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Abstract: Sectors related to energy constitute the predominant source of CO2 emissions due to a global 

dependence on fossil fuels. As a substitute to fossil fuels, hydrogen emerges as a cleaner energy source, 

offering easy transportability and diverse storage options (e.g., compression, metal hydrides). However, 

hydrogen embrittlement (HE) in steel becomes a significant concern, which can lead to the premature 

formation of cracks, and may result in a more severe structural failure. Ensuring effective and safe hydrogen 

storage and transportation technologies is essential for hydrogen distribution. Simultaneously, Machine 

Learning (ML) is a potent tool for predicting and identifying HE in diverse steel grades due to its ability to 

analyze complex and large datasets effectively. This study suggests utilizing ML classification models to 

analyze HE factors, including material composition, environmental conditions, and testing methods. The 

methodology involves database creation, labeling process, and preprocessing techniques for improving the 

performance of models. The AdaBoost classifier demonstrates high accuracy in classifying steel examples as 

susceptible or not to HE, reaching an accuracy of 93%, supported by preprocessing approaches. Metrics such 

as precision, recall, and confusion matrix are also analyzed in the study. This research contributes to the early 

detection of susceptibility in different steel grades, promoting the use of hydrogen as a cleaner energy. 
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1. INTRODUCTION 

 

Hydrogen has emerged as a promising solution to the dual challenge of climate change and carbon emissions 

reduction, offering a clean and renewable energy source with diverse applications across industries, as shown 

by Zou et al. (2022). It presents easy transportability, including long-distance transportation, through pipelines 

or electrical transmission lines. Additionally, hydrogen is associated with a diverse range of storage options 

(e.g., compression, metal hydrides), which is observed in Sharma et al. (2021). In this sense, Ratnakar et al. 

(2021) highlighted the importance of the development of effective and safe technologies for storage and 

transportation of hydrogen. 

 

The hydrogen supply chain, consisting of tank trucks, pipelines, and storage facilities, becomes essential for 

widespread adoption, according to Almansoori and Shah (2006). However, hydrogen embrittlement (HE) in 

steel is a concern, which can lead to the premature formation of cracks, especially during pipeline 

transportation, as noted in the study of Ilyushechkin et al. (2023). Laureys et al. (2022) demonstrated that HE 

occurs when hydrogen atoms diffuse into the lattice of materials, leading to a degradation of mechanical 

properties, increased susceptibility to cracking, and potential structural failure. Hydrogen-assisted fatigue 

crack growth is significant even at low hydrogen partial pressures, caused by fluctuations in gas pressure and 

applied loads. In this sense, Maior et al. (2022) emphasizes that the focus on risk analysis and reliability (e.g., 

the maintenance of equipment) is essential to ensure operational efficiency and prevent unexpected failures. 

 

In recent years, advancements in materials science and Machine Learning (ML) have provided innovative 

solutions for addressing the challenges associated with HE, as evidenced by Nachtane et al. (2023). ML 

algorithms can recognize patterns, correlations, and hidden relationships within the data that might be 

challenging for the human mind to discern, as seen in the research of Fragassa et al. (2019). By understanding 

the mechanisms of hydrogen interaction with steels including material properties, environmental conditions, 

and performance characteristics, Barrera et al. (2018) analyzed that it is possible the development of predictive 

models capable of assessing the susceptibility of steels to embrittlement. This strategy can facilitate the 

identification of more efficient steels for the transportation and storage of hydrogen. 
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This study discusses the construction of a tool utilizing different ML classification models, such as extra trees, 

k-nearest neighbors, adaptative boosting, and categorical boosting, to analyze factors contributing to HE, 

providing precise predictions and enabling early detection of susceptibility in different steel grades. In addition, 

it discusses the contribution to the use of cleaner energy and promotion the transition to more sustainable 

practices, particularly in the context of hydrogen transportation and storage. The study is organized as follows: 

Section 2 examines recent scientific literature to provide a comprehensive review. Section 3 outlines the 

methodology utilized, encompassing database creation, establishment of target values, preprocessing 

techniques, and predictive models. Lastly, section 4 involves the results obtained in the study, while section 5 

offers concluding observations. 

