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Abstract: Fault Tree Analysis is a widely used framework in risk, reliability, and safety engineering for 
identifying the root causes of system-level failures. By translating the relationship between component failures 
and asset behavior into a Boolean function, Fault Tree models enable the qualitative and quantitative 
assessment of complex engineering systems. However, as the number of components and their 
interconnectivity within the system increases, so do the computational resources required for their assessment. 
While significant progress has been achieved in adapting traditional techniques to keep up with system growth, 
it is still important to explore the potential advantages that new computational paradigms could bring to the 
field. In this regard, quantum computation stands out as an ideal candidate, due to its potential to tackle 
problems that are intractable by traditional techniques. To explore this research path, we tackle the problem of 
minimal cut set identification in coherent Fault Trees, a fundamental task within Fault Tree analysis. To this 
end, this study proposes a novel quantum circuit capable of detecting minimal cut set configurations, enabling 
its use as an oracle function in the Grover algorithm. Using the proposed quantum-based approach, we 
demonstrate theoretical and numerical evidence of a quadratic reduction in the number of samples required to 
identify all minimal cut set configurations when compared against random sampling. 
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1. INTRODUCTION 

Fault Tree Analysis is a fundamental tool in the reliability and safety assessment of engineering systems. 
Originally developed for assessing defense systems, Fault Tree Analysis is now used across several industries, 
including nuclear, power, transportation, and health sectors. Its widespread applicability can be attributed to 
several key reasons, such as the simplicity in its formulation, its flexibility in representing a variety of systems, 
and most importantly, its capability to perform both qualitative and quantitative assessments. 

Among the tasks performed by FTA, one of the most important is the identification of irreducible 
configurations that can cause the system to fail. These configurations are known as Minimal Cut Sets (MCS). 
Formally, they are defined as a minimal set of basic components, whose simultaneous failure triggers the 
failure of the overall system. Identifying minimal cut set configurations in an engineering system is crucial for 
two main reasons. First, it allows practitioners to harden the system by either building redundancies around 
weaker components or improving their reliability. Second, identifying minimal cut sets that cannot be 
eliminated through system hardening enables the preparation of strategies to improve the system’s resilience. 
However, as the demand for more efficient, safe, and sustainable engineering increases, so does their size and 
complexity. This makes the identification of minimal cut sets a resource-intensive task, due to the 
exponentially large space of possible component configurations and the increased complexity of the resulting 
Boolean function, which restricts the possible advantages that can be achieved by using traditional algorithms. 

The FTA community has achieved important advances in addressing this relevant challenge by updating 
existing ideas and developing new ones to match the ever-increasing scale of engineering systems. Examples 
of these efforts include recent developments in Boolean Decision Diagrams [1], and approaches based on 
Boolean Satisfiability algorithms (SAT) [2]. However, the expected scale of future systems and the potential 
interconnectivity between them demands the exploration of novel techniques outside of traditional 
computation. 

In this regard, Quantum Computation stands out as a promising field to tackle these types of challenges. The 
reasons for this are multiple. First, quantum computing algorithms present attractive capabilities in the parallel 
evaluation of Boolean functions, which can be useful in the determination of the state of the system. Second, 
through its formulation, quantum computation is naturally predisposed to work with binary random variables 
and categorical distributions, such as the ones that commonly arise in standard Fault Trees. Third, quantum 
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computing enables the use of a powerful set of techniques for unstructured search algorithms, which can be 
readily applied in the context of minimal cut set identification. Indeed, approaches that use quantum 
computation for minimal cut set identification have recently started to be explored by the community. 
However, these early approaches are either too resource-intensive [3], or do not target minimal cut set 
configurations efficiently [4], targeting cut sets instead and therefore requiring an additional reduction step 
that adds complexity to the overall algorithm. 

To overcome these existing disadvantages, this study proposes a quantum-based approach to directly identify 
all minimal cut set configurations in a standard, coherent Fault Tree. This is done through the combination of 
a novel quantum circuit capable of identifying whether a configuration is a minimal cut set and the well-known 
Grover algorithm [5] to increase the likelihood of sampling these configurations. We present compelling 
numerical and theoretical evidence of a decrease in the number of queries required to identify all minimal cut 
set configurations in a Fault Tree.  

