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Abstract: Autonomous systems and automated technologies are becoming increasingly prevalent across 

multiple industries and applications, such as aviation and air traffic control, marine transportation, and railway 

industries. In many of these complex systems, human operator teams frequently focus on monitoring and 

supervising the system’s operation, acting as a safety barrier in emergencies. The need to study Human-

Autonomy Team’s (HAT’s) performance in the case of automation failure and limited decision-making 

explainability may become more important as interactions between humans and machine agents diversify to 

non-expert systems. This is the case for drivers on board vehicles equipped with highly Automated Driving 

Systems (ADS). This work explores the applicability of Performance Shaping Factors (PSFs) used in Human 

Reliability Analysis (HRA) models to the HATs present in ADS operations. This work identifies potential 

factors influencing the performance of both human and automated agents in ADS operations to apply team 

performance models such as the Information, Decision and Action in Crew (IDAC) context. This work focuses 

on the relationship, tasks, and challenges drivers face when interacting with vehicles equipped with advanced 

ADS. It highlights the role that individual, system, team, and scenario-related factors play in the overall 

system's safety.  
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1.  INTRODUCTION 

 

The term Human-Autonomy Teams (HATs) describes teams in which at least one member meets the definition 

of an autonomous machine agent and acts interdependently with other human members to achieve a collective 

goal [1]. As autonomous functions, capacities, and systems increase across diverse industrial and commercial 

developments, this hybrid team concept provides many opportunities to leverage decades of human teams’ 

research and explore the emerging dynamics of HATs outside traditional industrial or control room operation 

contexts. This is the case of Automated Driving Systems (ADS), where human-system interactions have 

significant impacts on the overall system’s safety. ADS technologies are expected to play a significant role in 

the transportation ecosystem, either for the commercial transport of goods and passengers, or for personal use. 

Along with the complex technical challenges this implies, it is the role of developers, manufacturers, and 

regulators to consider the role humans play in ADS safety as drivers, passengers, and fellow road users.  

 

Decades of human-vehicle interaction research efforts in human factors and psychology have studied human 

performance under different driving conditions and external stimuli [2]. More recently, these studies have also 

investigated how human performance is altered by the presence of automated driving features [3]. As in the 

case of other autonomous systems, research trends suggest evolving from human-system interaction schemes 

towards human-vehicle collaboration, implying treating human-system agents as a team [4]. Currently, 

automated driving technology is organized into a six-level scale [5]. These levels are broadly divided into 

driver support features (Levels 0-2) – commercially referred to as Advanced Driving Assistance Systems 

(ADAS) – and Automated Driving Systems (Levels 3-5). This division of Dynamic Driving Tasks (DDTs) is 

based on the task allocation between the human and the automated driving technology. From Level 3 (L3) 

onwards, the DDTs are progressively transferred from the human driver to the ADS. However, at L3, the 

human driver is still expected to act as a fallback-ready user, meaning they are ultimately responsible for 

intervening in the vehicle’s actions upon the request of the ADS, or preemptively to avoid emergency 

situations.  

 

The control transitions between the driver and the ADS usually occur when approaching the exit of the 

Operational Design Domain (ODD) or in unexpected situations [6], giving the driver a short time budget to 
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assess the situation and react accordingly to reach a safe state. At Level 4 (L4), the ADS are expected to 

perform DDT fallbacks and achieve a Minimal Risk Condition (MRC) autonomously; hence, the user is not 

expected to monitor or intervene in the vehicle’s actions while the vehicle remains within the ODD. Currently, 

driverless L4 ADS vehicles have emerged as passenger mobility service providers, usually supported by a 

remote operation center with limited monitoring and incident management capacities. Even at high levels of 

automation, it is highly likely humans will continue interacting with these systems as drivers, operators, and/or 

fellow road users. As vehicles equipped with ADS capacities increase their share in the market and on the 

roads, it is crucial to advance the state of understanding of HATs in ADS contexts.  

 

In complex engineering systems, Human Reliability Analysis (HRA) research provides valuable qualitative 

and quantitative insights into Risk Assessments to improve system, procedure, standard, and regulation design. 

