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Abstract: The European Commission has identified hydrogen as a key solution to reduce greenhouse gas 

emissions, with the International Energy Agency reporting a significant rise in low-emission hydrogen 

production projects. However, safety concerns remain a major obstacle due to hydrogen’s unique properties, 

including its high flammability and potential for material degradation. Thus, hydrogen-induced material 

degradations pose additional risks to equipment integrity and accidents involving hydrogen can lead to 

catastrophic effects. Therefore, correctly detecting the cause of failure is crucial for implementing preventive 

measures. By documenting and analyzing incidents, companies can identify patterns or trends that may 

indicate systemic issues requiring attention. This knowledge can inform training programs, safety protocols 

to minimize the likelihood of similar accidents in the future. However, the sheer volume of accident reports 

makes human review impractical. Thus, this study proposes employing Natural Language Processing (NLP) 

techniques to automate the detection of the root causes in hydrogen-related accident narratives. To that end, 

this study partially automates the creation of a labeled dataset and build a classifier based on Bidirectional 

Encoder Representation from Transformers (BERT) to identify accidents’ causes. The model’s effectiveness 

is tested on the Hydrogen Incidents and Accidents Database (HIAD) 2.1, established by the European 

Commission-funded Network of Excellence on Hydrogen Safety (HySafe). By automating the analysis of 

accident narratives, this research contributes to enhancing the proposal of preventive associated with 

hydrogen-related accidents. 
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1.  INTRODUCTION 

 

Global climate change and ecological damage caused by fossil energy have garnered attention for sustainable 

energy transitions in recent years. Hydrogen is distinguished as a clean and highly efficient energy carrier, 

with the potential to significantly reduce dependence on fossil fuels across all energy sectors (Huan et al., 

2024). However, during the production and operation of hydrogen industrial systems, the occurrence of a 

leakage accident can easily lead to fire and explosion (Lu et al., 2024). In fact, hydrogen possesses a low 

ignition temperature and a broad explosive range (Adamson and Pearson, 2000). Due to its smaller molecular 

volume compared to natural gas, hydrogen can easily penetrate pipe gaps, causing leaks. After hydrogen 

leakage, a jet is formed and gradually transforms into a plume. Thus, depending on the mixture 

concentration, hydrogen ignition can occur upon encountering the lowest ignition energy (Yang et al., 2021). 

 

Hydrogen leaks are the leading causes of accidents at hydrogen refueling stations, resulting in severe loss of 

life and/or property. For instance, accidents like the explosion at the Sandvika hydrogen refueling station in 

Norway resulted in injuries and the temporary closure of several hydrogen refueling stations in Norway, 

Denmark, and neighboring countries for an extended period (Wang et al., 2024). Similarly, the hydrogen 

tank explosion in Gangneung, South Korea, resulted in deaths and injuries. Thus, amid growing concerns 

about recent hydrogen-related accidents in leading hydrogen energy-adopting countries, maintaining public 

confidence in hydrogen infrastructure is crucial for advancing energy transitions. Therefore, the risk 

assessment in hydrogen handling facilities has attracted significant attention from many experts and 

academics (Zhang et al., 2022). 

 

In this context, risk analysis (RA), which involves identifying and managing risks associated with specific 

activities, emerges as an important strategy to mitigate, and reduce these risks to acceptable levels. 

Concurrently, accident analysis plays a crucial role in accident prevention. By learning from accidents and 

extracting insights, accident prevention efforts become more targeted, encompassing the formulation of 

regulations, risk management, and knowledge training (Jia et al., 2024). 
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In parallel, the advancement of computer technology and linguistics has led to the growing application of 

natural language processing (NLP) technology across various domains. As the number of accident analyses 

reaches a certain threshold, patterns can be discerned from the causes of accidents, enabling the 

implementation of universal preventive measures, even on an industry-wide scale. Therefore, analyzing 

accident causes based on a large dataset of accidents proves to be an effective approach to accident 

prevention, with manual analysis being the primary method. However, accidents often yield vast amounts of 

unstructured text data, making manual analysis time-consuming and labor-intensive (Yan et al., 2021). Thus, 

the sheer volume of accident reports makes human review impractical (Macêdo et al., 2022; Ramos et al., 

2022). 

