
17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

Integration of Commonalities in the Paradigm of Model-Based Safety Analysis

in Aerospace

Lanzani Isabellaa*, Luca Ulianob, Riccardo Scattolinia

aPolitecnico di Milano, Milano, Italy
bLeonardo Helicopter Division, Samarate, Italy

Abstract: The need for rapid and accurate preliminary safety assessments in the development of complex

systems, particularly in the aerospace sector, is undeniable. This urgency is due to the need to make informed

decisions on architecture changes at the earliest possible stage. To meet this challenge, Model-Based Safety

Analysis (MBSA) approaches are emerging as key tools. These approaches allow the automatic generation of

Fault Tree Analysis (FTA) and other reliability calculations. This paper focuses on the integration in a

MBSA frame of Common Mode Analysis (CMA), which addresses potential commonalities between

components. Following the guidelines of ARP4761A, the presented procedure allows for the direct

elicitation of such independence requirements. Minimal Cut Sets (MCS) are automatically computed from

automatically computed from a safety model of the system, expressed in a suitable language such as

AltaRica. The process allows for design decisions, such as determining the minimum number of components

required to meet industrial safety standards. Among other independence assertions, the problem of common

causes arising from shared common resources is addressed, and an optimal allocation solution is proposed.

All results are examined throughout a practical study in which two flight control system architectures are

compared: this comprehensive evaluation of their safety characteristics aims to simulate a realistic industrial

scenario.

Keywords: Model-Based Safety Analysis , Failure Propagation Models , Common Mode Analysis ,

Independence Requirements , AltaRica , Aerospace Safety Process .

ACRONYMS

Abbreviation Definition IRS Inertial Reference System

A/C Aircraft MC Markov Chain

A/D Analog To Digital Converter MCC Most Critical Condition

ADH Air Data Heading System MBSA Model-Based Safety Analysis

CMA Common Mode Analysis MCS Minimal Cut Set

DAL Development Assurance Level OLE Ok Loss Erroneous (failure propagation type)

DD Dependence Diagram PRA Particular Risk Analysis

ESM Extended System Models PSSA Preliminary System Safety Assessment

FTA Fault Tree Analysis RA Radar Altimeter

FPM Failure Propagation Models RDC Remote Data Concentrator

GPS Global Positioning System (S)FHA (System) Functional Hazard Assessment

GTS Guarded Transition Systems SM State Machine

IFR Instrumental Flight Rules SSA System Safety Assessment

1. INTRODUCTION

Accepting malfunction’s numerical probabilities often derives from assessing multiple systems based on the

assumption that faults are independent.

In safety-critical applications, like aerospace, it is necessary to ensure that such independence

between certain components exists or that the risk associated with their dependence is deemed acceptable[1].

Hence, assessments to identify common causes for faults or malfunctions are mandatory during both

Preliminary System Safety Assessment (PSSA) and System Safety Assessment (SSA).

Especially being able to cover the early development stage, where the system architecture has not

been defined yet, can produce enormous benefits in terms of saving time and costs. Following the

recommended guidelines, the article aims to support the generation of Common Mode Analysis (CMA),

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

during this stage. CMA’s primary objective here is the elicitation of independence requirements, to anticipate

safety-critical aspects of the proposed architecture.

Apart from eliciting them, the scope of the study will be to automatically assert importance metrics and

independence assertions for each independence determined to be necessary. This will provide the designer

with the set of requirements together with all the safety considerations that can be obtained at this stage, to

be used to support the next iterations of the development itself. This iterative interaction between the

processes of safety and design will be further enhanced by integrating the study within a Model-Based Safety

Analysis (MBSA) frame.

This article is structured as follows: Section 2 will describe the aerospace safety process. The focus

of this Section will be MBSA and CMA during Preliminary System Safety Analysis (PSSA). Failure

Propagation Models (FPM) are described together with the advantages of their application. Two auxiliary

software, AltaRica Wizard and DalCulator, used for MBSA and CMA respectively, are described here.

Section 3 will define the proposal to automatically elicit independence requirements and relevant

indicators, namely important metrics and independence assertions, extracted from each requirement.

Section 4 will provide a realistic case scenario in which two airborne architectures are being

compared, following the aerospace safety process. Results are driven from this scenario.