To model human performance and to quantitively express Human Error Probabilities (HEPs), different HRA 

models rely on Performance Shaping Factors or Performance Influencing Factors (PSF/PIF) to describe factors 

affecting performance, including detailed cognitive process elements at individual and team levels, the effect 

of HSI design and other contextual elements [7]. For example, the cognitive model of Information, Decision, 

and Action in Crew context (IDAC) was developed to model Nuclear Power Plant (NPP) operator crews in 

control room environments [8]. IDAC was developed based on numerous relevant findings from cognitive 

psychology, behavioral science, neuroscience, human factors, social science, field observations, and various 

first- and second-generation HRA methodologies. In addition to a cognitive model that can be used in HRA 

methodologies, such as Phoenix [9], IDAC can also be implemented as an HRA model. IDAC models how an 

operator performs information processing (I), problem-solving and decision-making (D), and acts (A) within 

the context of a crew (C), while influenced by a set of internal and external PSFs. After its first publication, 

the IDAC model has been adapted and expanded into different versions and simulation frameworks, 

incorporating new knowledge, simulation tools, and updating PSF taxonomies to express additional contextual 

factors affecting team performance [9], [10]. Most PSF taxonomies have been developed in NPPs contexts but 

have also been extended to other industries and applications [11], [12].  

 

HRA principles and elements, such as PSFs, can benefit the analysis of HAT and risk assessments of ADS 

operations. This work explores the applicability of IDAC-based individual, team, and scenario factors to 

driver-ADS teams in conditional driving automation contexts (L3). In this setting, one of the most critical tasks 

is successfully reacting to automation-initiated control transition triggers, commonly referred to as takeover 

requests. A review of selected PSFs potentially applicable to ADS driver-ADS team contexts is presented, 

followed by discussion of how future work and data collection initiatives may be pursued to derive risk 

assessment insight at both design and operation time.  

 

2. MODELING HUMAN-AUTONOMY TEAMS IN AUTOMATED DRIVING SYSTEMS 

 

In complex systems, the traditional scheme used to incorporate automation and automated functions into 

human operation relies on task division. This frequently relocates the human from an active controller to a 

supervisor, monitoring the system. In the case of human drivers interacting with vehicles equipped with 

automated driving technology, a more collaborative approach to human-system interaction has been taken [4]. 

At lower levels, this collaboration can be seen through the implementation of driver monitoring systems (DMS) 

and other safety warnings alerting or requesting the driver to take action to minimize risk. As the Level of 

Automation (LoA) increases, humans are expected to no longer intervene in driving tasks as drivers, but rather 

as passengers requesting emergency stops or remote operators supervising vehicle behavior [13]. The specific 

nature of the HAT’s collaboration will depend on the LoA of the autonomous agent and the role envisioned 

for the human in each use case, such as applications in passenger or goods transport, or personal vehicles [14].  

 

As regular human teams, HATs are target-driven, and task allocation plays an important role in the team’s 

performance for both conditional (L3) and highly automated vehicle (L4) contexts. Further, both team 

members, human and ADS, can be interpreted as having distinct rules of behavior, tasks, and goals, both are 

affected by internal and external factors. Different shared control schemes, task allocation and control 

transition mechanisms are influenced by design and dynamic traffic environments [15]–[17]. Many factors 

have been studied in driving simulator experimental environments, exploring the effects of time pressure, 

stress, and sleep deprivation on driver takeover performance, or the effect automation has on the driver’s 

behavior, attention, and cognitive load under long-term driving or emergency disengagements [18], [19], 

among other factors. A key challenge in the shared control scheme of L3 ADS is resolving conflicting 
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assessments between the system and the driver during takeover events, particularly in the case of automation 

failure or the driver’s lack of adequate situational awareness [16]. Similar challenges transfer over to L4 ADS 

driverless vehicles whose operation is supervised by remote operators, with the additional pressures of wireless 

communication reliability and impaired perception [20].  

 

This work focuses on the case of a consumer-lever driver in a personal ADS-equipped vehicle, where the main 

functions and information flows are shown in Figure 1. In this configuration, both team members, the on-board 

driver and the ADS, can interact with the driving environment and other road users (‘World’) with their own 

perception and localization, DDT planning, and vehicle control functions [21]. The communication interface 

between them is expected to accommodate visual, audio, or haptic messages indicating the driver, vehicle, and 

automation status. A key interaction between team members is control transitions under nominal or emergency 

situations [22]. Control transitions or ‘takeover’ events have been studied from multiple perspectives, 

exploring the effect of external stimuli, human-system interface (HSI) designs, different time budgets, and 

scenario complexity, ultimately leading to takeover quality [2].  