 

NLP techniques hold promise in supporting RA since they can be applied to extract, organize, and classify 

information from a text (McDonald, Ade and Peres, 2020). Data-driven approaches are increasingly 

employed to enhance RA. Studies by (Ahmadpour-geshlagi et al., 2020; Baker, Hallowell and Tixier, 2020; 

Kutela, Das and Dadashova, 2022; Janstrup et al., 2023) utilize NLP to extract information from accident 

investigation reports, limitations persist, particularly in the context of aviation accidents. For example, 

(Kuhn, 2019) utilized Latent Dirichlet Allocation (LDA) topic modeling to patterns in motor vehicle crash 

records. However, LDA models a document as a Bag-of-Words (BoW), ignoring the contextual information 

of words within a sentence. (Zhang, Srinivasan and Mahadevan, 2021) used the National Transportation 

Safety Board (NTSB) texts for building supervised machine learning models for performing the prognosis of 

adverse events like accidents, aircraft damage, or fatalities. However, these authors did not focus on the 

identification and analysis of the causes of accidents. 

 

This study addresses the need to apply NLP to detect the cause of accidents inferred from its narratives. The 

proposed methodology applies contextual word-vector representations derived from pre-trained Bidirectional 

Encoder Representation from Transformers (BERT) (Devlin et al., 2018) to identify the root causes of 

accidents contained in the Hydrogen Incidents and Accidents Database (HIAD) 2.1, created by the Joint 

Research Centre (JRC) of the European Commission as part of the Hydrogen Safety Excellence Network 

(HySafe) 2004–2009 (Daniele, Jennifer Xiaoling and Moretto, 2019). The remainder of the study is 

organized as follows, Section 2 provides an overview of hydrogen accidents, highlighting their significance 

and the challenges associated with their prevention and management accidents. Section 3 provides insights 

into how NLP techniques can be applied to accident narratives to extract meaningful information; Section 4 

describes the methodology used in this study. Section 5 presents the findings of the study, followed by 

Section 6 which concludes.  

 

 

2.  HYDROGEN ACCIDENTS DATABASE 

 

Previous research has primarily focused on analyzing specific accidents to identify causative factors. For 

instance, studies highlighted the significance of organizational and personnel factors in hydrogen accidents 

(Lu et al., 2024). Similarly, (Sakamoto et al., 2016) emphasized design errors and maintenance deficiencies 

as common causes of accidents at hydrogen refueling stations. Understanding these factors is crucial for 

formulating effective preventive measures and mitigating the risk of hydrogen leakage accidents. Therefore, 

the creation of structured databases and repositories, along with thorough risk analysis, is crucial for 

understanding the causes of hydrogen leakage accidents. This understanding enables the implementation of 

effective preventive measures to enhance safety in companies involved with hydrogen. These databases play 

a significant role in reporting and analyzing accidents across different industrial sectors and social activities. 

 

In Europe, databases such as Accident Reporting Information Analysis (ARIA) (BARPI, 2024) and 

European Major Accident Reporting System (eMARS) (European Commission, 2024) collect incident 

reports and investigations related to industrial accidents, including those involving hazardous chemicals. 

Similarly, databases like Relational Information System for Chemical Accidents Database (RISCAD) (AIST, 

2024) in Japan and those maintained by regulatory bodies in the United States compile information on 

accidents and their causal factors. 

 

However, only two databases specifically focus on hydrogen-related accidents: HIAD 2.1 and Hydrogen 

Tools Lessons Learned (H2TOOLS), developed by the Pacific Northwest National Laboratories (PNNL) and 
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financed by the U.S. Department of Energy (PNNL, 2024). These databases aim to provide extensive 

information on hydrogen-related accident events. While H2TOOLS offers detailed lessons learned from 

previous hydrogen-related events, HIAD 2.1 allows for large-scale statistical evaluations, providing valuable 

insights into the risks associated with hydrogen production, handling, and storage. 