Finally, conclusions and future works can be found in Section 5.

2. AEROSPACE SAFETY PROCESS

Safety-critical systems, such as aeronautical technologies, must guarantee high-reliability standards to reduce

the hazards of using their applications. Figure 1 illustrates the safety assessment process. Its assessments are

presented according to the stages of development at which they occur: concept development, preliminary and

detailed design (development) - highlighted in red - and integration and verification [1].

Figure 1 – Safety assessment process [1]

In the early phases of the second stage, in which this research is carried out, the objective is to

produce requirements: here not all decisions have been taken and the focus will progressively shift from a

high-level point of view into a lower level, or, consistently, it will shift from a preliminary system

description into a detailed one. The requirements generated from the safety assessment process in this phase

must provide valuable insight into critical aspects of the avionics architectures.

To fully cover the design development, the safety analysis must be flexible to trace these changes and

produce as rapid as possible indicators to guide the designer into an architecture that can comply with said

requirements. The result is an iterative flow between two separate and different domains of knowledge:

system safety and system design.

The design development stage begins with input from the Aircraft Functional Hazard Assessment

(AFHA) - from the concept development stage - which consists of the identification and evaluation of

potential hazards associated with the aircraft, regardless of the details of its design or implementation [1].

The AFHA is used as input to develop the System Functional Hazard Assessment (SFHA, FHA in short),

whose objective is to decompose the aircraft's high-level functions and failure conditions into those of the

system.

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

The Preliminary System Safety Assessment (PSSA) ensures that the proposed architecture meets the

probabilistic targets of the FHA (henceforth referred to simply as ‘safety objectives’). The main goal of the

PSSA is to determine how component failures can lead to the system-level failure conditions identified by

the FHA, and to provide both quantitative and qualitative indicators of compliance with safety objectives

(probability budget, DAL allocation…). In this article, as shown in Figure 1, this analysis is carried out using

MBSA techniques [1]. It is worth mentioning that MBSA is not the only possible assessment to carry out

PSSA, as common alternatives in industrial applications use Fault Tree Analysis (FTA), Markov Chains

(MC), or Dependability Diagrams (DD). Section 2.1 will detail the PSSA process and especially MBSA

techniques.

Another important output of PSSA is the identification of independence requirements that must be

evaluated broadly, in terms of design, sharing of mutual resources, installation, and other criteria.

Some of these criteria drive the design process and provide the designer with useful information. Other

criteria were not deemed relevant in this part of the process as they entail a highly defined system description

(e.g. installation procedure, physical location) or detailed information about the final components (e.g.

supplier name and batch). Section 2.2 will detail the CMA process.

 With misuse of notation, in the article, systems are made by components and not items.

The PSSA safety analysis is iterative and becomes more detailed as development progresses. At the

end of the iterations, the final architecture is scrutinized against all the safety-related requirements collected,

and its safety is assured through the integration and verification phase. At this stage, System Safety Analysis

(SSA) verifies that the proposed final version of the system meets all the requirements that have been

generated. SSA is carried out using the same analysis as PSSA. It is not part of this article as the focus is on

bridging the main PSSA assessments: MBSA and CMA.

2.1. PSSA - MBSA

Aerospace systems are known to deal with complex components, deeply embedded systems, reconfiguration

procedures, and redundancies. Quantifying with numerical probability the reliability of different

architectures is not trivial. Model-Based Safety Analysis (MBSA) was conceived to support these

computations.

More than one classification of the different types of MBSA has been made, among which the

distinction based on the generation of safety models is particularly useful [4].

In this article, focus is on techniques that rely on the use of formal methods for the description of a

standalone Failure Propagation Model (FPM). Examples of software are AltaRica Wizard and xSAP [2].

A FPM describes what failure modes can originate in a system component and how these failure modes are

propagated into the system [3]. This safety model is evaluated against a specific scenario, generally a failure

condition from the SFHA, to automatically derive the combination of failure events that trigger this

condition. Compared with alternative methods of aerospace (e.g. FTA, MC), the benefits of FPM are

various: given a library of components, a safety model is easier to build, it requires less time, and can be

quickly updated if changes happen in the architecture. In truth, FPMs alone can be more assertive than other

assessment analyses (e.g., static FTA), since they allow for dynamic considerations. Moreover, FPMs can be

simulated and tested, to confirm their consistency with the real system. In the aerospace field, the use of

MBSA for certification means has been strongly supported for many years, and it is now included in the

aerospace recommended practices [1].