The study is organized as follows. Section 2 presents a math-based overview of quantum computation and the 
Grover algorithm. Then, Section 3 reviews the concept of a Quantum Fault Tree, presenting an algorithm to 
translate any standard Fault Tree model into a quantum operation. Section 4 builds on top of the Quantum 
Fault Tree technique to present a quantum operation that can detect, in parallel, all configurations of a Fault 
Tree that are minimal cut sets. This quantum operation, denoted as 𝑈!"#, is then used alongside the Grover 
algorithm to develop a novel quantum algorithm for minimal cut set identification. Section 5 presents 
theoretical and numerical evidence of a quadratic reduction in the number of samples required to identify all 
minimal cut set configurations when compared against random sampling. Finally, Section 6 presents the 
concluding remarks of the study, highlighting avenues for future research in the field. 

2. BACKGROUND: QUANTUM COMPUTATION 

This section first reviews the general principles of quantum computation from a mathematical point of view. 
Then, it relates those principles with the hardware implementation known as “gate-based” quantum 
computation. Finally, it describes the Grover algorithm [5], a fundamental result that serves as one of the main 
components in the proposed approach for minimal cut set identification. 

2.1. Mathematical Foundations 

Let us start by considering 𝜓 as a quantum system. The state of 𝜓 is represented using the ket notation as 
|𝜓⟩ = ∑ 𝑐$|𝑒$⟩%&'

$() , where 𝑐$ ∈ ℂ and |𝑒$⟩ is the i-th standard basis vectors of ℂ%. The collection {|𝑒$⟩}$()%&' is 
used to represent all possible states of the system |𝜓⟩, enumerated from 𝑖 = 0 to 𝑁 − 1. Here, we assume that 
these states follow an arbitrary, but consistent order. 

In quantum computation, defining the state of a quantum system as a linear combination of its possible states 
is an approach used to convey uncertainty about the system: the probability that 𝜓 is in state 𝑒$ is given by 
𝑝(𝑒$) = |𝑐$|*, where |⋅| is the Euclidean norm operation. For this reason, the collection of complex coefficients 
{𝑐$}$()%&' is referred to as probability amplitudes, and they represent one of the distinctive features of quantum 
computation when compared to the approach used in traditional systems to model stochasticity. An important 
corollary from this definition is that all valid quantum states |𝜓⟩ must be unit-length vectors since the sum of 
their squared coefficients is required to add up to unity. 

The coefficients of a quantum state can be modified through the application of quantum operations. These 
operations are represented as the multiplication of a unitary matrix, 𝑈, with the quantum state |𝜓⟩. Quantum 
operations modify the underlying probability distribution encoded in the quantum state. Algorithmic design in 
quantum computation is equivalent to selecting the set of unitary matrices that are going to be multiplied by 
the quantum state. By carefully modifying the coefficients of a quantum state, its stochasticity can be 
controlled. This is a core interpretation of quantum computation: controlling the behavior of a stochastic 
system to guide it towards areas of the probability space that represent a solution to a certain computational 
task. 

Three important considerations should be noted about unitary matrices. First, they preserve the norm of the 
vectors on which they are applied, maintaining the validity of quantum states. Second, they are easily 
invertible,	𝑈𝑈+ = 𝑈+𝑈 = 𝐼. Third, unitary matrices are closed under matrix multiplication. This enables the 
composition of intricate unitary operations by multiplying simpler unitary matrices together.  
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These are the mathematical principles of quantum computation required for this study. The next section is 
devoted to explaining its current implementation into a physical device known as a “gate-based quantum 
computer”. 

2.2.  Gate-based Quantum Computation 

Quantum computers are physical machines composed of multiple two-dimensional quantum systems called 
qubits. Let us represent a qubit with the ket vector |𝑞⟩ = [𝑐)			𝑐'], = 𝑐)|𝑒)⟩ + 𝑐'|𝑒'⟩ ∈ ℂ*. In this case, the 
ket |𝑒)⟩ and |𝑒'⟩, also written as |0⟩ and |1⟩, are defined as [1			0],and [0			1],, respectively. 

Quantum states are formed by combining multiple qubits. A group of qubits is commonly referred to as a qubit 
registry. The mathematical mechanism for this composition is the Kronecker product, |𝜓⟩ = ⨂ |𝑞$⟩%&'

$() ∈ ℂ*!. 
The resulting vector from the Kronecker operation is also a unit-length vector and therefore will constitute a 
valid quantum state. Its dimension, however, scales exponentially with the size of the qubit registry used in its 
generation. As a result, while quantum states can in theory have an arbitrary dimension, in the context of gate-
based quantum computation they are restricted to dimensionalities equal to 2%, 𝑁 ∈ ℕ-).  

