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Abstract: In a probabilistic safety assessment (PSA), the core damage frequency (CDF) is estimated by 

calculating the minimal cut sets (MCSs) of the noncoherent core-damage fault tree. Because of the 

computational difficulty in obtaining an accurate solution of noncoherent accident sequence logics, delete-

term approximation (DTA) is employed to approximately solve MCSs representing accident sequence logics 

from noncoherent core-damage fault trees. However, DTA leads to an overestimation of CDF for fault trees 

containing many nonrare events and complemented gates. To minimize this CDF overestimation, this study 

introduces a hybrid method of the accurate and approximate solutions and it was implemented into a new tool 

ZEBRA (ZTDD Equation Based Risk Analyzer) that is based on zero-suppressed ternary decision diagram 

(ZTDD) algorithm. 

  

Keywords: Probabilistic safety assessment, Delete-term approximation, Zero-suppressed ternary decision 
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1. INTRODUCTION 
 

In a probabilistic safety assessment (PSA), the core damage frequency (CDF) is estimated by calculating the 

minimal cut sets (MCSs) of the core-damage fault trees. Delete-term approximation (DTA) [1,2] is commonly 

employed to approximately solve MCSs representing accident sequence logics that are inherently from 

noncoherent fault trees. However, DTA results in an overestimation of CDF, particularly when fault trees 

contain many nonrare events and complemented gates. To minimize this CDF overestimation caused by DTA, 

this paper presents a hybrid method of the accurate and approximate solutions, and its implementation to a 

new tool ZEBRA (ZTDD Equation Based Risk Analyzer) that is based on zero-suppressed ternary decision 

diagram (ZTDD) algorithm [1,2] (see Section 4). Furthermore, the efficiency of the proposed method was 

demonstrated by performing benchmark tests (see Section 5). 

 

The PSA of nuclear power plants is performed using event and fault trees. Each accident sequence in event 

trees comprises a logical combination of usual and complemented fault trees representing safety system 

failures and successes, respectively. Because the general Boolean expression for an accident scenario 

𝐺𝑖𝐺𝑖+1 …/𝐺𝑗/𝐺𝑗+1 … is identical to 𝐺𝑖𝐺𝑖+1 …/(𝐺𝑗 + 𝐺𝑗+1 + ⋯), it can be expressed as 𝐺1/𝐺2, where 𝐺1 =

𝐺𝑖𝐺𝑖+1 …  and 𝐺2 = 𝐺𝑗 + 𝐺𝑗+1 + ⋯ . Eq. (1) represents a typical accident sequence, and accurate or 

approximate solutions will be explained using Eq. (1). Here, /𝐺2 is a Boolean complement (BC) of 𝐺2, 𝐺1/𝐺2  
denotes AND Boolean combination of 𝐺1 and /𝐺2, 𝑎𝑏 denotes AND Boolean combination of basic events 𝑎 

and 𝑏, and 𝑎𝑏 + 𝑏𝑐 + 𝑏𝑒 denotes OR Boolean combination of 𝑎𝑏, 𝑏𝑐, and 𝑏𝑒. 

 
𝐺1/𝐺2 

𝐺1 = 𝑎𝑏 + 𝑏𝑐 + 𝑏𝑒 
𝐺2 = 𝑏𝑐 + 𝑏𝑑 

(1) 

 

2. VARIOUS METHODS TO SOLVE 𝑮𝟏/𝑮𝟐  
 

2.1 Accurate solution by Boolean complement 
By using the traditional Boolean algebra in Eqs. (2) and (3), the solution of /𝐺2 and an accurate solution of  

𝐺1/𝐺2  can be calculated. However, it is well known that the Boolean complement of 𝐺2  frequently fails 

because it generates many solutions and rapidly consumes a limited computational memory. Thus, this Boolean 

complement is practically impossible for an actual PSA. 
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𝐺1/𝐺2 = 𝐺1 ∙ 𝐵𝐶(𝐺2) (2) 