 Other than standalone FPM, MBSA also contains Extended System Models (ESM) that, as the name

suggests, are system models enriched with fault models [4, 5]. These models rely on heavy numerical

simulations and "nominal" case descriptions. Nevertheless, especially if physical interactions play a

significant role, using them to get extensive information about the system's behaviour leads to extremely

high computational effort and risks incomplete coverage of possible effects [6].

 Due to these considerations, AltaRica 3.0, a standalone FPM modelling language from the AltaRica

Association, was chosen for this research [8].

AltaRica 3.0

AltaRica is a high-level object-oriented modelling language dedicated to (probabilistic) safety analyses.

AltaRica models can be directly transformed into FTA or used to automatically compute the list of MCSs

against a specific failure scenario [7].

The scope of the article is only to give an intuitive grasp of the possibilities of this language, without

delving into its complexities. Readers interested can find resources to understand better [8, 12].

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

An example of the AltaRica language is provided in Figure 2.

AltaRica allows for the instantiation of state variables, flow variables, and events. Firing a specific

“transition” will change the state variables of the specific class. Then, flow variables are uploaded

accordingly to the "assertion" instructions. The semantics of transitions and assertions are based on Guarded

Transition System (GTS) [8].

Figure 2 - AltaRica model for “FaultyComponent” and “GPS”

In Figure 2, the class “FaultyComponent” is defined: events “loss” and “err” will trigger a change

in the internal State Machine (SM) defined by “s” (see Figure 3) to “F_LOSS” or “F_ERR” respectively.

The flow variable “O” is then propagated through other parts of the model to show how component failures

affect the system. The domain “OLE”, used to instantiate both state variable and flow variables, describes

three possible outcomes (“OK”, “F_LOSS” and “F_ERR”). “GPS” is built by reusing this semantic for the

definition of an internal failure of the core ("c") and a failure of the port ("p").

Figure 3 – SM for “FaultyComponent” Figure 4 – List of Minimal Cut Sets

The list of MCSs can be extracted from the safety model (Figure 4). From it, it is possible to

highlight the concept of hierarchization: being AltaRica an object-oriented language, a class can be defined

in terms of other classes. For example, looking at the 410th MCS, "ss4.gps.c.err" uniquely defines the core

failure of the GPS sensor contained in the Sensor Suite 4 (SS4), which fails in erroneous; similarly, in the

413th MCS, "ss4.gps.p.loss" represents its port failing in loss.

The order of the MCS (Figure 4) is the number of events contained in each specific MCS.

Regarding common failure modes, AltaRica has been implemented with the possibility to fire

several failure events from different instances simultaneously. In industrial practice, common modes are not

associated with probabilities due to the impracticality of finding a quantitative probability for them, for this

reason, the analysis explained here will not make use of this feature.

Instead, in industry, common causes of failure appear separately during CMA.

2.2. PSSA – CMA

The complete evaluation of all critical pairs of components is part of CMA. Critical pairs are defined

here as all pairs of component’s failure modes that are inside a MCS (or equivalently, are under the same

“AND” gate of FTA) of most severe failure conditions. Indeed, a dependence between critical components

makes the probabilistic computation from the MCS mathematically unreliable and, hence, non-compliant

with safety objectives. To prevent this, the list of MCS is examined, critical pairs are extracted and for each,

a thorough examination is carried out to avert the risk of a commonality that would escalate the failure

condition. These examinations are used to comply with independence requirements.

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

Other than the quantitative validation of the probability, independence requirements are needed to

guide design decisions, as the allocation of shared equipment or resources.

DalCulator, used in this research for the optimal allocation of resources, is briefly described in the following

paragraph.

DalCulator

DalCulator is an open-source software developed by ONERA’s MBSA team, here used to compute the

optimal allocation for foreseen shared resources, concerning independence requirements [9].

