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Abstract: The importance of multi-unit probabilistic risk assessment (MUPRA) has been globally 

acknowledged since the Fukushima Daiichi Nuclear Power Plant accident. However, many challenges exist in 

implementing a practical MUPRA. One of the challenges is that MUPRA suffers exponentially increasing 

computational costs due to the increase in the number of multi-unit sequences and their heading events as the 

number of units increases. In this paper, we propose an approach that hybridize the direct quantification of a 

fault tree using the Monte Carlo simulation (DQFM) method and the minimal cutset (MCS) method. The 

proposed approach utilizes the DQFM method to quantify an MUPRA model and to identify dominant accident 

sequences. Then, the propose approach applies MCS method for identified dominant accident sequences. This 

hybrid approach overcomes a disadvantage of the DQFM method incapable of enumerating dominant MCSs. 

Also, we introduce an algorithm for the DQFM method to estimate the required importance measures, a key 

step in reducing the computational cost and making MUPRA more practical. 

The proposed approach has two steps in quantification. The first step is quantifying an MUPRA model using 

the DQFM method. This allows us to obtain the multi-unit core damage frequencies (CDFs), the required 

importance measures, individual accident sequence frequencies, and their Monte Carlo errors. Estimated 

accident sequence frequencies provide which multi-unit sequences are dominant. In the second step, the MCS 

method is applied only to the estimated dominant multi-unit sequences to obtain the dominant MCSs. 

The computational cost to estimate CDF by the DQFM method is roughly proportional to the number of units. 

Thus, the computational cost for an MUPRA model using the DQFM method is inexpensive. The DQFM 

method’s ability to identify the dominant multi-unit sequences is a significant advantage, as the proposed 

approach allows us to generate MCSs using the MCS method for only these dominant sequences, rather than 

for all multi-unit sequences. This feature of the proposed approach can significantly reduce the overall 

computational cost of quantifying an MUPRA model. 

 

Keywords: Direct Quantification of Fault Tree using Monte Carlo Simulation, Multi-Unit Probabilistic Risk 

Assessment, Minimal Cutset method. 

 

 

1.  INTRODUCTION 

 

Probabilistic risk assessment (PRA) of nuclear power plants (NPPs) is important in improving NPP safety and 

economic efficiency. PRA has been applied to various risk-informed applications such as risk-informed 

technical specifications initiatives [1]. Applications of PRA are not limited to a single unit. It can assess the 

risk of multiple units and a site. The Fukushima Daiichi NPP accident showed the importance of multi-unit 

PRA (MUPRA), and PRA researchers and engineers have been working on establishing a practical MUPRA 

approach. Internationally, extensive research has been conducted to develop MUPRA such as [2]. 

 

To assess the probabilistic risk of an NPP, PRA engineers build a logic model consisting of fault trees and 

event trees. Then, this logic model is solved by the minimal cutset (MCS) method, binary decision diagram, 

or their variants. Both methods have advantages and disadvantages, but a modern PRA model accounts for 

complex systems and dependencies that result in high computational costs. Typically, an MUPRA model is 

built based on a combination of single-unit PRA models, and thus, an MUPRA model has higher computational 

costs than single-unit PRA models. 

 

Besides these two primary methods, there is also a method that statistically solves a PRA model by Monte 

Carlo simulation. This method is called “direct quantification of fault tree using Monte Carlo simulation 

(DQFM).” Originally, the DQFM method was proposed and developed by the Japan Atomic Energy Research 