𝐵𝐶(𝐺2) =/(𝑏𝑐 + 𝑏𝑑) = (/𝑏 +/𝑐)(/𝑏 +/𝑑) =/𝑏 +/𝑐/𝑑 
𝐺1 ∙ 𝐵𝐶(𝐺2) = (𝑎𝑏 + 𝑏𝑐 + 𝑏𝑒) ∙ 𝐵𝐶(𝑏𝑐 + 𝑏𝑑) = (𝑎𝑏 + 𝑏𝑐 + 𝑏𝑒)(/𝑏 +/𝑐/𝑑)

= 𝑎𝑏/𝑐/𝑑 + 𝑏/𝑐/𝑑𝑒 
(3) 

 

As an alternative of the traditional Boolean algebra, a solution of a binary decision diagram (BDD) [3-13] for 

𝐺1/𝐺2 can be directly calculated from the fault tree in Eq. (1) using the BDD algorithm [5-7], and the accurate 

probability 𝑝(𝐺1/𝐺2) is calculated with this BDD. However, the BDD calculation from the fault tree also 

frequently fails for large fault trees in PSA. 

 

2.2 Approximate solution by DTA  
 

In the current PSA for the risk analysis of a nuclear power plant, the MCSs of 𝐺1  and 𝐺2  are separately 

generated using traditional Boolean algebra [14] or the zero-suppressed binary decision diagram (ZBDD) 

algorithm [15-17]. Then, approximate MCSs of 𝐺1/𝐺2 are generated using DTA, which compares the MCSs 

of 𝐺1 and 𝐺2 and deletes some nonlogical MCSs of 𝐺1as shown in Eq. (5). However, CDF overestimation is 

inevitable. It can be confirmed by comparing the solutions of Eqs. (3) and (5). If the event probabilities are not 

small, the probability of 𝑎𝑏 + 𝑏𝑒 is much higher that of 𝑎𝑏/𝑐/𝑑 + 𝑏/𝑐/𝑑𝑒. 

 

𝐺1/𝐺2 ≅ 𝐷𝑇𝐴(𝐺1, 𝐺2) (4) 

𝑇𝑂𝑃 ≅ 𝐷𝑇𝐴(𝑎𝑏 + 𝑏𝑐 + 𝑏𝑒, 𝑏𝑐 + 𝑏𝑑) =  𝑎𝑏 + 𝑏𝑒 (5) 

 

3. PROPOSED METHOD TO SOLVE 𝑮𝟏/𝑮𝟐  
 

3.1 Accurate solution by combining DTA and BC 
 

As shown in Eqs. (6) and (7), the accurate solution that is identical to that of Eq. (3) can be obtained more 

quickly by combining Eqs. (2) and (4). However, it is still a difficult calculation because the Boolean 

complement of 𝐺2 frequently fails. 

 

𝐺1/𝐺2  = 𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝐺2) (6) 

𝐷𝑇𝐴(𝐺1, 𝐺2) = 𝑎𝑏 + 𝑏𝑒 
𝐵𝐶(𝑏𝑐 + 𝑏𝑑) =/𝑏 +/𝑐/𝑑 

𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝐺2) =  (𝑎𝑏 + 𝑏𝑒)(/𝑏 +/𝑐/𝑑) = 𝑎𝑏/𝑐/𝑑 + 𝑏/𝑐/𝑑𝑒 
(7) 

 

3.2 Approximate solution by combining DTA and BC with truncation 
 

To minimize the CDF overestimation by DTA and overcome the difficulty in accurate solution calculation, the 

use of the Boolean complement of truncated 𝐺2 is proposed in this study. As shown in Eqs. (8) and (9), 

𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) is employed instead of 𝐵𝐶(𝐺2).  

 

𝐺1/𝐺2  ≅ 𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) (8) 

𝐷𝑇𝐴(𝐺1, 𝐺2) = 𝑎𝑏 + 𝑏𝑒 
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2 = 𝑏𝑐 𝑤ℎ𝑒𝑛 𝑝(𝑏𝑐) > 𝑝(𝑏𝑑) 

𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) =/(𝑏𝑐) =/𝑏 +/c 
𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) = (𝑎𝑏 + 𝑏𝑒)(/𝑏 +/c) = 𝑎𝑏/c + 𝑏/c𝑒 

(9) 

 

The inequalities of the probabilities of Eqs. (2)–(9) can be expressed as Eq. (10). The probability of 

𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) is very close to that of 𝐺1/𝐺2. 

