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Abstract: Probabilistic safety assessment (PSA) is a crucial tool for evaluating and managing risks in 
complex systems, traditionally utilizing a static, structured approach based on event trees (ETs) and fault 
trees. Static-based PSA has limitations when modeling realistic, time-dependent scenarios and their 
interactions. To address this, the dynamic event tree (DET) method has been developed to accurately assess 
risks by simulating dynamic scenarios, often incorporating thermal-hydraulic code simulations to identify 
success and failure sequences. Conducting a risk analysis using DET to improve the accuracy of 
consequence analysis of the system state or operator action time significantly increases the number of ET 
branches, which may make interpretation and understanding challenging for analysts. In this study, we 
proposed an algorithm that automatically generates accident sequences based on a specified number of 
branching points. The algorithm also improves the accuracy of the result analysis by using optimized 
simulations to search the limit surface, which defines the boundary between success and failure regions. In 
the proposed algorithm, the alpha shape method is employed to identify candidate branching points, 
effectively covering most success scenarios in high-dimensional simulation spaces. To demonstrate the 
algorithm’s applicability, we present a case study of a loss of coolant accident (LOCA), which includes 
dynamic features with LOCA break sizes and operator recovery times for two operator tasks.
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1.  INTRODUCTION

In recent decades, probabilistic safety assessment (PSA) has been widely applied in many fields such as the 
nuclear industry and aerospace [1]. PSA is a static-based, comprehensive, and structured approach where a 
combination of event tree (ET) and fault tree (FT) are used to identify failure scenarios and evaluate the risk 
of complex systems using Boolean logic [2, 3]. PSA is supported with deterministic safety analysis using 
thermal-hydraulic safety analysis code to strengthen the modeling of accident scenarios which typically 
involve complex interactions among physical processes, safety systems, and operator actions [4]. Each 
methodology has played a sufficient role in presenting the possibility and consequence of risk assessment 
through integrated deterministic-probabilistic safety assessment. However, as types of nuclear facilities 
diversify, particularly with the advent of small modular reactors and new technologies such as passive 
systems and digital instrumentation control and automation systems, and as the scope of safety evaluations 
expands spatially and temporally for checking safety requirements or safety goals, the need for optimal 
evaluation through realistic scenario analysis is increasing. Improving the realism of accident progression 
modeling is one of the key PSA technical challenges [5]. 

From the perspective of traditional PSA, there are some key limitations, such as that physical, temporal, and 
spatial dependencies are only loosely considered [6]. Other limitations of traditional approaches include 
challenges in the representation of changes in the order of events, difficulty for capturing the effects of event 
timing, and accounting for epistemic uncertainties [7]. These limitations have driven the development of 
dynamic probabilistic safety assessment (DPSA) or simulation-based PSA as a more robust and realistic 
approach to safety evaluation. DPSA integrates time-dependent probabilistic analysis with system dynamics, 
allowing for the assessment of safety more comprehensively. This approach considers the temporal 
evaluation of system states and their interactions with stochastic processes, thereby providing a more 
accurate representation of potential failure scenarios. The foundation of DPSA lies in its ability to model the 
behavior of complex systems over time, incorporating both deterministic and probabilistic elements.

Early DPSA research focused on the application of dynamic reliability analysis methods such as Monte Carlo 
simulation and Markov chains. These techniques enabled the modeling of time-dependent behaviors and the 
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assessment of system reliability over a specified period. For instance, Monten Carlo simulation was utilized 
to explore numerous possible system trajectories and identify critical failure paths in nuclear power plants [8]. 
Similarly, Markov chain models have been employed to represent the probabilistic transitions between 
different system states, capturing the dynamic nature of operational and failure processes [9]. Recent 
advancements in DPSA have seen the incorporation of more sophisticated modeling frameworks, such as 
dynamic event tree (DET) and Petri nets. DET extends traditional ET analysis by allowing for the branching 
of system states based on both deterministic and stochastic events over time. This method provides a 
powerful tool for analyzing complex, time-dependent scenarios and understanding the interactions between 
different system components [10]. On the other hand, Petri nets offer a graphical and mathematical modeling 
approach that is particularly useful for representing concurrent and asynchronous events in systems [11]. In 
addition, dynamic integrated consequence evaluation (DICE) was developed as a notable advancement in 
DPSA methodology [12]. DICE facilitates the integration of real-time data and advanced computational 
techniques to dynamically update safety assessments as new information becomes available. DICE consists 
of a scheduler that supports the exchange of information between modules, including a physical module for 
thermal-hydraulic simulations, a diagnosis module for specifying branching points for safety systems, and a 
reliability module for providing system availability. This approach emphasizes compliance with traditional 
PSA methodologies while providing enhanced capabilities for investigating unforeseen scenarios [12]. 