Similarly, quantum operations are also subjected to physical restrictions that limit their generality. While in 
theory any unitary matrix can be used as a quantum operation, in practice quantum computers only implement 
a reduced number of quantum operations, applied over one or two qubits at most. These operations are known 
as quantum gates. In what follows, only those quantum gates that are required for the algorithms proposed in 
this study are presented. For a complete review, the reader is referred to [6]. 

Table 1. Quantum Gates used in this paper. 

Quantum Gate Symbol Matrix Expression Effect 

Pauli-X (Bit Flip) 𝜎! "0 1
1 0% Changes the state of a qubit from |0⟩ to |1⟩, and 

vice versa. 

Pauli-Z 𝜎" "1 0
0 −1% 

When applied over qubit |𝜓⟩ = 𝑐#|0⟩ + 𝑐$|1⟩, 
applies a negative sign over the second 
coefficient, 𝑐$. 

Hadamard 𝐻 
1
√2

"1 1
1 −1% 

When applied over a qubit initialized as |0⟩, it 
makes its measurement as either |0⟩ or |1⟩ equally 
likely.	

Control-NOT 𝐶𝑁𝑂𝑇 5

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

6 

Entangles a control and a target qubit together. 
The entanglement is as follows: if the control 
qubit is measured as |1⟩, then a Bit Blip gate is 
applied to the target qubit. 

The behavior of the CNOT gate can be extended from two to 𝑁 qubits, with the first 𝑁 − 1 qubits acting as 
control qubits, and the last one acting as the target qubit. The target qubit is only flipped through the action of 
a Bit Flip gate if all the controls are measured as |1⟩. Note that this “multi CNOT” gate is the quantum 
equivalent of an AND gate over 𝑁 − 1	 inputs. We will use it extensively for the quantum encoding process 
of fault trees, described in Section 3. 

Quantum gates are also combined using the Kronecker product to form unitary operations that match the 
dimension of the quantum state. The generation of these quantum operations from a subset of quantum gates 
applied over a subset of qubits in the system is represented in a diagram known as quantum circuit. The 
quantum circuit fully describes a quantum algorithm, indicating the type of quantum gate, the location, and 
order in which they should be applied to the system.  

A final implementation limitation of quantum computation is the observability of quantum states. Due to 
restrictions derived from quantum mechanics, the set of complex coefficients {𝑐$}$()%&' cannot be experimentally 
observed. However, the underlying probability distribution represented by this set can be characterized by 
repeatedly preparing and measuring the quantum state. In this measurement process, the quantum state |𝜓⟩ is 
collapsed towards one of its feasible states 𝑒$, following the probability distribution 𝑝(𝑒$) = |𝑐$|*. 
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Measurement is a destructive operation in quantum computation, meaning that a quantum state cannot be 
measured more than once without reconstructing it. By rebuilding the quantum state and repeating this process 
enough times, the squared amplitudes of the complex coefficients can be estimated with arbitrary accuracy. 
This experimental limitation enables the understanding of quantum states as probability distributions over 
bitstrings, a fundamental interpretation for its application to Fault Tree Analysis. To see this, notice that each 
qubit, when measured, will collapse towards one of its basis states given by the set {|0⟩, |1⟩}. Consequently, 
the measurement of a quantum state composed of 𝑁 qubits can be read as an ordered sequence of 0𝑠 and 1𝑠, 
i.e., a bitstring of length 𝑁. 

2.3. Grover Algorithm 

The Grover algorithm [5] is one of the few quantum computing algorithms with a proven computational 
advantage against traditional approaches. Its purpose is to selectively increase the likelihood of measuring 
bitstrings that satisfy a Boolean function 𝑓 known as the oracle function. This is done through the repeated 
application of a quantum operation known as the Grover operation, 𝑈. . To explain its formulation, let us first 
assume that a quantum state |𝜓⟩ is prepared by applying the unitary operation 𝑈/ to an 𝑁-qubit registry, each 
one of them originally prepared in the |0⟩ basis state. In mathematical terms, |𝜓⟩ is written as 𝑈/|0⟩⊗%.  

