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Abstract: Residents should evacuate urgently in the event of a disaster, including a radiation emergency. 

Evacuation path optimization in emergency situations is a difficult problem to solve due to dynamic, and 

complex constraints, and large uncertain phenomena, but optimization is being attempted through 

reinforcement learning in many studies. On the other hand, the role of infrastructure mitigating the 

consequence of emergency situation is clearly significant, while their optimization in terms of operational 

viewpoint was not easily recognized. The platform for radiological emergency agent-based integrated 

simulation model (PRISM) is an agent-based model for simulation of wide-area evacuation during radiation 

emergency situations. PRISM includes a resident evacuation algorithm using a path finding model, 

atmospheric diffusion of radioactive materials, and interaction between infrastructure and evacuees, and is 

being updated for realistic simulation. The purpose of this paper is to suggest the method how to optimize the 

radiation emergency response strategy, that is, the infrastructure operational strategy, through this platform to 

achieve increasing the recovery level (REC) value. It was shown in the previously mentioned evacuation path 

optimization that reinforcement learning can be a key in this situation. Previous studies have applied to one 

infrastructure with a value-based algorithm, Deep Q-Network (DQN). In this study, a policy-based 

reinforcement learning algorithm was applied to solve the shortcomings of DQN. Results suggest that when 

an evacuation simulation is performed by applying the distribution of infrastructures optimized through 

reinforcement learning, the REC value increases faster compared to an evacuation simulation performed with 

the default (uniform) distribution. 
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1.  INTRODUCTION 

 

Emergency evacuation is a difficult problem to optimize due to highly dynamic variables and complex 

constraints [1]. Matters to be considered for optimizing emergency evacuation include the location and number 

of destinations, the shortest distance to the destination, and the presence or absence of obstacles on the route 

[1-4]. In these studies, reinforcement learning was used to optimize emergency evacuation. This is because 

reinforcement learning has strengths in optimizing path planning at a large scale that encompasses the 

preceding considerations [5]. 

 

A nuclear or radiological accident is one of those accidents that can cause long-term, widespread and serious 

impacts, requiring emergency evacuation. General safety requirements for radiological emergency response 

preparedness (EPR) are provided in IAEA GSR Part 7 [6]. One of the important elements covered in this 

document is the capability of infrastructure. Therefore, in this paper, the infrastructure is optimized through 

reinforcement learning, rather than path planning, which was addressed in previous studies in the emergency 

evacuation field. 

 

2.  REINFORCEMENT LEARNING 
 

A reinforcement learning problem can be expressed as a system consisting of an agent and an environment. 

The environment creates information that represents the state of the system. Agents interact with the 

environment by selecting actions using information obtained by observing the state. Through the agent's 

actions, the environment transitions to the next state, and at this time, a defined reward is paid to the agent. 

The cycle of “State>Action>Reward” means that one time step has passed, and this cycle is repeated until the 

end of the environment or until a specific state defined by the user is reached. The figure 1 showing this is as 

follows [7]. 
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Figure 1. The cycle of reinforcement learning 

 

A policy-based algorithm is an algorithm that learns a policy (𝜋), which is defined as a function that maps 

states to action probabilities. As the value-based algorithm, the goal of this algorithm is to maximize the 

expected value of the cumulative discounted reward, but the difference is that it updates the policy, in contrast 

to the value-based algorithm that updates the value. The policy gradient, ∇𝜃𝐽(𝜋𝜃) is used to update the policy, 

which is expressed as equation 1, where 𝜃 refers to the neural network. 𝜏 is defined as a trajectory, which 

means cycle ((𝑎0, 𝑠0, 𝑟0) , . . . , (𝑎𝑇, 𝑠𝑇, 𝑟𝑇)) as shown in figure 1 until the end time (𝑇) of one episode (or 

simulation).  The larger the return (𝑅𝑡(𝜏)) and the greater the probability of action (𝑎𝑡) for a state (𝑠𝑡), the higher 

the policy gradient. Ultimately, the goal of a policy-based algorithm is to find the maximum value of 𝐽(𝜋𝜃) 

where the policy gradient becomes 0. There are two major advantages of policy-based algorithms: 1) it can 

simulate the continuous action space, and 2) it can represent stochastic policies. 

 

 
∇𝜃𝐽(𝜋𝜃) = 𝐸𝜏~𝜋𝜃

[∑ 𝑅𝑡(𝜏)∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝑇

𝑡=0

] (1) 

 

3.  ALGORITHM SETTING 
 

3.1.  Environment 
 

Platform for Radiological emergency agent-based Integrated Simulation Model (PRISM) is an agent-based 

platform for simulation of wide-area evacuation during radiation emergency situations [8]. PRISM includes a 

resident evacuation algorithm using a path finding model, atmospheric diffusion of radioactive materials 

derived from HYSPLIT, infrastructure-infrastructure interaction, and infrastructure-evacuee interaction, and 

is being updated for realistic simulation. The purpose of this paper is to optimize the radiation emergency 

response strategy, that is, the infrastructure commitment strategy, through this platform to achieve the fastest 

evacuation time, thereby quickly increasing the recovery level (REC) value, which indicates resilience. REC 

is hypothesized using a function 𝑔(∙) as equation 2. The added infrastructure is police (i.e., traffic control 

capability) and has the effect of solving traffic jams and speeding up evacuees. This shortens the evacuation 

time and quickly increases REC. 