The application of DPSA has expanded beyond traditional industries to include areas such as autonomous 
systems, cyber-physical systems, and infrastructure resilience. For example, in the field of autonomous 
systems, DPSA has been used to evaluate the safety of self-driving vehicles by modeling the interactions 
between the vehicles, their environment, and other road users [13]. In the realm of cyber-physical systems, 
DPSA helps in assessing the resilience of critical infrastructures against cyber-attacks and physical 
disturbances [14]. Despite the significant progress made in DPSA research, several challenges remain. One 
of the primary challenges is the computational complexity associated with modeling and analyzing large-
scale dynamic systems. The need for high-fidelity models and extensive simulations can lead to significant 
computational resource requirements. The integration of human factors and organizational behaviors into 
DPSA models also presents another layer of complexity, as these elements are inherently difficult to quantify 
and predict. To address some of these challenges, recent studies have also explored the use of machine 
learning and artificial intelligence to improve the accuracy and efficiency of DPSA, further expanding its 
applicability and robustness [15,16]. Also, a human reliability evaluation method to quantify variability 
regarding operator action timing, which is for the application of DPSA [17].

However, there is still a pressing need to improve the efficiency and accuracy of DPSA methodologies. One 
of the key unresolved challenges is to analyze the optimized simulations such that dynamic event tree 
analyses can be performed quickly and accurately. This should enable decision-makers to interpret and 
understand the results with high precision and speed, facilitating more effective and timely safety 
interventions. The integration of advanced algorithms and computational techniques in DPSA remains a 
crucial area of ongoing research, aimed at enhancing the robustness and reliability of nuclear safety 
assessment. In this paper, an algorithm for automatically generating the dynamic accident sequences in the 
concept of the DET is proposed to analyze the optimized simulations on high-dimensional spaces. In the 
proposed algorithm, the alpha shape method was adopted to represent the candidate points that can 
encompass most of success scenarios from multi-dimensional optimized simulation results by capturing the 
geometric and topological properties of a point set. Once the candidate points are determined from the alpha 
shape, the optimal points that include the most success scenarios based on a user-specified number of points 
can be identified. Then, the DET can be automatically generated from the optimal points in the dynamic 
accident sequences. To demonstrate the applicability of the proposed algorithm, a case study for loss of 
coolant accident (LOCA) with dynamic features for LOCA break size and action time for two operator tasks.
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2.  METHOD

In this section, the steps for generating the DET using optimized simulation results from the high-
dimensional spaces are focused on an automatic accident sequences generation algorithm in Figure 1.

Figure 1. Flowchart of an automatic accident sequences generation algorithm

First, the alpha shape parameter α is applied to optimized simulation results in the high−dimensional spaces 
for analyzing the optimized simulation results. The alpha shape method has been used to capture the shape of 
a set of points in two dimensions or higher dimensions, defining the shape of a point set by connecting the 
points based on a given radius alpha shape parameter α  [18]. Also, it can effectively detect and analyze 
complex shapes in high-dimensional data by allowing for the adjustment of the granularity of the shape, 
making it useful for defining the boundary of high-dimensional point sets. In the process of applying the 
alpha shape method, the circles (or shperes in higher dimensions) of radius alpha shape parmeter α  around 
the points are firstly drawn. And, the points whose circles overlap are connected by creating edges between 
them. All the edges are combined to form a polygon (or polytope in higher dimensions). In this process, the 
value of the alpha shape parameter α  determines the granularity of the shape meaning that a smaller alpha 
value results in a more detailed outline while a larger alpha value produces a smoother outline. Then, the 
points existing on the outline are filtered out when the hyper cuboid generated from each point is overlapped 
or included in the other hyper cuboids generated by other points. The remains are determined as the 
candidate points.

Second, the maximum coverage condition is checked whether it is satisfied or not when the candidate points 
are determined in the first step. Here, the maximum coverage condition is defined as how many success 
scenarios can be covered by the candidate points among the entire success scenarios in the optimized 
simulations, and the maximum coverage can be calculated as the number of success scenarios existing in the 
hyper cuboids generated from all candidate points divided by the number of success scenarios in the 
optimized simulations. If the condition is not satisfied, the first and second steps are iterated while lowering 
the alpha shape parameter α by 0.1 until the condition is satisfied.

Once the parameter α satisfying the maximum coverage condition is determined, the points selected with the 
corresponding parameter α are determined and stored as final candidate points. And then, the user enters how 
many out of all the candidate points to consider.