 

𝑝(𝐺1/𝐺2) ≤  𝑝(𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2)) ≤ 𝑝(𝐷𝑇𝐴(𝐺1, 𝐺2)) (10) 
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4. ZTDD ALGORITHM  
 

The new ZTDD algorithm, which was developed recently [1,2], can optionally generate the accurate or 

approximate solution from 𝐺1/𝐺2 by DTA. The proposed method described in Section 3.2 was implemented 

into a new tool ZEBRA that is based on the ZTDD algorithm as described below. Note that the MCSs of  𝐺2 

are truncated with an elevated truncation limit right before the Boolean complement of 𝐺2  to avoid the 

calculation difficulty of the Boolean complement of 𝐺2. 

 

(Step 1) Generate the MCSs of 𝐺1 and 𝐺2 with a given truncation limit such as 1.0 × 10−11. 

(Step 2) Perform the DTA as 𝐷𝑇𝐴(𝐺1, 𝐺2) with the MCSs generated in Step 1. 

(Step 3) Truncate the MCSs of 𝐺2 with an elevated truncation limit such as 1.0 × 10−6. 

(Step 4) Perform the Boolean complement as 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2). 

(Step 5) Combine two Boolean solutions as 𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2). 

 

4.1 ZTDD structure 
 

ZTDD is newly defined for encoding the factorized MCSs or prime implicants (PIs) that have complemented 

basic events. ZTDD has a Boolean structure that comprises recursively connected if-then-else connectives 

(ITEs) that have three terms of 𝐿, 𝑅, and 𝑁 as given by Eq. (11). ZTDD encodes the Boolean equation 𝑥𝐿 +
/𝑥𝑅 + 𝑁 into three Boolean equations as 𝑥𝐿, /𝑥𝑅, and 𝑁, where 𝐿, 𝑅, and 𝑁 are child ZTDDs. The ZTDD 

can be interpreted as a factorized form of MCSs or PIs. 

 

𝑥𝐿 +/𝑥𝑅 + 𝑁 = < 𝑥, 𝐿, 𝑅, 𝑁 >  (11) 

 

The ZTDD in Eq. (11) can be encoded into BDD using Eq. (12) or converted into two connected ZBDDs by 

employing Eq. (13). Clearly, the ZTDD in Eq. (11) is much more intuitive and simpler than the BDD and 

ZBDD in Eqs. (12) and (13), respectively. 

 

𝑥𝐿 +/𝑥𝑅 + 𝑁 = 𝑥𝐿 +/𝑥𝑅 + (𝑥 +/𝑥)𝑁 =< 𝑥, 𝐿 + 𝑁, 𝑅 + 𝑁 >𝐵𝐷𝐷  (12) 

𝑥𝐿 +/𝑥𝑅 + 𝑁 =< 𝑥, 𝐿, </𝑥, 𝑅, 𝑁 >>𝑍𝐵𝐷𝐷 (13) 

 

4.2 ZTDD algorithm 
 

To solve a fault tree in a bottom-up way, two ZTDDs need to be combined in a logical manner. In this study, 

a set of ZTDD formulae was developed for combining two ZTDDs, as given by Eq. (14). If 𝑥 and 𝑦 are two 

variables with a given variable ordering 𝑥 < 𝑦, 𝑥 is located at a higher position in ZTDD than 𝑦. Thereafter, 

the ZTDD combining operation with 𝐺(𝑥) =< 𝑥, 𝐿1, 𝑅1, 𝑁1 > and 𝐻(𝑦) =< 𝑦, 𝐿2, 𝑅2, 𝑁2 >  is recursively 

performed from top to bottom ITEs following Eq. (14). Thus, a coherent or noncoherent fault tree can be solved 

in a bottom-up way using Eq. (14). 