The Grover operation is given by 𝑈. = 𝑈/
+𝑆)𝑈/𝑆1, where the dagger symbol indicates conjugate transpose, 𝑆1 

is a unitary operation implementing an oracle function that applies a negative sign to states that satisfy the 
oracle function 𝑓 (see Section 4 for details), and 𝑆) is a diagonal matrix given by 𝑆) =
𝑑𝑖𝑎𝑔([1, −1,−1,… ,−1]) ∈ ℂ*!×*!, which can be easily generated using the set of quantum gates described 
in Section 2 [7]. The Grover operator has the effect of updating the probability of sampling a marked state 
from 𝑝3 to sin*J(2𝑘 + 1)𝜃3M, where 𝜃3 = asinJO𝑝3M and 𝑘 is the number of times 𝑈.  is applied to the 
quantum state 𝑈/|0⟩⊗%. As the reader can infer, the probability of sampling marked states can be, in theory, 
equal to 1. This occurs when the value of 𝑘 is equal to 𝑘∗ = 𝜋/(4𝜃3). However, in practice 𝑈.  can only be 
applied a discrete number of times, and therefore 𝑘∗ is selected as ⌊𝜋/(4𝜃3)⌋. 

This study uses the Grover algorithm to increase the likelihood of measuring a state that represents a minimal 
cut set configuration. A key aspect of the proposed approach is rooted in the fact that fault tree diagrams are 
just graphical representations of Boolean functions, and as such can be used to form oracles that guide the 
measurement process towards failure states, avoiding unnecessary computational expense. The 
implementation of fault trees as quantum circuits is described in the following section. 

3. FAULT TREES AS QUANTUM CIRCUITS 

Fault tree models represent Boolean functions connecting the operational status of basic components to the 
potential failure of the overall system. In this section, an approach to translating a traditional Fault Tree model 
into a quantum operation is described. This exposition is based on a previous PSAM16 conference article 
presented by the authors [8]. 

The procedure for translating a fault tree model into a quantum operation consists of three key steps. First, a 
registry composed of 𝑁 = 𝑁56 +𝑁76 + 1 qubits is prepared in the |0⟩⊗% state. Here, 𝑁56 and 𝑁76 are the 
number of basic and intermediary events in the fault tree, while the extra qubit is used to store the status of the 
TOP event. Note how independent qubits are used to store the final state of the system. For this, we shall use 
the convention {|0⟩, |1⟩} → {𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑓𝑎𝑖𝑙𝑒𝑑} when interpreting the bitstring that results from measuring 
the quantum circuit.  

The second step in the proposed methodology is the application of a quantum operation to encode the initial 
stochastic state of the basic events. In this step, the methodology makes full use of the superposition property 
to induce a probability distribution over the 2%"# possible basic event configurations. The quantum operation 
is defined as 𝑈56 = 𝑈8⊗ 𝐼, where 𝑈8 ∈ ℂ*

!"#×*!"# 	is applied to the basic events qubit registry, while the 
identity matrix 𝐼 ∈ ℂ*!$#%&×!$#%& is used as a “padding” matrix to make the operation match the dimension of 
the overall quantum state. While in principle any unitary operation 𝑈8 can be used to encode a probability 
distribution into the basic events’ configuration, this study uses 𝑈8 = 	⊗$()

%"#&' 𝐻 = 𝐻⊗%"#. This operation 
has the practical effect of assigning a probability of failure equal to 0.5 to all basic components, resulting in 
all possible configurations of basic events being equally likely and allowing us to explore all of them uniformly. 
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The final step in the translation of a fault tree model to a quantum circuit is the encoding of the logic gates that 
generate the intermediary and TOP events. For this, we shall provide quantum circuits that are equivalent to 
the NOT and AND logical operators. Due to the functional completeness of these two operations, all other 
logical relationships can be created by properly combining them. In particular, we shall use this approach to 
generate a quantum version of the OR logical gate. 

 First, the quantum counterpart of applying a NOT gate over a binary variable 𝑖 is simply applying the Pauli-
X quantum gate over the corresponding qubit |𝑞$⟩, as described in Section 2.2. For the logical AND gate, its 
behavior can be emulated by applying an MCNOT quantum gate to the quantum circuit, using as control qubits 
those representing the set of basic and intermediary events that act as inputs of the original AND gate in the 
fault tree, and storing the result in the qubit representing the output of the gate. 

These two quantum equivalent gates can be combined to form the logical OR gate. For this, let us first note 
the Boolean relationship 𝑂𝑅({𝑥$}) = 𝐴𝑁𝐷bbbbbb({�̅�$}), where {𝑥$} is a set of binary variables and a bar indicates 
negation. This relationship can be readily implemented in a quantum circuit by using the quantum versions of 
the NOT and AND gates to generate a quantum equivalent of the OR gate.  

