inputs.  
 
In this work, these two models are implemented and tested on a real dataset collected from a nuclear Boiling 
Water Reactor located in a Scandinavian country. The dataset consists of 77 signals. 
 
Section 2 and Section 3 provide detailed descriptions of the two attention-based deep learning models and their 
implementations on the Boiling Water Reactor dataset. Section 4 presents the conclusions and proposes future 
work. 
 
2.  ATTENTION-BASED DEEP LEARNING MODEL 
 
The attention mechanism was introduced as an improvement to the conventional Encoder-Decoder model. In 
the standard model, only the last stage of the encoder is utilized as input for the decoder. However, as the 
length of the input sequence increases, the Encoder-Decoder model's performance declines, posing a challenge 
for the encoder to retain and deliver all pertinent information to the decoder. The attention method addresses 
this by prioritizing relevant information in the inputs through attention weights. This approach has been 
effectively employed in Sequence-to-Sequence tasks, especially in machine translation. Consequently, 
multiple efforts have aimed to leverage this mechanism in tackling long sequence time-series forecasting or 
prediction. Given that sensor signal data over a monitoring period can be construed as a long sequence time-
series, this study explores promising attention-based neural networks that have demonstrated noteworthy 
performance: Dual-Stage Attention-Based RNN and Informer model. 
 
2.1.  Dual-Stage Attention-Based RNN (DA-RNN) 
 
While attention-based encoder-decoder networks have demonstrated strong performance in tasks such as 
machine translation or image captioning, they have not yielded significant results with time-series data. This 
is primarily due to the complexity of time-series data, which typically contains multiple signal inputs, posing 
a challenge for attention-based models to discern the driving factors necessary for accurate predictions. 
 
To address this challenge, DA-RNN model was introduced. This model incorporates a dual-stage attention 
mechanism inspired by studies on human behavior, which depict a two-phase selective mechanism [7]. In the 
first stage, the model extracts relevant input features' information at each time step by referencing the previous 
encoder hidden state. Subsequently, in the second stage, a temporal attention mechanism selects relevant 
information across all time steps. By employing these two attention mechanisms, the model not only identifies 
pertinent input features but also captures long-term temporal dependencies inherent in time-series data. 
 
2.1.1 Problem Statement 

To best fit the DA-RNN idea, the signal monitoring of this study is conceptualized as a Nonlinear 
Autoregressive Exogenous (NARX) problem. This signifies that the prediction values of a signal are 
determined by its historical data as well as other signal series. Then, the diagnosis of multiple sensor signals 
can be mathematically formed as: 

• The current and past values of 𝑛 driving signals, which don’t include the target signal, are notated as 𝚾 =
(𝒙!, 𝒙", … , 𝒙#)$ = (𝒙!, 𝒙", … , 𝒙%) ∈ ℝ#×%, where 𝑇 is the window size. In which, 

o 𝒙' = (𝑥!' , 𝑥"' , … , 𝑥%') ∈ ℝ%: representing a signal 𝑘 series during the 𝑇 period. 
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o 𝒙( = (𝑥(!, 𝑥(", … , 𝑥(#)$ ∈ 	ℝ#: representing a vector of 𝑛 exogenous input series at time step 𝑡. 

• The previous values of the target signal 𝑦! 	is notated as 𝑦 = (𝑦!, 𝑦", … , 𝑦%)!) with 𝑦" ∈ 	ℝ. 

• The current value of the target signal 𝑦%  is 𝑦.% = 𝐹(𝑦, 𝚾) = 𝐹(𝑦!, … , 𝑦%)!, 𝒙!, 𝒙", … , 𝒙%), where 𝐹(∙)  is a 
nonlinear mapping function. 

 
2.1.2 DA-RNN Methodology 
 

The DA-RNN process model can be depicted as shown in Figure 1, generated based on [5]. It comprises two 
primary blocks: the input attention mechanism, located on the left, responsible for selecting the relevant driving 
series, and the temporal attention mechanism, positioned in the middle, responsible for selecting relevant 
encoder hidden states across different time steps. The LSTM serves as the fundamental block for both the 
encoder and decoder components. 