 

Despite these advances, the development of risk prediction models for hydrogen leak accidents remains a 

challenge. Addressing this challenge requires the integration of scientific methods to analyze causal factors 

and the development of efficient risk prediction models. Leveraging NLP techniques offers a promising 

avenue for analyzing accident reports and extracting valuable information to improve risk prediction and 

accident prevention efforts in hydrogen-related industries. 

 

 

3.  NATURAL LANGUAGE MODEL 

 

Transformers-based models have demonstrated their efficacy in NLP by acquiring universal language 

representations through training on extensive text corpora. However, training transformers from scratch 

requires significant computational resources and time (Han and Wang, 2021). To address this challenge, 

transfer learning enables the utilization of knowledge acquired from source tasks (i.e., pretraining tasks) to 

facilitate downstream tasks. Additionally, the availability of labeled datasets for NLP tasks can be limited. 

To overcome this hurdle, self-supervised learning empowers transformers models to learn through pseudo-

supervision, utilizing one or more pretraining tasks to extract valuable language information (Kalyan, 

Rajasekharan and Sangeetha, 2021).  

 

BERT and Generative Pre-trained Transformer (GPT) were pioneering pre-trained language models that 

utilized transformer encoders and decoders, respectively (Devlin et al., 2018). In the context of risk and 

reliability engineering, despite the advances when considering studies related to core NLP tasks, it is 

common to find applications using classical models such as BoW, TF-IDF, and Doc2Vec. Moreover, BERT 

implementations in Pytorch and Tensorflow have been available for more than three years (Wolf et al., 

2020), in different languages, stably, with no long-term compatibility problems between libraries. Hence, we 

developed our methodology based on BERT, as it gives us flexibility and robustness. 

 

Multiple variations of pre-trained BERT models are available for download, allowing users to fine-tune these 

models for specific supervised learning tasks (Nguyen, Le and Le, 2021). This involves adding an untrained 

layer of neurons on top of the pre-trained BERT model. Overall, during fine-tuning, the pre-trained 

parameters are adopted to initialize the model, which is then updated using labeled data tailored to the 

supervised task (Macêdo et al., 2022). For instance, we can adjust BERT’s architecture by adding one output 

layer on top of the pre-trained model to adapt it for performing a classification task. For instance, we can 

adjust BERT’s architecture by adding one output layer on top of the pre-trained model to adapt it for 

performing a classification task. It’s worth mentioning that the parameters related to the additional layer are 

the only parameters that require random initialization and learning from scratch. This approach enables the 

construction of state-of-the-art architectures within a reasonable timeframe (Howard & Ruder, 2018). For 

more details see (Devlin et al., 2018).  

 

4. METHODOLOGY 

4.1. Dataset 

 

The study is based on data available on the HIAD, a repository tool that gathers reports of industrial 

accidents related to hydrogen and its derivatives. The JRC of the European Commission created HIAD as 

part of the HySafe 2004–2009 (Daniele, Jennifer Xiaoling and Moretto, 2019). New events were regularly 

provided to HIAD given that JRC experts were responsible for maintaining and updating the database. These 

events were reviewed and validated by JRC experts before being made public. The HIAD database aimed to 

facilitate the exchange of lessons learned from hazardous events involving hydrogen to improve the 

information network and prevent similar unexpected events in the future (Jones, Kirchsteiger and Bjerke, 

1999). In 2017, the JRC, together with the Fuel Cell and Hydrogen Joint Undertaking (FCH 2 JU), updated 

the HIAD database to HIAD 2.1 and integrated it as part of the European Hydrogen Safety Panel (EHSP) 

2009-2022 activities (Daniele, Jennifer Xiaoling and Moretto, 2019). 
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Regarding the information collected in HIAD 2.1, the database contains all the parameters necessary to 

understand what happened and how the undesirable event can be described in detail. Currently, all records 

collected have been exported to an Excel workbook that allows users to access and analyze the data 

according to their needs (the Excel workbook used in this study is updated as of January, 2024). The file 

contains six sheets: 

 

• Events – main classification, narrative summary, systems involved, date, location, and cause 

classification; 

• Facility – description of applications, storage conditions, type of location, and pre-event conditions; 

• Consequences – effects in terms of human and property losses for the affected facilities; 

• Lessons Learned – corrective measures adopted; 

• Event Nature – quantitative information on emergency action, leakage characteristics, leak type, and 

fire consequences; 

• Reference – the primary source of information. 