 

2. LITERATURE REVIEW 

 

Malitckii et al. (2020) combine hydrogen thermal desorption spectroscopy (TDS) and ML to quantitatively 

evaluate the susceptibility of steels and alloys to HE. They created a regression artificial neural network (ANN) 

to predict hydrogen-induced degradation of mechanical properties, using data augmentation to improve model 

generalization. Linear regression (LR) modeled the relationship between yield stress (YS), ultimate tensile 

strength (UTS), and hydrogen sensitivity parameter (HSP), achieving mean absolute errors (MAE) of 3.9% for 

YS and 5.5% for UTS. The ANN predicted HSP with an MAE of 1.4%. Similarly, Ahmed et al. (2024) used 

seven ML techniques, including random forest (RF) and categorical boosting (CatBoost), to predict HE based 

on the reduction of area in tensile tests of various low carbon and low alloy steels under pressurized hydrogen 

gas. The CatBoost model performed best, with low MAE and high coefficients of determination (R² of 77.62% 

for training and 72.50% for testing), identifying hydrogen gas pressure and UTS as key factors. 

 

Kim et al. (2022) introduced an ML methodology to predict the Hydrogen Environment Embrittlement (HEE) 

index of austenitic steels by analyzing the relative reduction of area. They used Pearson's correlation coefficient 

and Maximum Information Coefficient to evaluate correlations between input features and the HEE index. 

They tested four ML models: RF, LR, Bayesian ridge, and support vector machine, finding that the RF model 

achieved the highest accuracy (R² > 0.7), significantly outperforming LR and Bayesian ridge models. Subedi 

et al. (2023b) also considered an index (i.e., Embrittlement Index) to a classification approach and to assess 

the safety of European natural gas pipelines for hydrogen transport using RF, AdaBoost, and ANN algorithms. 

Their study predicted material susceptibility to HE under different working conditions, aiming to prevent 

integrity loss and leaks. The RF algorithm correctly classified 84% of the evaluation database, while AdaBoost 

slightly outperformed it with 84.5% accuracy, and ANN achieved 77.5%. They ranked pipeline materials by 

their HE susceptibility, aiding hydrogen compatibility evaluations and strategies for integrity loss prevention. 

 

3. METHODOLOGY 

 
The methodology of the present study consists of database and target values creation, data preprocessing, 

modeling, and classification analysis. The methodology flowchart can be visualized in Figure 1. 

 

 
Figure 1. Methodology flowchart. 
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3.1. Database creation 

 

Mechanical tests conducted on materials immersed in hydrogen environments were utilized for our research. 

For analysis, we considered deformation and fracture results from tensile tests using slow strain rate tensile 

tests (SSRT) with smooth specimens. The information from these tests was extracted from the “Technical 

Reference for Hydrogen Compatibility of Materials” by San Marchi and Somerday (2012), and the “Influence 

of Gaseous Hydrogen on Metals,” the final report by Walter and Chandler (1973). Both reports are freely 

available and can be used to assess HE in materials. 

 

From the reports, we extracted a dataset containing 137 data samples. This dataset includes 26 distinct features, 

which encompass various aspects such as chemical material composition (i.e., percentage of specific 

elements), environmental conditions (e.g., the pression and temperature of environment), mechanical 

properties (i.e., characteristics of the steel in response to a force or stress), and label classifying in susceptible 

or not to HE. Table 1 illustrates the format of the final database. 

 

Table 1. Database overview 

  ID Gr.70; Gr. B; 1080; X42 ... 
E

n
v

ir
o
n

m
en

t 
H2 pressure  

(MPa) 
6.9; 69.00; 138; 172; 34.5 ... 

C
h

em
ic

al
 c

o
m

p
o

n
en

ts
 

Fe 66.54; 52.780; 99.240 ... 

B 0; 0.002; 0.006; 0.005 ... 

Ti 0; 1.930; 2.090; 2.100 ... 

Temperature of thermal  

precharging (K) 
295.15; 470; 620; 473 ... 

V 0.35; 0.350; 0.420; 0 ... 

Nb 0.83; 0.190; 0; 0.230 ... 

Sn 0.005; 0; 0.084 ... 

Al 0.005; 0.005; 0.012 ... Temperature of 

 environment (K) 
295.15; 375; 200 ... 

N 0.3; 0.170; 0.70; 0.270 ... 

Cu 0.04; 0; 0.420; 0.300 ... 