The attention mechanism for the spatial or temporal context of the DA-RNN model is computed using a 
common formula proposed by [8] to address the information limitation encountered when processing input 
data over extended periods. This formula encompasses three key computational components: 

• Alignment scores 𝑒(' = 𝑎(𝑠()!	, ℎ()!), with 𝒔()! and 𝒉()! being previous cell stage and hidden stage, 
respectively: These scores quantify the alignment between elements of the input series and the current 
output, indicating how well they correspond. 

• Weights 𝛼(' = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒('): These weights are derived by applying the SoftMax function to the 
alignment scores, thereby providing a measure of importance for each element of the input series. 

• Context vector 𝒄( = ∑ 𝛼(+%
+,! 𝒉𝒊, where 𝒉𝒊 is the 𝑖(. encoder hidden state: This vector encapsulates the 

useful information extracted from the input series, incorporating the weighted contributions based on 
the alignment scores. 

Applying the Bahdanau attention mechanism, DA-RNN computes the dual-stage attentions, the special (input) 
attention and the temporal attention, as below: 

• Spatial attention: Given the input data of 𝑘(. signal 𝑥' = (𝑥!' , 𝑥"' , … , 𝑥%')$ ∈ ℝ%, the previous end hidden 
state as 𝒉()! ∈ ℝ/ , and the cell stage as 𝒔()!0 ∈ ℝ/  of the attention, the alignment scores (𝑒(' ), the 
weights (𝛼('), and the context vector or new input (𝒙@() are calculated as: 

o 𝑒(' = 𝒗0$ tanh(𝑾0[𝒉()!; 𝒔()!0 ] + 𝑼0𝒙')) , where 𝒗0 ∈ ℝ% ,𝑾0 ∈ ℝ%×"1, 𝑼0 ∈ ℝ%×%	 are learning 
parameters. 

o 𝛼(' = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒(') 

o 𝒙@( = (𝛼(!𝑥(!, 𝛼("𝑥(", … , 𝛼(#𝑥(#)$ 

Figure 1: Dual-Stage Attention Architecture [5] 
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• Temporal attention: Given the previous decoder hidden state as 𝒅()! ∈ ℝ/ and the cell stage as 𝒔()!2 ∈
ℝ/ of the attention, the alignment scores (𝑙(+), the weights (𝛽(+), and the context vector (𝒄() are calculated 
as: 

o 𝑙(+ = 𝒗2$ 𝑡𝑎𝑛ℎ(𝑾2[𝒅()!; 𝒔()!2 ] + 𝑼2𝒉+)) , where 𝒗2 ∈ ℝ% ,𝑾2 ∈ ℝ%×"1, 𝑼2 ∈ ℝ%×%	 are learning 
parameters.	

o 𝛽(+ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥P𝑙(+Q	

o 𝒄( = ∑ 𝛽(+𝒉+ 	%
+,! 	

Then, the context vector is fed into the decoder block to generate a prediction of the target signal. The output 
is derived as:  

𝑦.( = 𝒗3$P𝑾3[𝒅%; 𝒄%] + 𝒃4Q + 𝑏5, 
	
where [𝒅%; 𝒄%] ∈ ℝ/×1 is the concatenation of the decoder hidden state and the context vector.	
 
2.2.  Informer 

Informer, a Transformer-based model, is another proposed model to tackle the unsatisfactory performance 
when dealing with long sequence time-series data. Transformer is a model that was introduced in 2017 by 
Google Brain [4]. It has an encoder-decoder architecture comprising of multiple layers of self-attention and 
feedforward neural network. Employing a self-attention mechanism on the input tokens enables the model to 
prioritize the most relevant aspects of the input data for the given task. Since its inception, it has demonstrated 
remarkable proficiency in capturing extensive dependencies compared to recurrent-based models, particularly 
in domains like natural language processing and image processing [9]. However, when dealing with long 
sequence time-series data, it exhibits several challenges in terms of efficiency, including quadratic time 
complexity and substantial memory usage. To mitigate these items, Informer introduces three key 
enhancements: (1) ProbSparse self-attention mechanism, (2) self-attention distillation, and (3) generative-style 
decoder. 
 