 

𝐺(𝑥)  ⋅  𝐻(𝑥) = < 𝑥, (𝐿1𝐿2 + 𝐿1𝑁2 + 𝑁1𝐿2), (𝑅1𝑅2 + 𝑅1𝑁2 + 𝑁1𝑅2), 𝑁1𝑁2 > 
𝐺(𝑥) + 𝐻(𝑥) =< 𝑥, (𝐿1 + 𝐿2), (𝑅1 + 𝑅2), (𝑁1 + 𝑁2) >  

𝐺(𝑥)  ⋅  𝐻(𝑦) =< 𝑥, 𝐿1𝐻, 𝑅1𝐻, 𝑁1𝐻 > 
𝐺(𝑥) + 𝐻(𝑦) =< 𝑥, 𝐿1, 𝑅1, (𝑁1 + 𝐻) > 

(14) 

 

4.3 ZTDD for DTA 
 

When a fault tree is solved in a bottom-up way using Eq. (14), nonminimal solutions (subsets) are introduced 

in ZTDD, and they need to be deleted. These nonminimal solutions exist in the 𝐿 and 𝑅 of < 𝛼, 𝐿, 𝑅, 𝑁 > 

because ZTDD is 𝛼𝐿 +/𝛼𝑅 + 𝑁 . The subsets in 𝐿  and 𝑅  are deleted by the 𝑆𝑢𝑏𝑠𝑢𝑚𝑒(𝐿, 𝑁)  and 

𝑆𝑢𝑏𝑠𝑢𝑚𝑒(𝑅, 𝑁) operations in Eq. (15) if their minimal solutions (supersets) exist in 𝑁. The term 𝐿1\(𝐿2 or 

𝑁2) signifies that each solution in 𝐿1 is tested and deleted if 𝐿2 or 𝑁2 has a superset. 

  



17th International Conference on Probabilistic Safety Assessment and Management & 

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

 

𝑆𝑢𝑏𝑠𝑢𝑚𝑒(𝐺, 𝐻) = 𝐺\𝐻 = {

𝐺\𝑁2 , 𝑥 > 𝑦
< 𝑥, 𝐿1\𝐻, 𝑅1\𝐻, 𝑁1\𝐻 > , 𝑥 < 𝑦

< 𝑥, 𝐿1\(𝐿2 or 𝑁2), 𝑅1\(𝑅2 or 𝑁2), 𝑁1\𝑁2 > , 𝑥 = 𝑦
 

𝐺(𝑥) =< 𝑥, 𝐿1, 𝑅1, 𝑁1 > = 𝑥𝐿1 +/𝑥𝑅1 + 𝑁1 
𝐻(𝑦) =< 𝑦, 𝐿2, 𝑅2, 𝑁2 >= 𝑦𝐿2 +/𝑦𝑅2 + 𝑁2 

(15) 

 
To calculate the approximate solutions of 𝐺1/𝐺2, DTA is employed. It is accomplished via the subsuming 

operation given by Eq. (16). 

 

𝐺1/𝐺2 ≈ 𝐷𝑒𝑙𝑡𝑒𝑟𝑚(𝐺1, 𝐺2) = 𝑆𝑢𝑏𝑠𝑢𝑚𝑒(𝐺1, 𝐺2) (16) 

 

4.4 ZTDD for Boolean complement 
 

Various Boolean complements of ZTDD are listed in Table 1. Here, the Boolean complements /(𝑥𝐿) =/𝑥 +
𝑥/𝐿  and /(/𝑥𝑅) = 𝑥 +/𝑥/𝑅  are applied instead of /(𝑥𝐿) =/𝑥 +/𝐿  and /(/𝑥𝑅) = 𝑥 +/𝑅  to maintain 

disjoint solutions as much as possible. To calculate the accurate solutions of 𝐺1/𝐺2 , the ZTDD of 𝐺2  is 

complemented into /𝐺2 using the Boolean complements in Table 1 and the two ZTDDs of 𝐺1 and /𝐺2 are 

combined (see Section 3.2). 