Institute [3]. Its name only refers to a fault tree but can also be applied to an event tree model. The DQFM 

method's main advantage is its ability to account for success events in a fault tree and an event tree with a small 
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computational cost. On the other hand, the MCS method only considers combinations of failure events and 

excludes success events. A binary decision diagram can consider the success events but suffers exponentially 

increasing computational costs with the number of basic events. One of the other advantages of the DQFM 

method is its ease of parallelization. Thus, the DQFM method can utilize a modern multi-core CPU. In addition, 

the DQFM method has an advantage in interfacing with level 1PRA and level 2 PRA because the states of all 

basic events are determined in each Monte Carlo trial. Therefore, it is free from concerns about the 

computational costs of linking level 1 and level 2 PRA. It is also worth mentioning that the DQFM method 

can directly estimate a mean core damage frequency (CDF) by sampling basic event probabilities in each 

simulation without recovering an uncertainty distribution of CDF. The DQFM method can calculate a point 

estimate of CDF by fixed basic event probabilities in simulation. 

 

However, the DQFM method has disadvantages as well as advantages. One of its disadvantages is that the 

DQFM method is not good at enumerating MCSs. In each Monte Carlo trial of the DQFM method, the method 

generates a set of basic events that are failure. When this set makes a fault tree’s top event false, this set is 

cutset but not always MCS. Modern PRA applications are based on MCSs; therefore, it is difficult for PRA 

engineers to shift the DQFM method from the MCS method. Also, it is computationally expensive to estimate 

importance measures, especially when the number of basic events is large. It is a clear disadvantage that the 

DQFM method is subject to a statistical error even if this statistical error is relatively small compared with 

CDF and reducible in most cases. Furthermore, it often fails to quantify very rare accident sequences. In 

addition, the DQFM method is not suitable for recovering uncertainty distribution. 

 

This paper proposes a hybrid approach that utilizes the DQFM method and the MCS method. The proposed 

approach has two steps. The first step is that the DQFM method statistically solves an MUPRA model and 

identifies the dominant accident sequences for MCS analysis. This step lets us obtain the multi-unit CDF, 

multi-unit sequence frequencies, the required importance measures, and their Monte Carlo errors. If one only 

needs those values, one can finish estimation in this step. If one needs MCSs for PRA applications, the second 

step performs an MCS analysis on obtained dominant multi-unit sequences. The generated MCSs allows us to 

use existing PRA platform. 

 

Section 2 describes the basic algorithm of the DQFM method and its extension to an event tree. In addition, 

we describe the algorithm that uses the DQFM result as a truncation value for MCS analysis. Section 3 

describes the application of the DQFM method to MUPRA. Section 4 concludes this study and provides future 

research.  

 

2.  The Hybrid Approach of the DQFM Method and the MCS Method 

 

This chapter briefly describes the basic algorithm of the DQFM method and how to generate the MCSs utilizing 

the DQFM result. Then, we propose a hybrid approach to quantifying an MUPRA model. We also propose a 

simple bottom-up algorithm to estimate importance measures.  

 

2.1.  Basic Algorithm of the DQFM method 

 

The DQFM method estimates CDF using Monte Carlo simulation. To understand its concept, let us assume a 

simple fault tree with one basic event having a failure probability equal to 0.05, as shown in Figure 1.  

 

 
Figure 1. A simple fault tree with one basic event 

 

The DQFM method determines Boolean states of basic events using the Monte Carlo simulation to estimate a 

top event frequency. In Monte Carlo simulation, a random value from a uniform distribution of interval (0,1) 

is generated for each basic event in each Monte Carlo trial and compared with a basic event probability. If a 

random value is less than the basic event probability, then the Boolean state of that basic event is set to true. 

Top event

BE A

0.05
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If a random value is greater than or equal to the basic event probability, then the Boolean state of that basic 

event is set to false. Figure 2 visualizes this Monte Carlo simulation. 

 

A fault tree becomes a Boolean expression and the top event’s Boolean state can also be determined once all 

basic events’ Boolean states are determined. Now, an estimated top event frequency 𝑃est  is given by the 

number of true top events 𝑁true divided by the total number of Monte Carlo simulations 𝑁Monte. Algorithm 1 

summarizes the DQFM method. Algorithm 1 counts the number of times that a top event is true, 𝑁true, and Eq. 