2.2.1 Problem Statement 

The signal diagnosis is defined as a Long Sequence Time-series Forecasting (LSTF) problem, which refers to 
the task of predicting future values or trends in a time series dataset over a long period of time. It is noticeable 
that LSTF’s feature dimension is not limited to univariate case. Mathematically, the input (𝑋() and output (𝑌() 
are formulated as: 

• 𝑋( = V𝑥!( , 𝑥"( , … , 𝑥6!
( W𝑥+( ∈ ℝ2!X with 𝐿7and 𝑑7  being the window size and the dimension of the input, 

respectively. 
• 𝒀𝒕 = \𝒚𝟏𝒕 , 𝒚𝟐𝒕 , … , 𝒚𝑳𝒚

𝒕 ^𝒚𝒊𝒕 ∈ ℝ𝒅𝒚_  with 𝑳𝒚  and 𝒅𝒚𝒅𝒚  being the window size and the dimension of the 
output, respectively and 𝒅𝒚 ≥ 𝟏. 
 

2.2.2 Informer Methodology 

ProbSparse Self-attention:  

The canonical self-attention mechanism, first described in [4], undertakes a series of linear transformations to 
map the input sequence into three distinct vectors, denoted as query (𝑸), key (𝑲), and value (𝑽). Subsequently, 
the attention mechanism weights the values based on the similarity between the query and key vectors. Then, 
the summation of the weights and the original input sequence are forwarded to a feed-forward neural network 
to generate the output. enables the model to selectively attend to pertinent features and discern long-range 
dependencies within the data. This approach enables the model to selectively attend to the relevant information 
as well as capture the long-range dependencies. The canonical self-attention is calculated by using the scaled 
dot-product and formulated as: 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 f(𝑸𝑲$)/√𝑑i𝑽,  where 𝑸 ∈ ℝ6#×2 , 𝑲 ∈ ℝ6$×2 , 
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𝑽 ∈ ℝ6%×2, and 𝑑 is the input dimension. The !
√2

 is the scaling factor to avoid the vanishing gradients problem 
happening when the dot product magnitude grow large with the large input dimension 𝑑. 

Although the scaled dot product attention mechanism enables simultaneous processing of the entire set of 
queries, the quadratic computational complexity and 𝒪P𝐿?𝐿@Q memory usage with respect to the sequence 
length makes self-attention inefficient for processing very long sequences. To improve the efficiency, Informer 
proposes an enhanced self-attention mechanism, named ProbSparse self-attention which utilizes the sparsity 
of self-attention probability distribution and an empirical approximation. In ProbSparse self-attention, the 
query vector (𝑸) is alternated by a sparse matrix (𝑸k) which contains only the top queries under the sparsity 

max-mean measurement 𝑀k(𝒒,𝑲) . In the max-mean measurement, the Log-Sum-Exp nln∑ e
&'()

*

√,6$
A)! q 

component is replaced by a max-mean item rmax
A
u
B'')

*

√2
vw to avoid the numerical stability issue and the quadratic 

computation when calculating the dot product in the traditional sparse measurement. These formulas are: 

𝑀k(𝒒+ , 𝑲) = max
A
u
𝒒'𝒌)

*

√2
v − f !

6$
i∑

𝒒'𝒌)
*

√2
6(
A , with the 𝑖-th query 𝒒+ ∈ ℝ2 and 𝒌A ∈ ℝ2 

𝑃𝑟𝑜𝑏𝑆𝑝𝑎𝑟𝑠𝑒	𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸k,𝑲, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ~
𝑸k𝑲$

√𝑑
�𝑽 

The max-operator in 𝑀k(𝒒+ , 𝑲) is less sensitive to the zeros therefore it is more numerical stable than Log-Sum-
Exp operator. When the length of queries and keys are equivalent, then the total complexity of time and space 
are reduced to 𝒪(𝐿	ln𝐿) with 𝐿 = 𝐿@ = 𝐿?. 