M
ec

h
an

ic
al

 p
ro

p
er

ti
es

 

Strain rate (s-1) 0.0001; 0.00033; 0.00054 ... 
Ni 0.084; 0.300; 0; 0.040 ... 

Co 4.450; 0 ... 
Sy (MPa) 375; 364; 462; 414; 366 ... 

Cr 0.93; 1.670; 1.460; 0.540 ... 

Mo 0.2; 0.420; 0.430; 1.010 ... 
Su (MPa) 535; 566; 559; 814 ... 

C 0.21; 0.400; 0.160; 0.130 ... 

Mn 1.04; 0.830; 0.320; 0.300 ... 
RA (%) 69; 72; 58; 16; 14 ... 

P 0.009; 0.0016; 0.005 ... 

S 0.020; 0.014; 0.019 … 
Label 0; 1 

Si 0.21; 0.310; 0.020; 0.630 ... 

 

During the data curation process, certain missing values were addressed by applying standard assumptions to 

avoid data loss for temperature and strain rate. For instance, a room temperature of 295.15K (equivalent to 

22ºC) was assumed, which is widely used for normal conditions, as seen in Maeda et al. (2012). Additionally, 

a strain rate of 0.0001s-1 was utilized, as it serves as a nominal rate commonly employed in both experimental 

setups and modelling. This finding was shown by Jin et al. (2021). 

 

3.2. Creation of target values  

 

A method for quantifying HE in materials is the use of an embrittlement index (EI). This index measures the 

degree of material susceptibility to hydrogen exposure, as seen in Moro et al. (2010). The EI is expressed as a 

percentage ranging from 0 to 100. At 0%, hydrogen has no impact on the toughness of the material, and at 

100%, HE completely reduces the steel toughness to zero, as mentioned by Álvarez et al. (2021). 

 

In this study, the EI of each steel was determined by calculating the tensile properties loss according to the 

Equation (1): 

 

𝐸𝐼 =
𝛿0 − 𝛿𝐻

𝛿0

× 100% 
(1) 
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Where, 𝛿𝐻 and 𝛿0 represent the tensile properties of the specimens with and without hydrogen pre-charging, 

such as elongation (El) and reduction of area (RA), based on the research of Zhao et al. (2021). Our study 

considered RA for the calculation of EI. 

 

The EI value was utilized for the labelling process, which proceeded according to condition: 

 

𝐸𝐼 ≥ 50 {
 1                      
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The labels indicate two different classifications. Class 1 is defined by an EI higher than 50%, indicating 

materials not recommended for hydrogen applications under the specified testing conditions. Alternatively, 

class 0 represents materials with EI lower than 50%, which indicates low susceptibility to HE but does not 

guarantee the suitability of a material for hydrogen transport or storage under the specified operating 

conditions, and further analysis is required, as stated by Subedi et al. (2023a). Quantitatively, 101 data samples 

of this dataset received label 0 (73.72%), and 36 received label 1 (26.28%). 

 

3.3. Data preprocessing 

 

3.3.1. Removing missing values 

 

In the initial stage of the preprocessing, we addressed missing data by eliminating instances with incomplete 

information which were not filled in by standard values during data curation. Handling missing values ensures 

the integrity and reliability of a dataset, establishing a robust base for subsequent analyses. This finding was 

presented by Needham et al. (2009). 

 

Immediately after the process of removing missing data, the dataset was partitioned into an 80:20 ratio, with 

80% allocated for training and 20% for testing. 

 

3.3.2. Feature selection 

 
Feature selection is an important step in ML, aiming to identify the most relevant features to enhance model 

performance, as described by Maior et al. (2023). In our study, we employed gradient boosting (GB) for this 

purpose. GB utilizes a metric called feature importance to assess the significance of each attribute in decision-

making during tree construction. According to Upadhyay et al. (2021), Feature importance scores are computed 

by comparing and ranking all features in the dataset, with the importance of a feature determined by the number 

of splits associated with it, weighted by the observations from each split. Purity metrics like the Gini Index are 

commonly used to select split points, and the feature importance of each tree is averaged across all trees in the 

model. Figure 2 shows all the features ranked by its importance value. 

 

 
Figure 2. Ranking of features by importance. 
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We then established a threshold of 0.05 for feature importance values and selected the top 7 features from the 

dataset based on this criterion. Notably, this threshold was chosen empirically, without a technical procedure, 

serving as a practical guideline for selecting the features that most contribute to the model’s predictive 

performance. 