(1) and (2) provide an occurrence frequency of a fault tree and its Monte Carlo error. 

 

  
Figure 2. Process to determine a Boolean state of a basic event using Monte Carlo simulation 

 

𝑃est =
𝑁true

𝑁Monte

(1) 

 

In addition, a Monte Carlo error 𝜎𝑝 of 𝑃est is obtained by  

 

𝜎𝑝 = √
𝑝est(1 − 𝑝est)

𝑁Monte

(2) 

 

Algorithm 1: DQFM method to quantify a fault tree   

Inputs:  

𝒔: The set of basic events in a fault tree 

𝑃(𝑠𝑖):  The probability of the 𝑖th basic event 

𝐹(𝒔):  A fault tree for evaluation 

𝑁Monte: Number of Monte Carlo trials 

Outputs: 

𝑁True:  Number of counts that the top event is true. 

1 Initialization 

2 𝑁True = 0 

3 for 𝑖 = 1 to 𝑁Monte do: 

4  for 𝑘 = 1 to length(𝒔) do: 

5  Generate a random number 𝑟 in (0,1) 

6  If 𝑟 ≤ 𝑃(𝑠𝑖) then 

7   Set the state of 𝑠𝑖 true. 

8  else 

9   Set the state of 𝑠𝑖 false. 

10   end 

11  end 

12  Evaluate 𝐹(𝒔) 

13  If 𝐹(𝒔)  is true, then 

14  𝑁True = 𝑁True + 1 

15  end 

16 end 

17 Return 𝑁FT; 

Algorithm 1: Pseudo algorithm of the DQFM method to evaluate a fault tree 

Top event

BE A

0.05

Generate a random 
value between 0.0 

and 1.0.

If , then set BE A true.

If , then set BE A false.

Top event

BE A

T
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Algorithm 1 fails if the number of Monte Carlo trials is insufficient. This can happen when a top event is rare, 

or the number of Monte Carlo trials is inadequate. One can resolve the latter case by increasing the number of 

Monte Carlo trials. However, increasing the number of Monte Carlo trials to capture a low-occurrence event 

may not be possible for the former case. Therefore, one must apply variance reduction techniques such as 

importance sampling techniques in such a case. However, if these techniques are used, the algorithms described 

in this paper are no longer applicable. In addition, variance reduction techniques cannot evaluate a whole event 

tree like the DQFM method. If one applies variance reduction techniques, then all multi-unit accident 

sequences are individually quantified. Thus, variance reduction techniques are useful to estimate selected low 

frequent multi-unit accident sequences but not suitable for estimating overall CDF.  

 

One can easily extend Algorithm 1 to an event tree. First, all the heading events in an event tree are evaluated 

using the sampled Boolean states of the basic events. Next, given the Boolean states, the end state of an event 

tree is determined in each simulation, as shown in Figure 3. Algorithm 2 summarizes the modified algorithm. 

Note that Algorithm 2 returns the occurrence frequencies of all the end states of an event tree. 

 

In addition, Algorithm 2 is also designed to return each end state frequency neglecting success branches. Thus, 

Algorithm 2 can estimate both true end state frequencies (𝑁true,k 𝑁𝑀𝑜𝑛𝑡𝑒⁄ ) and end state frequencies neglecting 

success branches ((𝑁true,k
′ 𝑁𝑀𝑜𝑛𝑡𝑒⁄ ). The latter values are good estimates of accident sequence frequencies 

based on MCS analysis because MCSs do not consider success branches whereas the former value is good 

estimates of true end state frequencies. 