Table 1. Boolean complements of ZTDDs 

Boolean complement Derivation 

/< 𝑥, 𝐿, 𝑅, 𝑁 >=< 𝑥,/𝐿/𝑁,/𝑅/𝑁, 0 > /(𝑥𝐿 +/𝑥𝑅 + 𝑁) = (/𝑥 + 𝑥/𝐿)(𝑥 +/𝑥/𝑅)/𝑁 = 𝑥/𝐿/𝑁 +/𝑥/𝑅/𝑁 

/< 𝑥, 𝐿, 0, 𝑁 >=< 𝑥, 0,/𝑁,/𝐿/𝑁 > 𝑥/𝐿/𝑁 +/𝑥/𝑁 = 𝑥/𝐿/𝑁 +/𝑥(/𝑁 +/𝐿/𝑁) =/𝑥/𝑁 +/𝐿/𝑁 

/< 𝑥, 0, 𝑅, 𝑁 >=< 𝑥,/𝑁, 0,/𝐿/𝑅 > 𝑥/𝑁 +/𝑥/𝑅/𝑁 = 𝑥(/𝑁 +/𝑅/𝑁) +/𝑥/𝑅/𝑁 = 𝑥/𝑁 +/𝐿/𝑅 

/< 𝑥, 𝐿, 0, 0 >=< 𝑥, 0,1,/𝐿 > 𝑥/𝐿 +/𝑥 = 𝑥/𝐿 +/𝑥(1 +/𝐿) =/𝑥 +/𝐿 

/< 𝑥, 0, 𝑅, 0 >=< 𝑥, 1,0,/𝑅 > 𝑥 +/𝑥/𝑅 = 𝑥(1 +/𝑅) +/𝑥/𝑅 = 𝑥 +/𝑅 

 

4.5 ZTDD probability calculation 
 

First, the sum of PI probabilities is calculated by recursively calculating the probability given by Eq. (17) from 

the bottom to the top of the ZTDD. 

𝑝(𝑓) = 𝑝𝑥 × 𝑝(𝐿) + (1 − 𝑝𝑥) × 𝑝(𝑅) + 𝑝(𝑁) (17) 

 
Second, the min cut upper bound (MCUB) probability of PIs can be optionally calculated by navigating all 

minimal solutions in the ZTDD. Finally, the exact probability can be calculated from BDD by converting the 

ZTDD into BDD if necessary. 

 

5. BENCHMARK TESTS 
 

The CDF calculation practice in PSA is depicted in Fig. 1, and the advanced CDF calculation method [18] for 

seismic PSA is explained in Fig. 2. This advanced CDF calculation method in Fig. 2 was developed in order 

to avoid CDF overestimation. However, although MCSs are converted into a BDD and more accurate 

probability is calculated by using the BDD, the calculated CDF is still overestimated when MCSs for 𝐺1/𝐺2 

are calculated by DTA. 
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Fig 1. Traditional CDF calculation in PSA[18] 

 

 

 
 

Fig 2. Advanced CDF calculation in seismic PSA[18] 
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To demonstrate the strength of the proposed method, benchmark tests were performed using a seismic multi-

unit PSA model in Table 2, and the calculation results are summarized in Tables 3 and 4.  

 

Table 2. Seismic multi-unit PSA model 

Number of events  18,094 

Number of complemented events 0 

Number of gates  67,131 

Number of complemented gates 195 

Number of initiators 1 

 

 

Table 3. Calculation 1 (Truncation limit = 𝟏. 𝟎 × 𝟏𝟎−𝟏𝟏) 

See Figs. 1 and 2 𝐷𝑇𝐴(𝐺1, 𝐺2) 
𝐷𝑇𝐴(𝐺1, 𝐺2)

∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2(a)) 

MCSs  18,783 15,658 

∑ 𝑝(𝑁𝑖) (1 − (1 − 𝑝(𝑆𝑖1))(1 − 𝑝(𝑆𝑖2))) 4.518E-06  2.494E-06  

∑ 𝑝(𝑁𝑖) × 𝑝(𝑆𝑖1) 4.097E-06 (b) 2.494E-06 (c) 

∑ 𝑝(𝑁𝑖)  × 𝑝(𝑆𝑖2) 5.353E-07 0.000E+00 

∑ 𝑝(𝑁𝑖) × 𝑀𝐶𝑈𝐵(𝐶𝑖1,  𝐶𝑖2,  … ) 8.759E-06 5.695E-06 

𝑀𝐶𝑈𝐵(𝐶1, 𝐶2, … ) 1.167E-05 6.749E-06 

(a) Truncation limit = 1.0 × 10−5 is applied to 𝐺2, and 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) was calculated. 