 

Reports from the HIAD 2.1 database are intended for public use. The Event spreadsheet, visually 

demonstrated in Figure 1, contains some parameters allow gathering detailed information from each event 

among the sheets: Event ID (i.e., the record number in the database), Quality Seal (i.e., information regarding 

the level of detail of the report), Full Description (i.e., the descriptive summary of the incident, with detailed 

information) and Causes (i.e., the cause(s) of the accident).  

 

 

 
Figure 1 - HIAD 2.1 example 

 

HIAD 2.1 considers six cause categories. Three of the accident causes pertain to human factors, 

encompassing job, individual, and organizational aspects according to the Health and Safety Executive 

(HSE) definition: 

 

• Individual/human factors: Encompass inadequate skill and competence levels, fatigue, 

disengagement, and individual medical issues. 

• Management system factors: Encompass poor planning resulting in overworked staff, inadequate 

safety systems, failure to learn from previous incidents, one-way biased communication, lack of 

coordination and defined responsibilities, poor management of health and safety, and deficient safety 
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culture. Some incidents highlighted outdated or lacking operative and maintenance guidelines, 

particularly concerning external contractors. 

• Job factors: Include inappropriate equipment and instrument design, design flaws, missing or unclear 

instructions, poorly maintained equipment, high workload, noisy or unpleasant working conditions, 

constant interruptions, and disturbances. 

 

The remaining three accident causes  relate to system design, material, manufacturing, and installation: 

 

• Installation error: Despite correct component selection and implementation, a malfunction occurs 

due to improper installation or maintenance. Examples include the absence of a thermally activated 

pressure relief device (TPRD) on a gas bottle or cylinder or disregard for installation instructions of 

a safety device. 

• Material/manufacturing error: Despite correct component selection and implementation, malfunction 

arises due to material failure or manufacturing error. 

• System design error: Occurs when the system is inadequately designed for hydrogen use or operating 

conditions. Examples include incompatible components, absence of ATEX components, when 

necessary, unexpected hazardous gas mixture, unforeseen pressure or temperature loads, and 

incorrect selection of solenoid/electromechanical valve type. 

 

It is noteworthy that not all these fields are consistently filled, and the quality of the descriptions depends 

entirely on the information provided by the primary sources and their level of detail. Quality seals are 

provided and range from 2, if most of the quantitative descriptors are missing, to 5, if lessons learned and 

root cause analyses are available with good technical detail. For approximately 1.4% of the total events, a 

final Quality Seal assessment is still missing. Additionally, 48.7% were classified as “Low quality” since 

most quantitative descriptors are not provided; for 28.7% of the total events, the information source is 

considered “Good quality”. Furthermore, 9.9% and 10.9% of the total events have “High quality” and “Very 

high quality” reports, respectively, in which root cause analyses and lessons learned are available, and 

quantitative technical details are provided 

 

 

4.2. Pipeline  

 

Using the HIAD 2.1 database, this research develops a BERT-based model to learn and identify the causes of 

hydrogen-related accidents. The following pipeline (Figure 2) aims to preprocess and filter the data from the 

database to facilitate its input into the BERT model. 

 

 
 

Figure 2 - Pipeline for filtered data 

 

4.2.1 Preprocessing Dataset 

 

In this subsection, we preprocess the dataset to prepare it for analysis. The preprocessing steps involve 

cleaning and transforming the text data to remove noise and irrelevant information. First, we import the 

necessary libraries, including pandas for data manipulation and NLTK for NLP preprocessing tasks. We 

download the stopwords and word tokenization modules from the NLTK library. Next, we define a 

preprocessing function that converts text to lowercase, removes numbers, punctuation, and stopwords, and 
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tokenizes the text into words. Then, we apply the preprocessing function to a column in the dataset 

containing the full description of each event. We create a new column to save the preprocessed text. 