For instance, let’s take a single MCS where the objective is minimizing the number of resources

while avoiding single points of failure due to their allocation:

𝑀𝐶𝑆𝑖 = {ss1.gps.p.err , ss2.gps.p.loss , ss3.gps.p.err},

the resulting computed allocation could be:

• {ss1.gps.p} → 𝑟1

• {ss2.gps.p , ss3.gps.p} → 𝑟2

Where the minimal number of resources computed is equal to two.

User-defined constraints can be given as input to personalize the independence analysis computation.

In the experiment of Section 4, Coloc constraint was used to force the allocation of a set of components

under the same resource.

In addition to deriving functional independence requirements, DalCulator can support the decision

process for Development Assurance Level (DAL) and Failure Probability Budget [10, 11], which are not

addressed in this research.

3. PROPOSAL

Figure 5 represents the article proposal. The horizontal axis represents the tool used to support the analysis,

while the vertical axis represents a division in the procedural step envisioned. The results for both PSSA-

MBSA and PSSA-CMA are shown in yellow.

Figure 5 - Process scheme

Step 1 – MBSA modelling

The safety model (FPM) is created in a suitable MBSA environment, such as AltaRica, which allows

a model description of the safety-related features of the system and automatic generation of the MCS.

Modelling rules are applied to extend the model information:

1. Identification of functional redundancies (defined later in this Section) using shared naming

conventions: instances of such components are named with the same unambiguous pattern followed

by a different number (e.g. fcs1, fcs2).

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

2. Component’s modes of failure are limited only to “loss” and “erroneous”: this information will

appear in the MCS (e.g. ss1.gps.c.loss and ss1.gps.c.err, for a core failure of the first GPS sensor)

and will be further exploited.

3. Any transmission of data between separate components takes place through a port; ports are always

named "p" and if there are several ports at the same level in the hierarchy, they are distinguished by a

number (e.g. ss1.gps.p1, ss1.gps.p2).

The main output of this phase is the list of MCSs automatically produced. It can be used to process safety

objectives, with the FPM itself. Hence, this first output of the process represents PSSA - MBSA.

Step 2 – Shared resources allocation

Step two entails the implementation of commonalities due to shared resources.

Resource is a very broad term. It is used here to describe those components that are not part of the safety

model due to their low functional importance or different system ownership. However, they are components

on which several system elements depend, and which can become a source of common failure modes. The

objective is to address these criticalities as early as possible to make informed decisions on architectural

changes. For this step, DalCulator Independent Analysis was used (explanation in Section 2.2).

For each considered resource:

1. An automatic generation of constraints (relying on the hierarchical naming convention of the safety

model and on the basic knowledge of the resource itself) is performed.

2. DalCulator receives as input the constraints set and the MCSs to compute the optimal allocation.

3. The resulting allocation is forwarded to the next step of the analysis to be processed.

Constraints generated in experiment described in Section 4 are representative of the aerospace field.

Nevertheless, the same concept can be applied to different fields and systems.

Step 3 – CMA synthesis

The algorithm will start by eliciting the independence requirements by searching through the MCS the

critical pairs. For each elicited requirement, one importance metric and three independence assertions are

investigated.

Relying on industrial expertise, the importance metric was used to sort the requirements.

The importance metric is defined as the minimum order of the MCS in which the pair of components is

present (Table 1). This provides an immediate insight into the criticality of a possible common failure

between the two components.

Table 1. Importance Metric Outcome

Independence assertions are defined here as qualitative support material for compliance with the

requirement. More precisely, they are early assumptions that test, under some criteria, the independence

between the two considered events; they are not meant to be rigid assertions nor a means of compliance with

the requirement. Instead, independence assertions give valuable insights into the robustness of the system

under analysis and may be used in the future SSA–CMA.

1. The first independence assertion is the “Redundancy Assertion”. Functionally redundant components are

defined here as components performing the same functionality; indeed, two components created for the

same purpose could share similar features and, thus, common failures. Due to MBSA characteristics, it

was possible to automatically assess this functional redundancy assertion by building the model with

recurring name patterns on such components. Hence information about redundancies can be directly

inferred from the list of MCSs.