The prior steps enable the implementation of an iterative strategy that encodes the intermediary events of the 
fault tree in the 𝑁76 qubits initially allotted for their statuses. A similar approach can be followed to encode 
the TOP event. Let us denote the resulting unitary operations as 𝑈76 and 𝑈,9:, respectively. This allows the 
composition of a unitary operation 𝑈1; = 𝑈,9:𝑈76𝑈56 representing the original fault tree. The number of 
qubits used by the proposed methodology scales linearly with the number of basic and intermediary events in 
the fault tree. This is an important improvement when compared to other approaches that propose the encoding 
of fault trees by first transforming them to a conjunctive normal form.  

The resulting quantum state, |𝜓⟩ = 𝑈1;|0⟩⊗% holds a superposition of all possible system outcomes. In 
generating this quantum state, the quantum computer has calculated the result of the fault tree Boolean function 
for all the configurations of basic events using only one application of 𝑈1;. This is a direct consequence of the 
linearity of quantum operations, and particularly of the distributive property of matrix multiplication. 
Furthermore, it is evidence of the parallelism capabilities of quantum computation. Nevertheless, while the 
computation can be executed in parallel, the restrictions in the observability of quantum states prevent us from 
retrieving and accessing all these results at once.  Instead, the measurement process only enables the retrieval 
of one of these outcomes per execution of the circuit before the quantum state is collapsed. Consequently, 
searching for minimal cut sets by repeatedly executing and measuring the fault tree’s quantum circuit has an 
equivalent query complexity to that of traditional Monte Carlo sampling. In other words, no advantage can be 
achieved by exclusively implementing a fault tree as a quantum model. However, the encoding of the fault tree 
as a quantum circuit enables the utilization of additional quantum operations in the data transformation 
pipeline, such as the Grover algorithm. 

By applying the Grover algorithm using 𝑈1; as the oracle operation, we can artificially enhance the likelihood 
of measuring states that satisfy the underlying Boolean function, i.e., those configurations that correspond to 
the cut sets of the original fault tree. While this provides an advantage over traditional Monte Carlo approaches, 
it is unlikely to have a significant impact on practical fault trees. The reason is that this approach does not 
increase the likelihood of minimal cut set configurations, but rather that of cut sets instead. In a practical 
situation, the number of cut sets in a fault tree is likely to be orders of magnitude higher than the number of 
minimal cut sets. This makes necessary the use of an additional reduction step to obtain minimal cut sets from 
cut sets, increasing the complexity of the algorithm, and wasting significant amounts of computation, since 
one cut set can span multiple minimal cut sets. This is a current shortcoming of many existing approaches. In 
the next section, we propose an algorithm to generate an alternative oracle operation that targets configurations 
identified as minimal cut sets. This novel approach allows us to selectively increase the likelihood of measuring 
only those configurations, resulting in a significant decrease in query complexity.  

4. PROPOSED ALGORITHM FOR MINIMAL CUT SET IDENTIFICATION. 

Section 3 reviewed the approach to generating the oracle operation 𝑈1;, which can be used in combination 
with the Grover algorithm to increase the likelihood of obtaining cut-set configurations from the measurement 
process. In this section, we improve on this formulation by selectively increasing the likelihood of only those 
configurations that correspond to minimal cut sets. To this end, we first propose a novel quantum operation, 
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𝑈!"#, capable of verifying whether a given configuration of basic events is a minimal cut set. Then, by using 
this operation as 𝑈/ in the Grover algorithm, we propose a quantum-based algorithm for minimal cut set 
identification. Our formulation is inspired by the following definition of a minimal cut set in a standard, 
coherent fault tree:  

Definition 1: Minimal cut set configuration 

 A given configuration of basic events, represented as a bitstring 𝑏, is a minimal cut set if and only if: 

1. Configuration 𝑏 causes the occurrence of the TOP event, i.e., 𝑏 is a cut set. 
2. Preventing the failure of any failed basic event in 𝑏 also prevents the failure of the system, i.e., 

configuration 𝑏	is irreducible as a cut set. 

Mathematically, Definition 1 can be written as the Boolean function shown in Eq. (1). 

 𝑓!"#(𝑏) = 𝑓1;(𝑏) ∧ e 𝑓1;bbbbJ𝑠(𝑏, 𝑖)M
$	∈	=(?)

 (1) 

where 𝑓1; is the underlying Boolean function representing the fault tree, 𝐹(𝑏) is a collection of the indices of 
failed basic events in configuration 𝑏, 𝐹(𝑏) = g	𝑗|𝑏A = 1i, and 𝑠(𝑏, 𝑖) is a switching function that flips the state 
of basic event 𝑖 in configuration 𝑏.  