 

 

 
Figure 3. Determination of the end state of an event tree using Monte Carlo simulation 

 

 

2.2.  Identification of Multi-unit Dominant Sequences and MCS Generation 

 

Algorithm 2 can evaluate the occurrence frequencies of all the end states of an event tree. One can utilize this 

information to rank the end-states of an event tree and for the truncation value of MCS analysis. Note that 

estimated end-state frequency 𝑃est,k = 𝑁true,k 𝑁Monte⁄  accounts for success branches. However, MCS analysis 

typically does not consider success branches, and therefore, this estimated end-state frequency may be different 

from the frequency estimated by the MCS method. If success branches are neglected, it is possible that MCSs 

include logically impossible combinations such as a failure of a component that succeeds in a success branch. 

The validity of these MCSs can be checked by making basic events in a MCS true and the other basic events 

are false whether the same accident sequence is traced. If not, such a MCS is logically impossible and removed. 

 

For the above reason, the estimated end-state frequency is not a good candidate for a truncation value for the 

MCS method. Hence, one needs an end-state frequency without success branch consideration for a truncation 

value of the MCS method. For this purpose, Algorithm 2 also provides 𝑁true,k
′  that remove the effect of success 

branches. It is important to note that a true end-state frequency is not always appropriate for a truncation value 

of MCS analysis. To the authors’ best knowledge, there is no approach to predict the number of MCSs given 

a truncation value. Algorithm 3 shows an automated iterative try-and-error approach to obtain the user defined 

number of MCSs [4]. This automated algorithm helps reduce the cost of PRA engineers performing try-and-

errors to find appropriate truncation values for all end states. 

 

Algorithm 3 begins with an initial guess of a 𝑘th end-state frequency with a 99.86% probability that a 𝑘th end-

state frequency without success branch consideration is less than or equal to this initial guess. This initial guess 

is a good initial guess for MCS analysis. For example, let us assume an MCS has the largest value. The DQFM 
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method repeatedly simulates the states of all basic events and sets the top gate true if all basic events in this 

MCS are true. Hence, the initial guess obtained by the DQFM method has a 99.73% probability greater than 

the end-state frequency guaranteed to be greater than or equal to the largest MCS.  

 

Algorithm 2: DQFM method to quantify an event tree 

Inputs:  

𝒔: The set of basic events in an event tree 

𝑃(𝑠𝑖):  The probability/frequency of 𝑖th basic event 

𝐹𝑗(𝒔):  The fault tree of 𝑗th heading event 

𝐸(𝒔):  The Event tree for evaluation.  

𝑁Monte:  The number of Monte Carlo trials 

𝑁he:  The number of heading events 

𝑁es:  The number of end states 

Outputs: 

𝑁true,k:  The number of counts that the 𝑘 th end state is true 

𝑁true,k
′ :  The number of counts that the 𝑘 th end state without success branch consideration is true 

1 Initialization 

2 𝑁true,k = 0 and 𝑁true,k
′ = 0 for 𝑘 = 1 to 𝑁es 

3 Process 

4 for 𝑖 = 1 to 𝑁Monte do: 

5  for 𝑘 = 1 to length(𝒔) do: 

6  Generate a random number 𝑟 in (0,1) 

7  If 𝑟 ≤ 𝑃(𝑠𝑖) then 

8   Set the state of 𝑠𝑖 true. 

9  Else 

10   Set the state of 𝑠𝑖 false. 

11  End 

12  end 

13  for 𝑗 = 1 to 𝑁he do: 

14  Evaluate 𝐹𝑗(𝒔) to determine its top event state. 

15  end 

16  Determine the index of an end state 𝑘 that is true by evaluating 𝐸(𝒔) using evaluated 𝐹𝑗(𝒔) 

17  𝑁true,k = 𝑁true,k + 1 

18  for 𝑘 = 1 to 𝑁es do: 

19   If all heading events in failure branches of the 𝑘th end state are true, then 

20   𝑁true,k
′ = 𝑁true,k

′ + 1 

21   end 

22  end 

23 end 

24 Return 𝑁true,k and 𝑁true,k
′  

Algorithm 2: Pseudo algorithm of the DQFM method to evaluate an event tree 

 

Algorithm 3 iteratively adjusts a truncation value until a user-defined number of MCSs is generated. Note that 

PRA engineers may not need MCSs that are too small, such as MCSs less than 10-10 unless they need to evaluate 

importance measures. In such a case, one can terminate this iterative step without generating MCSs. 