2. The second independence assertion is the “Failure Mode Assertion”. During PSSA it is suggested to start

by limiting the failure propagation to “loss” and “erroneous” for each fallible component. It can be

Outcome 1 The pair is found in a MCS

of order 2

A common failure will create a single point of failure, mitigations are

required

Outcome 2 (Else) the pair is found in a

MCS of order 3

A common failure will not create a single point of failure, mitigations

are suggested

Outcome 3 (Else) the pair is found in a

MCS of order 4 or more

A common failure between these components is not immediately

dangerous

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

reasonably assumed that no internal common failure can generate a “loss” in one component and an

“erroneous” in another.

3. Third independence assertion will inform whereas the pair under analysis is sharing the resource or not.

Having covered this assertion in Step 2, they will not be included in the tables in this section.

Table 2. Independence Assertion Outcome

4. EXPERIMENT

A comparison is made between two architectures (Figure 6), representing two possible designs of an avionic

control system, to be installed in an aircraft. The main functionality of these systems is to control actuators

and provide stabilization to the system, processing the data received from the sensors.

Figure 6 – Proposed architectures

In yellow, Sensor suites (SSs), contain an Air Data and Heading sensor (ADH), a Global Positioning

System (GPS), and a Radar Altimeter (RA): they measure and transmit flight data upstream.

In green, the flight control systems (FCS) receive this data. They consist of two processors, one on

the monitoring lane and one on the command lane. The logic implemented is ‘Fail Silent’ (cessation of data

output): if the monitoring lane finds an inconsistency between its calculations and those of the command

lane, it forces a loss of the output signal.

Each FCS performs a consolidation procedure with the data received from the sensor suites. Taking a

conservative stance, each control unit receives the pack of signals, processes them inside the COM-MON

pattern, and propagates an OLE signal representing the outcome of the consolidation.

• A loss signal (F_LOSS) is propagated if FCS does not receive sufficient information to perform all

consolidations safely.

• An erroneous signal (F_ERR) is propagated if FCS receives enough misleading information on any

consolidation and relies on it.

• A correct signal (OK) is transmitted if neither of the above scenarios is true.

In purple, a Selector (SEL) allows for continuing the operations in simplex logic, with a reduction in

safety margins, whereas a failure is detected.

Selector changes slightly between the two architectures:

• In left-hand side of Figure 6, it detects a failure of the first FCS to revert to the second FCS.

Claim Question Analysis outcome

Redundancy Is the pair

functionally

redundant?

YES Pairs are inherently functionally redundant: common modes must be

carefully considered

NO Pairs are not inherently functionally redundant: there is no reason to

suspect a common mode exists between them

Failure Mode Does the pair fail

with similar

modes of failure?

YES Components fail similarly, both as Loss or both as Err

NO Components fail differently, one Loss and the other Err

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

• In right-hand side of Figure 6, it uses the output from the central FCS2 as an arbiter between the

primary FCS1 and secondary FCS3 (indeed, the central output is never being propagated to the

actuators).

The failure conditions tested in both architectures are the “Loss of Flight Data Transmission” and the

“Erroneous of Flight Data Transmission”. They are represented in the extract of the FHA in Table 3. Each

failure is described inside the safety model by the same observer: the OLE variable output of the selector.

Table 3. FHA extraction

4.1. Step 1 – MBSA modelling

Table 4. MCS summary

Table 4 shows that both architectures present single points of failure. The one from first architecture

(under 02_Err) can be explained by the duplex nature itself, incapable of detecting an erroneous via a

comparison between two misleading sources in the worst-case scenario of consistent errors (erroneous

signals representing the same value). The ones from the second architecture (under 01_Loss) are trickier:

they depend on SS2 connected to FCS1 and FCS3. An erroneous from that source will generate a loss signal

on both FCSs, due to “Fail Silent” implemented logic, which will not be isolated.

CAT failures with single points of failure are not acceptable for civil conventional aircrafts.

Therefore, if this had been the scope of the first architecture, the development process could have

stopped there (as clear from FHA in Table 3). Instead, it is assumed that the adopted certification

standard for the A/C system does not require this criterion.

4.2. Step 2 – Shared resources computation

Given the nature of the experiment, the following problem was defined: data from sensors needs to pass

through an A/D converter, and suppliers are suggesting MIMO converters, able to process multiple signals.