Alternatively, Eq. (1) can be interpreted as the serial evaluation of multiple copies of the original fault tree. 
The first of these copies is evaluated using the original configuration 𝑏, while the rest are evaluated using the 
modified configurations 𝑠(𝑏, 𝑖), 𝑖 ∈ 𝐹. During the evaluation of 𝑓1;(𝑏), the Boolean formula verifyies 
condition (1) of Definition 1, to test whether b is a cut set of the fault tree. During the posterior evaluation 
of  𝑓1;bbbbJ𝑠(𝑏, 𝑖)M, 𝑖 ∈ 𝐹, the algorithm verifies condition (2) of Definition 1, to test whether preventing the failure 
of basic event 𝑖 prevents the failure of the overall fault tree. Finally, a series of conjunctive operations are used 
to verify the overall minimal cut set condition. 

The approach to translate Eq. (1) into a quantum operation 𝑈BCD is presented in Figure 1, divided into 3 distinct 
stages. As shown, the proposed quantum circuit requires six qubit registries of lengths: j|𝑞3EF⟩j = 1, j|𝑄56⟩j =
𝑁56, j|𝑄76⟩j = 𝑁76, j|𝑞,9:⟩j = 1, j|𝑄,9:G ⟩j = 𝑁56, and j|𝑞!"#⟩j = 1, where 𝑁56 	and 𝑁76 are the number of 
basic and intermediary events in the fault tree, respectively. As such, the total number of qubits required to 
generate 𝑈!"# is 2𝑁56 +𝑁76 + 3, maintaining a linear scaling in the number of basic and intermediary events. 

Stage #1 corresponds to the implementation of the first clause of Eq. (1). For this, the operation 𝑈1; is applied 
to the quantum circuit, followed by the application of the adjoint 𝑈76

+ , effectively reversing the encoding of the 
intermediary events and freeing the qubit registry |𝑄76⟩ for future computation. The second stage consists of 
the repeated application of a set of quantum operations that encode the set of Boolean functions 𝑓1;J𝑠(𝑏, 𝑖)M. 
For each repetition 𝑖 ∈ {1, … ,𝑁56}, a modified version of 𝑈1; is applied to the quantum state, where two 
changes are made. The first change consists of replacing basic event 𝑖 by |𝑞3EF⟩, which is initialized and always 
maintained in the |0⟩ state, effectively simulating the configuration where the basic event 𝑖 does not fail. 
Second, the result of the TOP event under those conditions is stored in the 𝑖-th qubit of registry |𝑄,9:G ⟩. To 
finalize each repetition, the adjoint 𝑈76(

+  operation is applied, once again reverting the state of the qubit registry 
|𝑄76⟩	and allowing its reutilization. The final step, stage 3, applies a series of CNOT gates and a global AND 
gate to combine the states of the combined registry {|𝑞,9:⟩, |𝑄,9:G } into a signal that identifies minimal cut set 
configurations, storing the result in qubit	|𝑞!"#⟩. 
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Figure 1. Quantum circuit representation of 𝑈!"#. 

With this formulation, we can define 𝑈/ = 𝑈!"# in the definition of the Grover operation, resulting in 𝑈. =
𝑈!"#
+ 𝑆)𝑈!"#𝑆1. In this case, the oracle operation 𝑆1 is defined as a single Pauli-Z gate applied to the qubit 

registry |𝑞!"#⟩. The proposed procedure to find minimal cut set configurations involves preparing the quantum 
state |𝜓⟩ = 𝑈.H𝑈!"#, with 𝑘 defined following Section 2.3. We hypothesize that measuring this quantum state 
should result in a stochastic process that requires fewer samples to produce all minimal cut set configurations 
in the fault tree. The next section tests this hypothesis and shows both numerical and theoretical proof of its 
validity. 

5. THEORETICAL AND EXPERIMENTAL VALIDATION 

In Section 2, we established that preparing and measuring a quantum state is equivalent to sampling from a 
probability distribution with a support composed of all possible bitstrings of length 𝑁. Then, in Section 4 we 
proposed a quantum-based methodology that utilizes the Grover algorithm to increase the probability mass 
associated with bitstrings representing minimal cut sets configurations. This section shows our validation 
approach. For this, we divide this section into two stages. For the first stage, we show numerical evidence that 
our proposed approach is capable of selectively increasing the likelihood of minimal cut set configurations. 
For the second stage, we show numerical and theoretical evidence to support that our proposed approach can 
provide a quadratic reduction in the number of samples required to find all minimal cut sets when compared 
against a random sampling approach.  