Next, by considering hypercuboids generated from all combinations that can be made by the number of 
points entered between all candidate points, the optimal case with the largest number of success scenarios is 
selected and the corresponding points are determined as the optimal points. As shown in Figure 2, when there 
are candidate points that satisfy the maximum coverage condition through the alpha shape method for the 
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limit surface bolded in black searched through optimized simulations in two dimension spaces, the point that 
includes the most success scenarios existing in the identified success box is selected as the optimal point if 
only one branching point is considered.

Finally, an accident sequences are generated in the form of DET based on the value of each axis of the 
selected optimal point.

Figure 2. Concept to find success box from the candidate points with optimized simulations

3.  CASE STUDY: LOCA

To demonstrate the applicability of the proposed method and its effectiveness, the proposed algorithm was 
applied to LOCA scenarios. In this case study, three dynamic variables were considered as following:

 the break size for LOCA
 the operator recovery time due to the failure of the safety injection actuation signal (SIAS) 

generation
 the operator recovery time due to the failure of the recirculation actuation signal (RAS) 

generation

When an LOCA occurs, the pressure in the reactor coolant system (RCS) is lowered and the reactor is 
eventually tripped, after which the SIAS is generated by the low-pressure signal of the pressurizer. Then, the 
safety injection pumps are operated by the SIAS to inject makeup water from the refueling water tank into 
the RCS. However, if the SIAS does not generate automatically, the operator should manually actuate the 
SIAS from the main control room. Subsequently, if the supply of makeup water is depleted from the 
refueling water tank, the suction source of the pump automatically switches from the refueling water tank to 
the sump by a RAS, continuously injecting coolant to perform long-term cooling. However, similarly, if the 
RAS does not generate automatically, the operator should manually actuate the RAS for long-term cooling. 
These two operator tasks were selected because they are considered in all small break LOCA, medium break 
LOCA, and large break LOCA scenarios, which are classified by break size in the traditional PSA.

3.1.  Optimized Simulations

To simulate the dynamic accident sequences using the previously proposed optimized simulation research 
[15], boundary conditions for three dynamic variables were assumed, and a simulation model considering the 
dynamic variables selected was developed. Boundary conditions for the LOCA break size considered a total 
of 31 conditions, ranging from 0.5 inch and 1 inch to 30 inch at intervals of 1 inch. For the two operator tasks, 
a total of 41 scenarios each were considered, at intervals of 180 seconds from 0 seconds to 7200 seconds. For 
the boundary conditions of the two operator tasks, a conservative assumption of twice the available time 
considered in the traditional PSA for two operator tasks was made. These dynamic conditions result in a total 
of 52,111 scenarios being considered in this case study.



17th International Conference on Probabilistic Safety Assessment and Management &
Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

The simulation model was developed with consideration of the LOCA break size, SIAS recovery action, and 
RAS recovery action. In this case study, the modular accident analysis program version 5 (MAAP5) was 
used. And, a novel limit surface/states searching algorithm using deep neural networks and Monte Carlo 
dropout for NPP safety assessment was adopted to optimize the massive number of simulations [15]. This 
approach demonstrated the potential of combining machine learning techniques with DPSA methods to 
enhance model accuracy and reduce computational requirements. Figure 3 shows the simulation results using 
optimized simulation for dynamic variables. The left side shows the results of running simulations using 
MAAP5, which identifies the limit surface between success and failure scenarios through optimized 
simulations with a minimal number of simulations. The right side plots all the predicted scenarios based on 
the limit surface. In the simulation results, the blue points mean the success scenario, while the red points 
indicate failure scenarios. In other words, the red points mean scenarios where core damage occurs within 
the allowable time. Consequently, by simulating only 2,119 scenarios out of a total of 52,111 scenarios, all 
scenarios can be determined with only about 4% of the total number of simulations.

Figure 3. Simulation results of actual data (left) and predicted data (right) using optimized simulations with 
dynamic variables

3.2.  Automatic Dynamic Sequences Generation

From the optimized simulation result, the automatic dynamic sequences generation algorithm was conducted. 
Before applying the alpha shape, data preprocessing and normalization were performed for optimized 
simulation results. To determine the appropriate alpha value that satisfies the conditions for maximum 
coverage, the alpha parameter was started from a 1.0 value. The results of this iterative process are shown in 
Table 1. Out of a total of 52,111 scenarios, there were 11,453 success scenarios. When the alpha values were 
1.0, the number of success scenarios identified was 11,333, resulting in a coverage of 98.95%. In the process 
of selecting candidate points, those with overlapping cuboids were removed. As a result, a total of 18 points 
were selected as candidate points as shown in Figure 4.