 

2.3.  Importance Measure Estimation 

 

The importance measure is typically estimated using generated MCSs. This estimated importance measure is 

sometimes inaccurate for basic events with very low probability because MCSs with such basic events are 

truncated during MCS analysis. In addition, an approximation such as a rare-event approximation also results 

in inaccurate estimation. The issue is that one cannot know how inaccurate the estimated importance measure 

by MCS analysis is. The DQFM method can resolve this issue. The DQFM method can evaluate an importance 

measure for a target basic event using Algorithm 1 with a small modification. However, it is computationally 

expensive if the DQFM method is applied to obtain importance measures for all basic events because it requires 

reevaluating a whole Monte Carlo simulation for all basic events. 
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Thus, the DQFM method is not good at estimating all the importance measures. Instead, we propose a bottom-

up approach to evaluate an importance measure to ease this issue. Let us assume that a simple fault tree is 

shown in Figure 4, and we evaluate a risk achievement worth of a basic event BE B. Note that a risk 

achievement worth of a basic event 𝒙 for a fault tree is defined as 

 

RAW =
𝑃(FT|𝑥 = 1)

𝑃(FT)
 

 
where 𝑃(FT) is the probability or frequency of a fault tree and 𝑃(FT|𝑥 = 1) is the conditional probability of 

a fault tree given a basic event 𝒙 fails. In the first step of the bottom-up approach, we preprocess a fault tree to 

obtain all branches from a target basic event to a top event (step 1), as shown in Figure 4 (left). Figure 4 (left) 

shows a case where the target basic event is BE B. In Figure 4 (left), there are two green branches toward the 

top gate. These two branches must be reevaluated for importance measure estimation. 

 

We use these branch data to reduce the computational cost of reevaluating a fault tree by a simulation. In the 

next step (Step 2), a Monte Carlo trial determines all basic event states and evaluates the top event state, as 

shown in Figure 4 (right). In this example, alphabets T and F indicate the true and false states of basic events 

and gates.  

 

Algorithm 3: MCS generation for the 𝒌th end state 

Inputs:  

𝑃est,k
′ :  The estimated frequency of the 𝑘th end state without success branch consideration obtained from 

Algorithm 2 

𝐹𝑘(𝑠):  The fault tree with an AND gate that connects fault trees for the failure branches in the branch 

leading a 𝑘th end state 

𝑁MCS:  Target number of MCSs for each end state 

Outputs: 

MCSk:  Generated MCSs for the 𝑘th end state 

1 Initialization 

2 Set an initial truncation value 𝑃trun = 𝑃est,k
′ + 3(𝑃est,k

′ )
0.5

 and 𝑁𝑘 = 0 

3 Process 

4 while 𝑁𝑘 ≤ 𝑁MCS do: 

5  Try to generate MCSk for 𝐹𝑘(𝑠) with the truncation value 𝑃trun 

6  If MCS analysis timeouts, then: 

7  𝑃trun = 𝑃trun ∗ 1.01 

8  else 

9  𝑁𝑘 = count(MCSk) and 𝑃trun = 0.95 ∗ 𝑃trun 

10  end 

11 end 

12 return MCSk 

Algorithm 3: MCS generation utilizing the DQFM result 

 

 
Figure 4. Example of the identification of branches to the top gate and evaluation of the fault tree 
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Then, there are several conditions when a fault tree is reevaluated. If the state of BE B is true, no reevaluation 

is required for the risk achievement worth. However, if the state of BE B is false, reevaluation is needed 

regardless of the top event state. This is because a fault tree may contain a logical negation operator, such as a 

NAND gate. Therefore, given the state change of a target basic event, the top gate’s state may change from 

true to false. For each identified branch, we change the state of the bottom target basic event to true and evaluate 

the gates in the branch (Step 3), as shown in Figure 5. 