To start our validation, Figure 3 explores how the use of the Grover algorithm modifies the probability 
distribution encoded in the quantum state. For this, we utilize as a case study the fault tree shown in Figure 2, 
with 𝑁56 = 8, 𝑁76 = 4, and 𝑈8 = 𝐻⊗%. That is, we assign a failure probability equal to 0.5	to all basic events. 
This resulting fault tree consists of 2%"# = 256 total possible configurations, all equally likely, with 16 of 
them corresponding to minimal cut sets. We prepare and measure three versions of the quantum state |𝜓⟩ =
J𝑈/

+𝑆)𝑈/𝑆1M
H
𝑈/|0⟩%. The first one, shown in Figure 3a, uses 𝑘 = 0 (no Grover operations) and 𝑈/ = 𝑈1;. The 

second version, shown in Figure 3b, uses 𝑘 = 1 and 𝑈/ = 𝑈1;, i.e., increasing the likelihood of cut sets in 
general. The final version, shown in Figure 3c, represents our proposed approach. Here, we use 𝑘 = 3 and 
𝑈/ = 𝑈!"#, selectively increasing the probability mass of those configurations that are recognized as minimal 
cut sets. Note that Figure 3 is in logarithmic scale. 

 

Figure 3a shows that the lack of a Grover operator in conjunction with setting 𝑈8 = 𝐻⊗% results in a quantum 
state that assigns equal probability to all possible system outcomes. On the other hand, Figure 3b shows that 
the application of the Grover operator with operator with 𝑈/ = 𝑈1; results in a selective increase in the 
sampling probability of failure outcomes. While this is expected to provide an advantage against random 
sampling approaches, it is still an important inefficiency since most of the computation will be wasted in 
producing configurations that are not minimal cut sets. Finally, Figure 3c shows the effect of applying a Grover 
operator using the proposed circuit 𝑈!"# as the state preparation operation 𝑈/. From the results, it is clear that 
the proposed approach is capable of selectively increasing the likelihood of only those states that are recognized 
as minimal cut sets, treating all the rest (operational outcomes and cut sets) in the same manner. 

𝑄𝐵𝐸

Stage #1

Stage #2, repeated for
𝑖 ∈ 1,… ,𝑁𝐵𝐸 Stage #3

𝑄𝑇𝑂𝑃′

𝑞𝑇𝑂𝑃

𝑄𝐼𝐸

𝑞𝑚𝑐𝑠

𝑞𝑎𝑢𝑥

𝑈𝑓𝑡 𝑈𝑓𝑡𝑖
𝐶𝑁𝑂𝑇𝑖

	𝐴𝑁𝐷
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Figure 2. Fault tree structure used in this paper. As mentioned in Section 3, we use an equal failure 

probability for all basic events, 𝑝$ = 0.5.		∀𝑖 ∈ {1,… ,𝑁56 − 1}. 

 

 

 
Figure 3. Histograms depicting the underlying probability distribution of three distinct quantum states: (a) 
|𝜓⟩ = 𝑈1;|0⟩%, (b) |𝜓⟩ = J𝑈1;

+ 𝑆)𝑈1;𝑆1M
'
𝑈1;|0⟩%, and (c) |𝜓⟩ = J𝑈!"#

+ 𝑆)𝑈!"#𝑆1M
I
𝑈!"#|0⟩%. Each quantum 

state is prepared and measured 1E5 times to create these histograms. 

For the second stage of validation, we implement a series of fault trees according to the structure in Figure 2, 
each with an increasing number of basic events. We formally compare three methods for minimal cut set 
identification. As a baseline, we first consider a traditional random sampling approach, where all 
configurations are sampled with equal probability and evaluated to identify whether they are a minimal cut set 
or not. While inefficient, this approach gives us a point of comparison to see if the quantum-based approach 
can provide an advantage versus a naïve, conventional solution methodology. We henceforth refer to this 
approach as FT. The second approach is the one described in Section 3, where the cut sets of the fault tree are 
targeted by the Grover algorithm. We shall henceforth identify this approach as QFT. Finally, the last approach, 
henceforth identified as MCS, uses the Grover algorithm to target minimal cut sets directly using the proposed 
unitary operation 𝑈!"#. All experiments were executed in a traditional computer using quantum simulation 
software (Python + Pennylane) equipped with 128 GB of RAM. The use of a quantum simulator instead of a 