Self-attention Distilling: 

To reduce the memory bottleneck when stacking multiple encoder or decoder blocks in dealing with long 
sequence inputs, Informer introduces the self-attention distilling mechanism which is inspired by the dilated 
convolution concept. The values forwarding from 𝑗-th layer to (𝑗 + 1)-th block is distilled as follow: 

𝜲AE!( = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 ~𝐸𝐿𝑈 r𝐶𝑜𝑛𝑣1𝑑 f�	𝜲A(�Fiw�, 

Where [	∙]F  presents an encoder/decoder block; 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(∙)  is used for down-sampling 𝚾G  by half by 
configuring stride as 2; 𝐸𝐿𝑈(∙) is an activation function; and 𝐶𝑜𝑛𝑣1𝑑(∙) is a 1-D convolutional filters with 
kernel width being 3.  

Moreover, two additional steps are added to make the distilling process more robustness, which are replication 
of the main stack with half of the input and reduction of the distilling layers one at a time. Before outputting, 
all the stack’s feature maps are concatenated to make a feature map. This process extracts the dominating 
attention; consequently, the network size or total space complexity is reduced significantly to 𝒪P(2 − 𝜖)𝐿 log 𝐿Q. 

Generative Style Decoder: 

The Informer decoder shares the same structure as the vanilla Transformer. It consists of a stack of two multi-
head attention layers However, it deviates from the conventional approach by incorporating the previous 
period's input values concatenated with the target sequence instead of solely relying on previously generated 
outputs. Formally, this concatenation is expressed as follows: 

𝚾20HI20JG = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒(𝚾(I'0#G , 𝚾KG ), 

where 𝚾(I'0#G ∈ ℝ6-.(/0×21.,/2 represents a sequence of length 𝐿(I'0# in the input and 𝚾KG ∈ ℝ63×21.,/2 denotes 
the target values, encompassing timestamp and contextual information.  
 
The targets are padded into zeros. The decoder processes the inputs by only one feed forward procedure instead 
of using a step-by-step approach named “dynamic decoding”. The adoption of a generative-style decoder 
serves to mitigate the computational slowdown associated with long-range predictions. 
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3.  APPLICATION 
 
3.1.  Dataset 
 
The dataset utilized in this experiment was sourced from a heat balance system of a 1200 MWth boiling water 
reactor (BWR) situated in Scandinavia. The measurements within the dataset pertain to a well-instrumented, 
albeit limited, segment of the process. The heat balance system, integral for verifying and monitoring the 
overall performance of the plant, undergoes regular calibration. 
 
The dataset includes 77 measurement signals recorded at 10-minute intervals and covers operational states 
such as start-up, shut-down, and full power. Notably, most of the data corresponds to the full power state, 
resulting in an underrepresentation of transient situations, which could affect model performance for those 
process states. Additionally, the dataset does not include a coast-down period, a significant phase of the normal 
fuel cycle preceding a refuelling outage. Nevertheless, this omission is not critical for evaluating the 
performance of the model structures proposed in this study. 
 
3.2.  Implementation 
 
In this study, each model undergoes two phases: training and testing, ensuring effective and reliable evaluation 
of the attention-based model's performance. Data is partitioned chronologically to maintain crucial temporal 
dependencies for effective learning. The training phase utilizes a dataset spanning 7.5 months of normal plant 
operation, from late May to mid-January, capturing diverse seasonal variations. Specifically, 80% of this 
timeframe is dedicated to training, while the remaining 20% is allocated for validation and testing. During the 
testing phase, three distinct test sets are utilized, each comprising data from periods before, during, and after 
the training period. These test sets contain data not included in the training phase, ensuring unbiased evaluation. 
Additional details are available in Figure 2. 