 

3.3.3. Data augmentation 

 

Considering the imbalance in the database, where the majority class is significantly overrepresented compared 

to the minority class, we implemented a random oversampling data augmentation to address this issue. This 

technique involves randomly selecting instances from the minority class and replicating them to increase their 

representation in the dataset. This process continues until the number of instances in the minority class matches 

that of the majority class, as seen in Amin et al. (2016). The objective is to provide the model with more 

instances of the minority class, optimizing the performance of the models by ensuring that it has sufficient data 

to capture patterns and make predictions across all classes accurately, as analysed in the study of Nemade et 

al. (2023). It is also important to mention that data augmentation is performed after the separation of the dataset 

into training and test and is only applied to the training data, based on the approach of Maior et al. (2021). 

 

3.3.4.  Standardization 

 

In the standardization step, we applied StandardScaler to the data. This technique works by calculating the 

mean and standard deviation of each feature in the dataset. Then, it subtracts the mean from each feature and 

divides by the standard deviation, according to Gelman (2008). This transformation results in a distribution 

with a mean of 0 and a standard deviation of 1 for each feature, effectively centering the data around 0 and 

scaling it to unit variance. This process improves the performance of ML models, especially those sensitive to 

feature scales. This outcome was presented by Sales da Cunha et al. (2023). 

 

3.4. Modeling 

 

3.4.1. Optimization of hyperparameters 

 

The optimization of hyperparameters was a part of the ML model's modeling process. We employed 

GridSearchCV to determine the most optimal hyperparameters for our classification models. This algorithm 

systematically explores a predefined grid of hyperparameter values, evaluating the performance of the model 

for each combination using cross-validation, as stated by Shams et al. (2023). Thus, it performs an exhaustive 

search through the hyperparameter space, facilitating the identification of the hyperparameter values that 

achieve best performance metrics, enhancing the robustness of the models. These findings are observed in the 

study of Belete and Huchaiah (2022). 

 
3.4.1. Predictive models 

 
Supervised classifiers models were utilized to predict the target variable based on the features in our dataset. 

These models have the ability of learn from labeled data, where each data point is associated with a known 

class or category, as shown in Maior et al. (2020). According to Lo Vercio et al. (2020), the classifiers aim to 

identify complex patterns within the data to make predictions about the class labels of unseen instances. They 

are trained on a labeled dataset, which is then used to identify or make decisions on new unseen data. The 

models utilized are defined bellow: 

 

K-Nearest Neighbors (KNN): KNN is a classifier that works by storing all available cases and classifying new 

cases based on a similarity measure (e.g., distance functions), as described by Maillo et al. (2015). This model 

has the concept that classes are determined by a majority vote of its neighbours. The choice of k, the number 

of neighbors, is a critical hyperparameter that influences the performance of the model. This observation is 

presented in the research of Won Yoon and Friel (2015).  

 

Adaptive Boosting (AdaBoost): AdaBoost is an ensemble learning method that combines multiple weak 

learners (typically decision trees) to create a strong classifier, as seen in Subasi et al. (2018). According to Cao 

et al. (2013), this algorithm trains a sequence of weak learners, each focusing on the instances that were 
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misclassified by the previous learners. The final prediction is made by combining the predictions of all weak 

learners, weighted by their performance,  

 

Categorical Boosting (CatBoost): CatBoost is a powerful ML algorithm designed for dealing with categorical 

variables without the need for extensive preprocessing, such as one-hot encoding, as noted by Zhang and 

Jánošík (2024). Based on Dong et al. (2021), this classifier utilizes ordered boosting, which optimizes the 

sequence of trees built during training, resulting in faster convergence and improved performance. 

 

Extra Trees Classifier (ETC): According to Ampomah et al. (2020), ETC is an ensemble technique that builds 

multiple decision trees and combines their predictions through voting or averaging. Unlike traditional decision 

trees, ETC introduces additional randomness by selecting random thresholds for each feature at each split, 

reducing overfitting and improving the generalization of the model, as shown in the study of Joshi et al. (2021).  