	𝐵𝐸0 	𝐵𝐸1

	𝐼𝐸0, 𝑂𝑅

	𝐵𝐸𝑁𝐵𝐸−2 	𝐵𝐸𝑁𝐵𝐸−1

	𝑇𝑂𝑃, 𝐴𝑁𝐷

	𝐼𝐸𝑁𝐼𝐸−1, 𝑂𝑅

	𝐵𝐸2 	𝐵𝐸3

	𝐼𝐸1, 𝑂𝑅
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quantum computer has the advantage of enable theoretical research without the consideration of hardware 
errors that affect negatively the accuracy of the results. Currently, hardware errors are a significant issue in 
contemporary quantum computers, and large research efforts are devoted to devise methods to correct and 
tackle these issues. While hardware related topics are not the focus of this paper, the interested reader can 
review the strategies to perform quantum error correction and the advances achieved in the field in the 
following reference: [9]. 

Figure 4a shows the average number of queries required to find all minimal cut set configurations by the three 
approaches tested in this study. These were calculated by repeatedly preparing and measuring the 
corresponding quantum states or executing the traditional random sampling approach until all minimal cut sets 
were found. We can see that for all the trees tested in the quantum simulator, the performance of the proposed 
approach surpasses both the existing quantum and traditional approaches, QFT and FT, respectively.  

Due to limitations related to the exponential scaling of quantum states and their impact on the memory usage 
for their simulation in traditional hardware, only systems up to 32 qubits can be simulated. This severely limits 
the fault tree sizes that can be tested numerically to 𝑁56 ≤ 10. However, as seen in Section 2.3, the probability 
increase given by the Grover algorithm only depends on the initial probability of sampling a target 
configuration, denoted as 𝑝3. Due to the relatively simple structure of the fault tree shown in Figure 2, these 
initial probabilities can be easily computed for both the QFT and MCS approaches, and therefore their 
performances can be projected for an arbitrarily large fault tree. For other systems, such as a more complex 
fault tree, where this probability may not be known before hand, an iterative approach can be used to find the 
ideal number of Grover operator applications. This approach is fully described in [5], Theorem 3. However, 
the estimation of p_a is an active area of research in the field and further improvements will be required to 
make the technique fully applicable in complex systems. 

The results of this projected performance are shown in Figure 4b, where we have also included an exponential 
fitting for each curve. 

 
(a) Results obtained through numerical 

simulation of quantum states. 

 
(b) Results obtained through the theoretical 

projection of performance. 
Figure 4: Number of required samples by the tested approaches as a function of the number of basic events.  

Figure 4b clearly shows that the proposed approach uses a significantly smaller number of samples to identify 
all minimal cut set configurations when compared against the FT and QFT approaches. This advantage scales 
non-linearly with the size of the fault tree, represented in this example by the number of basic events. 
Moreover, the fitted curves clearly show an approximately quadratic reduction in the number of samples 
required by our approach, MCS, when compared against random sampling.  
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6. CONCLUSION 

In this paper, we introduced a quantum operation that can selectively mark configurations that are recognized 
as minimal cut sets in a standard, coherent fault tree. Using this quantum operation in combination with the 
Grover algorithm, we proposed a novel methodology that can achieve a quadratic reduction in the number of 
samples required to identify all minimal cut sets when compared against a random sampling approach. 
Numerical and theoretical evidence is provided to validate this speedup. 

While the proposed approach is shown to provide an advantage against the classical approach used as a 
baseline, it is not without its drawbacks. Indeed, we mention three aspects that can be improved in successive 
investigations and that can lead to exciting novel research in this area. First, the initial probability 𝑝3 was 
computed using the structure of a pre-defined fault tree. However, in practical fault trees, this probability will 
not be known a priori. A suggestion is to generate alternative approaches to the estimation of the number of 
Grover operation applications, 𝑘. As a second avenue for future research, we acknowledge that the traditional 
baseline tested in this paper is not the state-of-the-art approach to identifying minimal cut sets in fault trees. 
More advanced methods exist that make better use of existing structures within the fault tree itself. In this 
aspect, a thorough comparison of the proposed approach against such approaches is left for future work. 
Finally, this study defines performance as the number of samples required to fulfill a certain task. This 
definition plays nicely with a quantum-based approach due to the interpretation of quantum states as 
probability distributions. Nonetheless, it is still an open question how to compare quantum-based approaches 
against algorithms that are, by their nature, not stochastic, or that do not employ a sampling strategy. Within 
the context of fault trees, this is particularly important given that the current state of the art includes approaches 
that perform Boolean manipulation instead of sampling to identify minimal cut sets. 
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