 

  
Figure 5. Example of reevaluating identified branches to the top gate 

 

The proposed bottom-up approach becomes effective, especially when the size of a fault tree is large, and the 

size of identified branches is small because the cost of the reevaluation is small for the identified branches. 

However, for a small fault tree, the proposed approach does not improve the performance of the importance 

measure calculations. 

 

 

3.  APPLICATION TO MUPRA 

 

The computational cost of the DQFM method linearly increases as the number of gates and basic events 

increases. This characteristic is desirable for MUPRA because the number of gates and basic events also almost 

linearly increases as the number of units increases. In addition, the Monte Carlo simulation is easily 

parallelized and, therefore, can utilize many cores to mitigate the increase in the computational cost. For 

example, one can use cloud resources or recent many-core CPU architecture for the DQFM method. In contrast, 

improving the efficiency of algorithms such as MCS calculations and binary decision diagrams is not easy.  

 

As noted in Section 2.2, the DQFM method can identify dominant sequences of an event tree. Likewise, 

evaluating individual units in each Monte Carlo trial can identify the dominant combinations of multi-unit 

accident sequences. Evaluating the only dominant multi-unit sequences by the MCS method can reduce the 

number of multi-unit accident sequences for MCS analysis, reducing the overall costs. Note that there is a 

change that the identification of the dominant sequences fails because the number of Monte Carlo trials is 

insufficient. To avoid this issue, one needs to carefully consider the required number of trials and review the 

Monte Carlo error of each multi-unit sequence frequency. 

 

To extend the DQFM method to MUPRA, one must consider inter-unit interactions summarized in reference 

[5-8] and modify single-unit models accordingly. Understanding how to evaluate these inter-unit interactions 

in an MUPRA model is the most important aspect of MUPRA. Algorithm 4 shows a pseudo algorithm 

describing the DQFM method applied to MUPRA for frequency estimation. Algorithm 4 first determines an 

accident sequence of each unit by Monte Carlo trial and combines them as a multi-unit accident sequence. 

Then, the algorithm repeats this trial to count multi-unit sequences. This simple algorithm can be extended to 

evaluate the importance measures described in Section 2.3 and to generate MCSs for dominant sequences.  

 

3.1.  Numerical example of Algorithm 4 

This section demonstrates the DQFM method applied to a large event tree model with a structure like an 

MUPRA model. Since no benchmark MUPRA model is publicly available, we built a simple base event tree 

with five functions and three redundant systems per function for a unit, as shown in Figure 6. Note that each 

fault tree does not represent any actual safety system but is randomly generated. Each function must succeed 

to achieve a safe shutdown. Then, we copied the whole structure of this base event tree and associated fault 
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trees, modified the fault trees, and assigned different basic event names and probabilities. Also, we injected 

common basic events among these event trees, which work as inter-unit interactions between and among event 

trees.  

 

 

Algorithm 4: DQFM method applied to MUPRA 

Inputs:  

𝑁unit:  Total number of units 

𝒔:  Set of all basic events considered in MUPRA. This includes the result of multi-unit initiating event 

analysis 

𝐸𝑖(𝒔):  Event tree model of 𝑖th unit 

𝑁Monte:  Number of Monte Carlo trials 

𝑁MCS:  Target number of MCSs for each end state 

Outputs: 

P(𝒄):  Map from the combination of accident sequences 𝒄  to its occurrence frequency 

1 Initialization 

2 Set P(𝒄) empty map and MCS = { } 

3 Process 

4 for 𝑗 = 1 to 𝑁Monte do: 

5  Determine the states of 𝒔 using Monte Carlo simulation. 

6  for 𝑖 = 1 to𝑁unit do: 