Constraints are automatically produced by the following considerations: only signals transmitted

from sensors to FCS need an A/D converter and shared signals must be allocated to the same A/D converter.

The algorithm automatically processes the information from the safety model in AltaRica, relying on naming

patterns, and producing the set of constraints. DalCultator then uses MCS and constraints to compute the

optimal allocation, enforcing the absence of single points of failure due to resource allocation.

Table 5 contains an example of the constraints computed. Numerical results are in Table 7.

Table 5. Extract of automatically derived requirements

ID Failure Condition MC

C

Severity Description AltaRica Observer

01_Loss Loss of Flight Data

Transmission

IFR HAZ The autopilot stops working. The pilot is

forced to engage without any knowledge

of the environment.

Output from

selector = F_LOSS

02_Err Erroneous of Flight

Data Transmission

 CAT The pilot or autopilot could misbehave

due to the acting failure and lose A/C

stability

Output from

selector = F_ERR

 First Architecture

DUPLEX

Second Architecture

TRIPLEX

 01_Loss 02_Err 01_Loss 02_Err

Number of MCS 2808 4588 9896 118606

Number of MCS (order 1) 0 2 3 0

Number of MCS (order 2) 675 135 743 93

Number of MCS (order 3) 1404 2212 4365 4237

Number of MCS (order 3>) 729 2241 4788 122936

First architecture Second Architecture

Coloc('fcs1.io_fcs.csens1.p1','ss1.adh.p') Coloc('fcs1.io_fcs.csens1.p1','ss1.adh.p1')

Coloc('fcs2.io_fcs.csens1.p1','ss1.adh.p2')

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

4.3. Step 3 – CMA synthesis

Table 6. Independence Analysis Extract

Table 6 shows an extract of the importance metric and independence assertions defined in Section 3.

4.4 Results

Table 7 - Independence Analysis Summary

A summary of the architecture comparison can be found in Table 7.

The increase in complexity of the second architecture results in 950 more independence

requirements to be considered than those from the first. Indeed, the list of failure events from the second

architecture shows 15 more than the first architecture. However, it could be argued that the two architectures

are comparable from a single point of failure avoidance perspective, as shown by the results of the

importance metric analysis. It is worth reminding that the second architecture shows no single point of

failure under the CAT failure condition, making it more appealing from a safety perspective.

The results of the optimal allocation of A/D converters show that choosing the second architecture

implies two more converters, to deal with the larger number of transmissions needed.

The same percentage of requirements can be argued independently of the functional redundancy assertion,

but in absolute terms, the second architecture has 209 requirements related to functional redundancies, while

the first has 83. Finally, 93 requirements from the second architecture can be reasonably argued to be

independent due to different failure modes, while the same assertion applies to only six requirements in the

first architecture.

TARGET REQUIREMENT & ANALYSIS

fcs1.cc1.com.bit AND

fcs2.cc1.com.bit

Requirement 1: Components fcs1.cc1.com.bit AND fcs2.cc1.com.bit shall be independent

 A common failure will create a single point of failure, mitigations are required

 Pairs are inherently functionally redundant: common modes must be carefully considered

 Components fail similarly, both as Loss or both as Err

…

fcs2.cc1.com.lru AND

fcs2.cc1.xmon

Requirement 307: Components fcs2.cc1.com.lru AND fcs2.cc1.xmon shall be independent

 A common failure will not create a single point of failure, mitigations are suggested

 Pairs are not inherently functionally redundant: there is no reason to suspect a common mode

exists between them

 Components fail differently, one Loss and the other Err

…

ss2.adh.c AND

ss2.rada.c

Requirement 1466: Components ss2.adh.c AND ss2.rada.c shall be independent

 A common failure between these components is not immediately dangerous

 Pairs are not inherently functionally redundant: there is no reason to suspect a common mode

exists between them

 Components fail similarly, both as Loss or both as Err

Indicator Description First Architecture Second architecture

GENERAL Number of independence requirements 657 1607

Number of failure events (from MCS) 49 64

IMPORTANCE

METRIC

Number of independence requirements related

to a MCS of order 2

628 601

Number of independence requirements related

to a MCS of order 3

29 865

Number of independence requirements related

to a MCS of order 4 or higher

0 141

INDEPENDENCE

ASSERTIONS

Number of A/D converters from optimal

allocation

4 6

Number of critical pairs not functionally

redundant

574 87.4% 1398 87.0%

Number of critical pairs who fail similarly as

Loss or Erroneous

651 99.1% 1514 94.2%

17th International Conference on Probabilistic Safety Assessment and Management &

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024)

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan

 A safer architecture comes at the cost of more requirements: this analysis aids the designer in

choosing the architecture that best complies with the appropriate regulations.