 

4. RESULTS 

 

Our investigation into classification ML models achieved different accuracies through the implementation of 

diverse preprocessing techniques, such as feature selection (FS), data augmentation (DA), and hyperparameter 

tuning. Additionally, we considered balanced accuracy when evaluating our findings. This calculation is 

expressed in Equation (2) for binary classification, according to Chicco et al. (2021). 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

2
× (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

(2) 

 

From our analysis, all models have relatively high accuracy, indicating a correct classification ability of most 

examples. AdaBoost was the model with best accuracy of the study with 93%, followed by ETC and KNN 

classifiers. All results obtained can be found in the appendix section of this study. Table 2 presents results from 

models with high accuracy performance when utilizing preprocessing techniques. 

 
Table 2. Balanced accuracy results. 

  Preprocessing 

  tuning tuning + DA tuning + DA + FS 

ETC 0.75 0.75 0.90 

KNN 0.60 0.85 0.90 

ADA 0.60 0.83 0.93 

 
In Figure 3, we can observe the significant impact of hyperparameter tuning and the FS technique on models 

trained with DA, particularly the ETC and KNN, which led to considerable increases in accuracies. However, 

the CAT model did not perform well with the FS and tuning technique, presenting a slight fall in its accuracy. 

 

 
Figure 3. Accuracy of models utilizing data augmentation. 

Examining the precision, recall, and F1-score metrics from the models with high accuracies helps to better 

understand their performances as classifiers. Considering the utilization of tuning, DA, and FS approaches, the 
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ETC exhibits the best precision (0.96) and F1-score (0.95), indicating great ability to avoid false positives and 

maintain a balance between precision and recall. ADA also shows a respectable precision of 0.93 and a recall 

of 0.88, resulting in an F1-score of 0.89, proving to be a strong competitor. However, the KNN shows relatively 

weaker performance, especially in terms of recall (0.84) and F1-score (0.85), despite a reasonable precision of 

0.91 as shown in Table 3.  

 
Table 3. Precision, recall, and f1-score from best models. 

  ETC KNN ADA 

Precision 0.96 0.91 0.93 

Recall 0.96 0.84 0.88 

F1-Score 0.95 0.85 0.89 

 
When analyzing the confusion matrices, we can observe that both KNN and ADA exhibit similar rates of true 

positives and false positives, suggesting that they both tend to incorrectly classify some negative examples as 

positive. On the other hand, ETC demonstrates a perfect rate of true positives but incurs a rate of false 

negatives, indicating that it lacks some positive examples. This may suggest that the variations introduced by 

data augmentation technique may not be fully captured by the model, leading to a loss of some positive 

examples during the classification process. The confusion matrices of these models are presented in Figure 4. 

 

   

Figure 5. Confusion matrices from best models. 

 
5. CONCLUSION 

 
This study applied Machine Learning (ML) classification models to analyze factors contributing to Hydrogen 

Embrittlement (HE) susceptibility, considering material chemical composition, environmental conditions, and 

testing methods. Among the models tested, AdaBoost achieved the highest accuracy at 93%, followed by ETC 

and KNN classifiers. However, some models did not show significant improvements with hyperparameter 

tuning, indicating the need for a deeper exploration of parameter combinations and tuning techniques (grid 

search). Although ETC demonstrated high recall and f1-score values, the confusion matrix suggests that these 

metrics might be influenced by data augmentation issues inherent to the model. For future analysis, we 

recommend using an alternative data augmentation technique with ETC to enhance the model’s performance. 

Another challenge faced was data acquisition. Investing in expanding the database is important for this work 

to significantly contribute to the development of a robust tool for classifying different steel types intended for 

hydrogen transport and storage. The advancement of this methodology can be essential to support the 

expansion of the hydrogen supply chain, promoting the wider adoption of hydrogen as a clean energy source. 
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Appendix 

 
Table 4. All tests result. 

    without tuning with tuning 

    without DA with DA without DA with DA 

ETC 
without FS 0.75 0.75 0.75 0.75 

with FS 0.75 0.78 0.75 0.90 

KNN 
without FS 0.68 0.78 0.60 0.85 

with FS 0.68 0.90 0.68 0.90 

ADA 
without FS 0.90 0.90 0.60 0.83 

with FS 0.85 0.85 0.63 0.93 

CAT 
without FS 0.80 0.88 0.78 0.88 

with FS 0.68 0.88 0.60 0.85 
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