7   Evaluate 𝐸𝑖(𝒔) to determine an 𝑖th unit’s end state 𝑐𝑖 

8  end 

9  If inter-unit interactions are not modeled in an MUPRA model and any accident sequence 

results in a core damage state, then 

10   Apply inter-unit interactions and reevaluate accident sequences 𝑐𝑖 

11  end 

12  Set 𝒄 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑁unit
} 

13  If 𝒄 is in P(𝒄), then 

14   Increment P(𝒄) by one 

15  Else 

16   P(𝒄) = 1 

17  end 

18 end 

19 Set P(𝒄) = P(𝒄) 𝑁Monte⁄  for all keys in P(𝒄) 

20 Return P(𝒄) 

Algorithm 4: the DQFM method applied to an MUPRA model 

 

 
Figure 6: A base event tree structure 
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Table 1. Characteristics of the base event tree model with 107 Monte Carlo trials for the DQFM method 

 Base Event tree 

# of BEs 1227 

CDF (DQFM) 2.4955E-03 

MCSE(DQFM) 1.5777E-05 

 

Figure 7 shows the elapsed time given the number of the Monte Carlo trials for the base event tree. It is clear 

that the elapsed time almost proportionally increases as the number of the Monte Carlo trials increases. Figure 

8 shows the estimated CDF and its error bounds of 3𝜎𝑀𝐶𝑆𝐸. As the number of the Monte Carlo trials increase, 

the error bound decreases. 

 

 
Figure 7. Elapse time of the DQFM method 

 for the base event tree 

 
Figure 8. Estimated CDF with its error band  

for the base event tree 

 

 

Figure 9 shows the elapsed time required to evaluate the hypothetical MUPRA model generated above. The 

hypothetical MUPRA model has a lower CDF value compared with a single-unit one. Therefore, the MUPRA 

model requires many Monte Carlo trials as shown Figure 9. This is a strong drawback of the DQFM method 

applied to a MUPRA model. To overcome this difficulty, one need to use multicore CPUs or general-purpose 

graphics processing unit programming. Figure 10 shows the required time to evaluate the MUPRA model with 

107 Monte Carlo trials. Figure 10 shows the linearly increasing elapsed time as the number of units increases, 

and this property is desirable for a site with many units. 

 

 
Figure 9. Number of counts that all four event trees 

are in core damage states 

 
Figure 10. Elapsed time of the DQFM method given 

the number of units 
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3.2.  Limitation of the DQFM method to MUPRA 

 

The DQFM method for MUPRA easily fails when a combination of accident sequences has a very low 

frequency, such as 10-30. In this case, the DQFM method fails to generate a good candidate of a truncation 

value and thus fails to generate an MCS. As mentioned in Section 2.1, variance reduction techniques are 

research direction to solve this issue.  

 

The importance of such extremely rare accident sequences is low in risk-informed applications unless there 

are a significant number of rare accident sequences, and its aggregation contribution is not negligible. Thus, 

the DQFM method fails to quantify each very rare accident sequence. However, it can quantify the overall 

contribution of those accident sequences and identify dominant multi-unit sequences, whereas the conventional 

MCS method fails to quantify both contributions. In addition, the DQFM method can estimate importance 

measures of basic events with statistical error bounds. If one needs overall CDF and importance measures of 

basic events in MUPRA, the DQFM method is a good candidate for MUPRA quantification.  

 

4.  CONCLUSION 

 

This paper proposes the hybrid approach for an MUPRA model using the DQFM method and MCSs. First, the 

approach utilizes the DQFM method to quantify a PRA model to estimate an overall CDF and dominant 

accident sequences with their occurrence frequencies. In addition, the approach also estimates a truncation 

value for MCSs. One can apply an automated algorithm to generate MCSs if one needs MCSs. In addition, 

this paper proposes a simple algorithm to generate importance measures of basic events. 
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