 

Next, we filter the dataset to include only events related to hydrogen systems and remove entries with 

unknown causes. Subsequently, we extract subsets of data corresponding to different cause categories, such 

as human factors, management factors, job factors, installation error, material/manufacturing error, and 

system design error. Finally, the dataset is divided into training and testing sets using a 90-10 ratio for each 

cause category, ensuring that each category has a balanced representation in both sets. 

 

4.2.2 Modeling 

 

To build our classifier, BERT model is utilized for sequence classification tasks. Specifically, the ‘bert-base-

cased’ pre-trained model is employed. The training procedure involves data loading, tokenization, model 

instantiation, optimizer setup, training loop, and validation (as illustrated in the pseudocode in Figure 3).  

 

 

 
Figure 3 - Pseudocode for building the classifier 

 

First, after preprocessing, the accidents’ narratives are tokenized and converted into input sequences suitable 

for the BERT model. The BERT model is modified for multi-label classification tasks with a specific number 

of output labels. To do that, the final hidden state corresponding to the [CLS] token (BERTCLS) is extracted 

from BERT model and is passed through a sigmoid (W.BERTCLS + b) layer, where W and b are the weights 

and the biases respectively, to obtain the predicted class probabilities. During training, we optimize the 

model using the cross-entropy loss, which measures the difference between the true labels and the predicted 

probabilities. Next, training, validation, and testing datasets are loaded using PyTorch DataLoader for 

efficient processing. Then, the ‘AdamW’ optimizer is employed with different learning rates to fine-tune the 

BERT model. The model is trained for a fixed number of epochs. Each epoch involves iterating over the 

training dataset in batches, computing loss, and updating model parameters. At the end of each epoch, the 

model’s performance is evaluated on the validation dataset to monitor training progress and prevent 

overfitting. 

 

To evaluate the model’s performance under different learning rates and epochs a series of experiments are 

conducted to identify the most favorable hyperparameters. Then, to ensure that each label category is 
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represented adequately, training data is filtered to maintain a balanced distribution of labels. Moreover, 

additional experiments include data augmentation techniques to enhance model generalization and 

performance. The models tested are described below: 

 

• Experiment 1 (Baseline Training): Initial training runs evaluate performance with varying learning 

rates, lr, and epochs, e: 

lr = 10-6, e = 25, batch size = 4 

lr = 10-5, e = 50, batch size = 4 

• Experiment 2 (Data Balancing): To address label distribution imbalance, training data is filtered to 

ensure adequate representation of each label category: 

lr = 10-6, e = 25, batch size = 4 

lr = 10-5, e = 50, batch size = 4 

• Experiment 3 (Data Balancing + Data Augmentation – DA): Further configurations integrate data 

augmentation techniques to enhance model generalization: 

lr = 10-6, e = 25, batch size = 4 

lr = 10-5, e = 25, batch size = 4 

lr = 10-5, e = 15, batch size = 4 

 

These experiments aim to assess the impact of preprocessing techniques, hyperparameters, and data 

augmentation on the model’s ability to accurately identify the root causes of accidents inferred from accident 

narratives. All experiments were implemented using Python, employing libraries such as PyTorch and 

Transformers. PyTorch provided the foundational framework for model development, while Transformers 

facilitated the integration of pre-trained BERT models, crucial for the NLP tasks undertaken. 

 

This study centers on developing an NLP-based model to analyze aviation accident narratives and determine 

root causes. Specifically, the model aims to discern whether accidents were attributable to Job factors, 

Individual/human factors, Management system factors, System design error, Material/manufacturing error, 

or Installation error. The experiments were conducted on a Windows machine equipped with an Intel(R) 

Core(TM) i9-9900K processor (CPU @ 3.60GHz 3.60 GHz) and 32 GB of RAM. 