(b) Top 3,000 MCSs are converted into a BDD. 

(c) Top 20,000 MCSs are converted into a BDD. 

 

Table 4. Calculation 2 (Truncation limit = 𝟏. 𝟎 × 𝟏𝟎−𝟏𝟐 for G1 and G2) 

See Figs. 1 and 2 𝐷𝑇𝐴(𝐺1, 𝐺2) 
𝐷𝑇𝐴(𝐺1, 𝐺2)

∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2 (a)) 

MCSs  85,133 72,754 

∑ 𝑝(𝑁𝑖) (1 − (1 − 𝑝(𝑆𝑖1))(1 − 𝑝(𝑆𝑖2))) 4.667E-06 2.611E-06 

∑ 𝑝(𝑁𝑖)𝑝(𝑆𝑖1) 4.097E-06 (b) 2.497E-06 (c) 

∑ 𝑝(𝑁𝑖)𝑝(𝑆𝑖2) 7.244E-07 1.316E-07 

∑ 𝑝(𝑁𝑖) × 𝑀𝐶𝑈𝐵(𝐶𝑖1,  𝐶𝑖2,  … ) 8.865E-06 5.813E-06 

𝑀𝐶𝑈𝐵(𝐶1, 𝐶2, … ) 1.187E-05 6.917E-06 

(a) Truncation limit = 1.0 × 10−5 is applied to 𝐺2, and 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) was calculated. 

(b) Top 3,000 MCSs are converted into a BDD. 

(c) Top 20,000 MCSs are converted into a BDD. 
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6. CONCLUSIONS 
 

This study introduces a hybrid method of the accurate and approximate solutions for obtaining more accurate 

solution for noncoherent accident sequence logics, which was implemented into a new tool ZEBRA that is 

based on the ZTDD algorithm. To validate the strength of the proposed method, benchmark tests were 

performed with a seismic multi-unit PSA model. The conclusions of this study can be summarized as follows: 

 

1. The Boolean complement of 𝐺2 should be performed for calculating the accurate solution of 𝐺1/𝐺2 

by 𝐺1 ∙ 𝐵𝐶(𝐺2). However, as the size of the Boolean complement of 𝐺2 is always very large, the 

accurate solution of 𝐺1/𝐺2 cannot be produced owing to the computational calculation difficulty.  

2. In actual PSAs, instead of the accurate solution of 𝐺1/𝐺2 , the approximate solution of 𝐺1/𝐺2  is 

calculated by 𝐷𝑇𝐴(𝐺1, 𝐺2)  to avoid the calculation difficulty of the accurate solution. This 

𝐷𝑇𝐴(𝐺1, 𝐺2)  calculation is employed in all PSAs. However, 𝐷𝑇𝐴(𝐺1, 𝐺2)  leads to CDF 

overestimation, and this overestimation is proportional to the number of nonrare events and 

complemented gates. 

3. In actual PSA, to minimize this CDF overestimation, 𝐷𝑇𝐴(𝐺1, 𝐺2) is converted into a BDD, and then 

CDF is calculated using this BDD. However, even if 𝐷𝑇𝐴(𝐺1, 𝐺2) is converted into a BDD, there is 

a limitation in minimizing CDF overestimation because the complemented terms from 𝐵𝐶(𝐺2) do not 

exist in 𝐷𝑇𝐴(𝐺1, 𝐺2). 

4. In this study, a hybrid method of the accurate and approximate solutions of 𝐺1/𝐺2 is proposed to 

minimize CDF overestimation and calculate more accurate CDF.  

5. The efficiency and strength of the proposed method are validated by benchmark tests. The 

implementation and use of 𝐷𝑇𝐴(𝐺1, 𝐺2) ∙ 𝐵𝐶(𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝐺2) are strongly recommended.  
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