5. CONCLUSIONS

The article presents an approach for integrating MBSA results to support other parts of the security

process, namely the essential management of independence requirements.

In the authors' opinion, the most important feature here addressed is the possibility to automatically

and freely address criticalities and foreseen unsafe aspects related to dependencies between components,

from the very first parts of the preliminary design development. Highlighting critical pairs, sorting them

using qualitative indicators (e.g. the minimal order of the MCS in which they appear), and addressing

independence assertions, are beneficial features that will surely speed up CMA during the verification phase.

This is especially true when dealing with large numbers of requirements, as common in industry.

The ability to calculate an optimal allocation based on the DalCulator is another valuable feature that

supports the design decision process when selecting equipment. Moreover, the flexibility of using naming

conventions directly from the safety model enhances the usefulness of MBSA techniques, maximizing the

extraction of relevant information.

Future work aims to add metrics and assertions to cover the analysis as much as possible, including

probabilistic consideration. We are curious to carry out similar analyses also in the verification phase.

The flexibility of DalCulator in different sharing resource scenarios will be investigated, as well as its other

functionalities for DAL and budget allocations.

Acknowledgements for funding organizations

This work was partly funded by Leonardo Helicopter Division.

Acknowledgments

We'd like to thank the ONERA RIME Team: Kevin Delmas, Pierre Bieber, Christel Seguin, Tatiana

Prosvirnova, Sergio Pizziol. Thank you for giving us support to DalCulator and for many helpful comments.

We would like to thank Enrico Zio for his endless interest in this journey.

References

[1] Society of Automotive Engineers. ARP4761A: Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment. 2023.

[2] I. Lanzani, R. Scattolini, E. Zio, A. Cimatti, M. Bozzano, and S. Tonetta. Two formal methodologies of

Model-Based Safety Assessment for Fault Tree Analysis. International Conference on System

Reliability and Safety (ICSRS), 376–383, 2023.

[3] R. Bernard, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge. Experiments in model based safety

analysis: Flight controls. IFAC Proceedings Volumes, 40, 43–48, 2007.

[4] S. Gradel, B. Aigner, and E. Stumpf. Model-based safety assessment for conceptual aircraft systems

design. CEAS Aeronautical Journal, 1–14, 2022.

[5] A. Joshi and M. P. Heimdahl. Model-based safety analysis of simulink models using SCADE design

verifier. Computer Safety, Reliability, and Security: 24th International Conference, 24, 122–135, 2005.

[6] P. Hönig, R. Lunde, and F. Holzapfel. Model based safety analysis with smartIflow. Information, 8, 7,

2017.

[7] T. Prosvirnova and A. Rauzy. Automated generation of minimal cut sets from AltaRica 3.0 models.

IJCCBS, 6, 50, 2015.

[8] T. Prosvirnova. AltaRica 3.0: a model-based approach for safety analyses. PhD Thesis, Ecole

Polytechnique, 2014.

[9] ‘DalCulator: https://github.com/onera/dalculator/releases/tag/v2.0.0

[10] P. Bieber, R. Delmas, and C. Seguin. DALculus – Theory and Tool for Development Assurance Level

Allocation. Computer Safety, Reliability, and Security, 43–56, 2011.

[11] K. Delmas, L. Chambert, C. Frazza, and C. Seguin. Optimization of Development Assurance Level

Allocation. Digital Avionics Systems Conference (DASC), 1–10, 2023.

[12] M. Batteux, T. Prosvirnova, and A. Rauzy. AltaRica 3.0 in ten modelling patterns. Int. J. Critical

Computer-Based Systems, 9, 133-165, 2019.