Table 1. Alpha shape parameter selection and accuracy evaluation

Along with these 18 candidate points, the optimal points that include the maximum number of success 
scenarios based on the user-specified number of points were identified by calculating the combination of the 
candidate points. Figure 5 shows the results of finding the optimal points when the number of points is set to 
2, 3 ,4 and 18. The figure (a) in Figure 5 visualizes the optimal points and the cuboid generated from these 
two points when the user-specified number of points is 2. Similarly, figure (b), (c), and (d) visualize the 
optimal points and the cuboids generated from them when the number of points is 3, 4, and 15, respectively. 
When examining the optimal points, the following points were determined: with 2 points (2, 5760, 7200) and 
(27, 900, 3060); and with 3 points (2, 5760, 7200, (5, 4860, 3780), and (27, 900, 3060); and with 4 points (2, 
5760, 7200), (5, 4860, 3780), (15, 1620, 3060), (30, 700, 3060). The optimal points in 3 points include all the 
optimal points from the 2 points selection, whereas the optimal points in 4 points do not include some 

Alpha values # of identified 
success scenarios

Coverage (%) # of whole success 
scenarios

1.0 11,333 98.95 11,453
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optimal points from 2 points and 3 points. This indicates that the success criteria for each system or human 
operator action can be evaluated differently depending on the number of optimal points, demonstrating the 
potential for various evaluations. Anyway, based on the determined optimal points, the DET was 
automatically generated. Figure 6 shows an example of the DET for (a) case in Figure 5.

Figure 4. Identification of candidate points using alpha shape method

Table 2 presents the number of success scenarios identified, coverage, and whole success scenarios for each 
case. The results indicate that as the number of points increases, the number of identified success scenarios 
also increases, leading to higher coverage. These results are expected to support risk assessment within 
DPSA by providing decision-makers with information on DETs that have an appropriate level of coverage, 
which is both interpretable and understandable, promptly based on optimized simulation results.

Figure 5. Optimal points and generated success cuboids for different user-specified points
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Figure 6. Examples of automatic dynamic sequences generation with the concept of the DET in the (a) case 
of the Figure 5 

Table 2. Evaluation of identified success scenarios, accuracy, and computation time for different numbers of 
optimal points

# of user-
specified 
points

# of identified 
success scenarios

Accuracy (%) # of whole success 
scenarios

1 4,059 35.44 11,453
2 6,651 58.07 11,453
3 8,175 72.32 11,453
4 9,068 79.08 11,453
5 9,713 84.81 11,453
6 10,223 89.26 11,453
7 10,475 91.46 11,453
8 10,713 93.54 11,453
9 10,893 95.11 11,453
10 10,978 95.85 11,453
11 11,050 96.48 11,453
12 11,120 97.09 11,453
13 11,183 97.64 11,453
14 11,237 98.11 11,453
15 11,273 98.43 11,453
16 11,309 98.74 11,453
17 11,329 98.92 11,453
18 11,333 98.95 11,453
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4.  DISCUSSIONS AND CONCLUSION

The study presented in this paper explores the integration of an automatic DET generation algorithm within 
the DPSA framework. The proposed algorithm leverages alpha shapes to effectively analyze success and 
failure scenarios from high-dimensional optimized simulation results, thereby enhancing the precision and 
interpretability of dynamic accident sequences. The application of the alpha shape method demonstrated a 
significant improvement in capturing the geometric and topological properties of high-dimensional data. This 
approach allowed for a more accurate identification of candidate points that encompass success scenarios, 
ensuring that the DET generated are both comprehensive and reliable. The case study on LOCA scenarios, 
with dynamic variables including break size and operator recovery time for two operator tasks, highlighted 
the algorithm's capability to process complex data sets and provide meaningful insights into system 
behaviors under various conditions.

However, some discussion points remain regarding the application of the proposed method for DPSA. The 
first is that more case studies with high-dimension should be performed to better demonstrate the feasibility 
of the proposed method. In the present work, one case study with 3 dimensions for LOCA was performed 
due to limitations of the visualization and to act as a proof of concept.

The second point is the need for a comparative analysis with other methods that can be applied to generate 
DET in the optimized simulations. In this study, the alpha shape method was used to analyze the results, but 
it is necessary to compare these results with those obtained using employed algorithms such as Bruce force 
and greedy algorithms. This comparison will help to improve further validation of the effectiveness of the 
proposed algorithm.

The last point is the need for additional analysis comparing the accident sequences considered in traditional 
PSA with the dynamic accident sequences generated by the proposed methods. This comparison should 
highlight the advantages of DPSA by demonstrating its ability to provide more realistic risk assessments 
through more realistic scenario analysis.

In the future work, the research should focus on further improving the efficiency and effectiveness of the 
algorithm, particularly in the context of larger and more complex scenarios. Additionally, by developing a 
user interface related associated with proposed method, we aim to enhance the accessibility of this methods 
within the DPSA framework.
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