 

5. RESULTS 

 
In this section, we analyze the results of the experiments conducted to evaluate the performance of our NLP-

based model in identifying root causes of accidents from accident narratives. We explored various 

configurations and preprocessing techniques to assess their impact on model accuracy and robustness. 

 

• Experiment 1: The best model achieved a test accuracy of approximately 63.7%. 

• Experiment 2: Test accuracies varied between approximately 57.8% and 63.1%. 

• Experiment 3: The models consistently achieved test accuracies between approximately 60.9% and 

63.1%. 

 

Figure 4 presents the confusion matrices for the first experiment, which yielded the best results. Each row in 

the matrices represents true labels, and each column represents predicted labels. For clarity, the cell (0,0) 

indicates the true negatives, (0,1) indicates false positives, (1,0) indicates false negatives, and (1,1) indicates 

true positives. 

 

 
Figure 4 - Confusion matrices with the model’s predictions on the test set. 
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The results reveals that the model exhibits challenges in handling categories with lower training data 

frequencies, specifically labels 2 (“Material/manufacturing error”) and 3 (“Design error”). These labels, with 

only 68 and 61 training instances respectively, contributed to the model’s poor performance in classifying 

positive instances for these categories. Conversely, the model performed reasonably well in identifying 

“Installation Error” but showed a tendency towards false positives, suggesting an over-identification of this 

factor. For “Management Factors”, the model demonstrated balanced performance with a notable number of 

true positives; however, it also faced a significant number of false negatives, indicating missed relevant 

cases. 

 

The inability to achieve a significant improvement in the model’s performance can be attributed to several 

factors: the effectiveness of NLP models often hinges on the quality and quantity of training data available. 

If the dataset contains noise or biases, it can hinder the model’s ability to learn complex patterns effectively. 

In addition, the nature of the accident narratives dataset and the complexity of identifying the root causes of 

accidents present challenges that may require specialized techniques or domain knowledge to overcome. 

 

To address the limitations of the BERT-based model, we developed a BigBird-based classifier designed to 

handle larger text inputs, potentially enhancing performance. We initially trained BigBird with the same 

hyperparameters and 80/20 train/test split ratio as the best-performing BERT-based model. Despite the 

increased complexity and number of parameters, BigBird’s performance was initially inferior. We adjusted 

the train/test split ratio to 90/10 to improve performance. 

 

Overall, while the model shows some proficiency in identifying certain factors, significant improvements are 

needed to address the high rates of false positives and false negatives, particularly for less frequent 

categories. We can aim to enhance the model’s overall performance and reliability by exploring alternative 

strategies such as experimenting with more advanced models, incorporating additional data from external 

sources to provide more context, and ensuring high-quality, detailed, and consistent data entries. 

 

Figure 5 shows the confusion matrix for BigBird’s predictions on the test set. The BigBird-based classifier 

achieved an accuracy of 64.44%. Although there were improvements in specific areas, significant issues 

persisted with high rates of false negatives and false positives, particularly in less frequent categories. 

Furthermore, the higher computational cost associated with BigBird did not result in a substantial overall 

performance gain. 

 

 

 
Figure 5 - Confusion matrices with fine-tuned BigBird’s predictions on the test set. 

 

While the model demonstrates some proficiency in identifying certain factors, further improvements are 

necessary to reduce false positives and false negatives, especially for less frequent categories. Future work 

should focus on exploring advanced models, integrating additional contextual data from external sources, 

and ensuring high-quality, detailed, and consistent data entries to enhance model performance and reliability. 

 

6. CONCLUSION 

 

The experimental results underscore the model’s proficiency in identifying root causes of accidents from 

narrative descriptions. However, further refinement and optimization since challenges persist in accurately 

classifying certain label categories. Addressing these challenges may require a combination of 

methodological refinements, such as feature engineering techniques and model architecture improvements. 

Additionally, to iteratively refine the model and uncover insights into its behavior continued experimentation 
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and iteration are essential. Overall, the findings contribute to our understanding of the model’s capabilities 

and lay the groundwork for future research in this domain. 
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