 

 𝑅𝐸𝐶(𝑡) = 𝑔(𝑆(𝑡), 𝐻(𝑡), 𝐼(𝑡)) (2) 

 

where, 𝑆(𝑡) refers to the amount representing the damage resistance or recovery ability of the recovery target, 

𝐻(𝑡) refers to the amount representing the damage caused by the hazard element, and 𝐼(𝑡) refers to the amount 

related to the mitigation infrastructure element. 

 

3.2. Components of Reinforcement Learning 

 
The area of interest is set to four roads as shown in the figure 2, and a set of the number of evacuees on ith road 

at time 𝑡, 𝑛𝑡
𝑖  is defined by the state, 𝑆𝑡 as shown in the equation 3. At this time, the number of evacuees does 

not include evacuees who have completed evacuation. 
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Figure 2. The overview of the environment 

 

 𝑆𝑡 = [𝑛𝑡
1, 𝑛𝑡

2, 𝑛𝑡
3, 𝑛𝑡

4] (3) 

 

A neural network that receives the state as input derives the number of polices on each road as an action. 

Initially, the assumed number of polices is evenly distributed. Reward 𝑟𝑡′ is defined as the number of evacuees 

who completed evacuation from 𝑡 − 1 to 𝑡. There are two constraints. First, the total number of polices is 

constant. Second, if the number of police is derived as a negative number, it is replaced by 0. These constraints 

operate as negative rewards 𝑟𝑡′
𝑐 , and a reward equal to −1% of the initially set total number of evacuees is 

assigned to the agent. The return 𝑅𝑡(𝜏), which represents the sum of rewards to which the discount factor 𝛾 is 

applied, is shown in equation 4. 

 

 
𝑅𝑡(𝜏) = ∑ 𝛾𝑡′−𝑡(𝑟𝑡′ +

𝑇

𝑡′=𝑡

𝑟𝑡′
𝑐 ) (4) 

 
4. RESULTS 

 

The number of evacuees was assumed to be 1000 and the total number of polices was assumed to be 200. The 

number of evacuees is related to population density, but since the focus of this paper is to determine the 

applicability of reinforcement learning, population density was not considered. It was also assumed in the same 

context as the number of evacuees in the number of polices. If the number of police is small, traffic jams will 

not be resolved, and the time required to complete evacuation will increase. Conversely, it is expected that the 

time required to complete evacuation will decrease and then converge at a certain level. 

 

In figure 2, the place represented by the green house is the final destination, that is, a shelter, and the place 

shown in red rounded rectangle represents the nuclear power plant. Evacuees are randomly generated on the 

road on the map and each take the shortest distance to their destination. Learning progressed through 130 

iterations, and the total reward the agent received as learning progressed is shown in the figure 3. The figure 4 
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is a graph comparing the average speed of evacuees when police were deployed through the learned neural 

network and when police were not deployed. 

 

 
Figure 3. The total reward of REINFORCEMENT algorithm 

 

 
Figure 4. The comparison of average speeds of evacuees. The red dash lines mean the time to change the 

police infrastructure. 

 

Total rewards appear to increase as learning progresses, but the increase is not large in figure 3. This is due to 

the sample-inefficient characteristic of the training process, which is one of the disadvantages of 

REINFORCEMENT algorithm [9]. This characteristic requires a large number of samples to obtain an 

information. According to Figure 4, it can be seen that the average speed of evacuees increases for each unit 

of time (5 min) that the police are deployed. However, there appeared to be no significant difference in 

evacuation completion time. 

 

5. CONCLUSION 

 
The infrastructure targeted for optimization in this study was the traffic control using a notion of ‘police,’ 

which affects the evacuation speed of evacuees. Since there are countless types of police distribution per unit 

of time, finding the optimal distribution is a difficult problem. An attempt was made to optimize the distribution 

of polices using reinforcement learning, which is mainly used for optimization problems in emergency 

evacuation situations. Assuming four roads, the number of evacuees on each road was set to state, the number 

of polices was set to action, and the number of evacuations completed and constraints were set to reward. In 

previous research, there was a case in which infrastructure distribution was optimized using DQN, one of the 

value-based algorithms [10]. However, the disadvantages of value-based algorithms are that they only simulate 

a discrete action space and that a stochastic policy cannot be derived. 
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Optimization methods using neural networks, including reinforcement learning using policy-based algorithms, 

have the characteristics of a black box in which it is unclear what process produces the output. Additionally, 

it cannot be guaranteed that the solution obtained through the reinforcement learning algorithm used in this 

paper is the global minimum unless it goes through a significant number of iterations. However, in a radiation 

emergency with a large sequence, a little help for evacuation can play a big role. In future research, the number 

of infrastructures will be increased to derive the optimal distribution of each infrastructure. Additionally, the 

applicability of other policy-based algorithms will be investigated. 
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