 
Figure 2: Overview of Dataset Allocation for Training and Testing Phrase 

Following partitioning, each subset undergoes preprocessing steps to ensure data quality and compatibility 
with the models. The primary techniques include normalization using the standardization scaler and data 
cleaning to address missing values, applied uniformly across both models. Additionally, special care is taken 
in handling time-series features, ensuring extraction of meaningful patterns tailored for each model's 
requirements. For the DA-RNN model, data ordering is utilized to extract temporal characteristics. Meanwhile, 
for the Informer model, a time features vector is generated from timestamps, incorporating both local 
embedding (data ordering) and global embeddings (Minutes, Hours, Month, and Year) to enhance temporal 
understanding and feature representation. 
 
Both models have similar general hyperparameters. Theses configurations, presented in Table 1, include the 
number of epochs, loss function, learning rate, window size, and predicted size. The learning rate is reduced 
by a factor of 10, when a metric has stopped improving. The models’ architecture setups are kept as the default. 
 

Table 1: Models Hyperparameters 

Hyperparameters Value 
Number of Epoch 100 
Loss function Mean Squared Error 
Initial Learning Rate 0.001 
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Learning Rate Schedule ReduceLROnPlateau 
Window Size 20 samples 
Predicted Size 1 sample 

 
3.3.  Result and Discussion 
 
In the training phrase, the performance of DA-RNN and Informer model are suboptimal, as indicated by a 
relatively high MSE of 0.02 and 0.06, respectively. While the models capture some trends in the data, it 
struggles to accurately forecast future values, leading to errors.  
 
During the testing phase with untrained data, the results exhibit similar trends to those observed during the 
training stage. The DA-RNN model consistently produces superior predictions, especially in Test set 1 and 
Test set 3. These models demonstrate enhanced performance on test sets that contain data points overlapping 
with the training set in terms of time properties (such as day and month), which explains the higher 
performance in Test set 1 and Test set 3. However, because Test set 2 data was excluded from the training set, 
the models were not trained on these specific time periods and seasonal conditions, resulting in lower 
performance on Test set 2.  
 
Besides the overall analysis on the models’ performances, individual signals’ predictions on the three test sets 
are reviewed. It is noticeable that there are multiple signals having good results in both models with MSE 
being less than 10)L or 10)M. An example of the signal number 4 is presented in Figure 3. 
 

 
Figure 3: The predictions of signal number 4 in three test sets with both model architectures. 

The dataset in both phases contains multiple redundant signals due to the nature of the nuclear power plant, 
which employs various sensors performing identical functions. These sensors generally yield better prediction 
results. The attention mechanism prioritizes specific features according to their relevance in the current 
context. Consequently, if an excessive number of signals exhibit the same values and trends, it can overwhelm 
the weight matrix. 
 
4.  CONCLUSION 
 
The research investigates the feasibility of employing attention-based deep learning models, specifically the 
DA-RNN and Informer models, for CBM in nuclear power plants. A dataset obtained from a boiling water 
reactor is utilized to evaluate the models' performance, focusing on their capacity to validate sensor signals 
effectively. 
 
The analysis reveals diverse prediction or reconstruction outcomes across different signals, potentially 
attributed to the inadvertent emphasis on dominant signals by the attention mechanism or strong correlations 
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between certain signals. This observation is underscored by the relatively high Mean Square Errors (MSEs) of 
0.02 and 0.06 recorded during the training phase. Nonetheless, several individual signal predictions 
demonstrate satisfactory results in both models, with MSE values falling below 10)L or 10)M. 
 
In summary, while attention-based deep learning models hold potential for sensor signal validation in CBM 
for nuclear power plants, challenges such as managing high signal correlations and addressing the influence 
of redundant signals on the attention mechanism need to be addressed. Further research is essential to refine 
these models and enhance their predictive accuracy, ensuring robust, reliable and safe CBM implementations 
in nuclear power plant operations. 
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