 

Model-based HRA approaches provide an advantageous opportunity to incorporate these human-system 

collaboration factors into the risk analysis of ADS-equipped vehicles. Leveraging decades of human 

performance model development in complex systems, this work seeks to translate the factors affecting the 

driver-ADS team’s performance into PSFs. Developing a common terminology for both human and machine 

agents allows to conduct task analysis up to the same level of I-D-A phase detail [23]. Indeed, extending PSF 

nomenclature to describe driver-ADS team relationships paves the way for exploiting model-based PRA and 

HRA frameworks in shared-autonomy contexts. Multiple PSFs are employed in HRA models to express 

contextual, social, cognitive, and design factors' effect on human performance for both qualitative analysis and 

HEP quantification contexts. For instance, the Team-centered IDAC (Tc-IDAC) expanded the IDAC 

individual operator models to explicitly focus on team dynamics [10]. This model explores team-level tasks 

directed at each I-D-A stage and incorporates an Error Management module, i.e., how team members detect, 

indicate, and correct individual and team errors. For this, Tc-IDAC expanded upon team-related PSFs such as 

team cohesiveness, coordination, communication, composition, and leadership, and incorporated factors 

affecting communication between teammates. These team PSFs arise from the interaction dynamics between 

teammates, which, layered upon each team member’s individual factors, affect the overall team’s performance 

when addressing a common task. The focus on team behaviors from Tc-IDAC provides an advantageous 

starting point to include additional details for the taxonomy presented by [7] and the current state-of-the-art in 

Phoenix HRA Methodology [9]. The use of advanced HRA models that bring cognitive science and a model-

based approach aims to reduce variability and increase reproducibility in HRA [9]. The remainder of this 

section discusses the relevance and applicability of individual, scenario, and team PSFs to driver-ADS HATs.  

 

 
Figure 1. Diagram of Driver-ADS Team High-level Functions. 

 

2.1.  Individual Factors  

 

Individual factors refer to internal factors affecting an agent’s performance. These have historically been 

developed for human operators, hence, represent unobservable elements that require behavioral markers to be 

assessed, such as state of mind, temperament, intrinsic characteristics, physical and mental fitness, as well as 
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the suitability of the individual to perform a certain task. Extending this concept to autonomous machine 

agents, i.e., an element in the system capable of independent decision-making, it is of interest to determine 

which may be applicable to express the underlying ADS software design.  

• Attention: This factor refers to how cognitive resources are distributed by the agent to perform their 

tasks, usually divided into (a) attention to task and (b) attention to surroundings (e.g., alarms, team 

members). Driver attention has been thoroughly explored through subjective assessments and 

physiological metrics [24], [25]. In the ADS case, this concept can represent how system 

electrical/electronic (E/E) architecture design choices determine resource allocation to perform sensing, 

processing, planning, and execution tasks. Resource allocation is usually developed at early design 

stages, focusing on complying with safety and non-safety requirements [26], such as timing, redundancy, 

and freedom from interference (FFI) [27]. 

• Physical & psychological abilities (PPA): This group of factors refer to the internal resources of the 

agent available to perform their tasks, including the level of alertness, fatigue, impairment, or relevant 

physical attributes. All these are of particular interest for impaired and distracted driving analysis [28], 

[29]. A similar concept may be extended to the ADS Resource Availability to perform tasks, such as 

system degradation (including elements of sensor or software reliability and calibration) and 

computational resource depletion (energy, memory, and processing capacity) during operation, 

significantly influenced by environmental factors, such as weather and lighting conditions [30]. A major 

factor to consider is the compatibility between existing hardware with over-the-air software and how 

this would affect operational assumptions [31].  

• Knowledge/Experience: This umbrella term refers to the agent’s understanding and knowledge 

accumulation about the system’s design and operation, gained through training and interactions with the 

system, and affected by the individual’s characteristics and variability [2], [32]. Currently, the driver 

relies almost entirely on their personal risk tolerance and driving experience (with and without 

ADAS/ADS technology) as receiving any specific training is unlikely [33]. For the ADS, this factor may 

be interpreted as System Maturity, encompassing multiple aspects, such as (1) data exposure (dynamic 

environmental conditions, HD maps accuracy, complexity of driving behavior models), (2) testing 

performance (real-world, closed tracks, simulation), and (3) the extent of its ODD expansion [34]. 

• Skills: This term represents the levels of perception (object detection, localization, tracking, hazard 

detection), decision-making (planning path, planning maneuvers, risk assessment), and control skills 

(vehicle control precision and responsiveness) of both agents [25], [35]. Additionally, a subfactor could 

be introduced to specifically address communication skills, i.e., both agents’ ability to communicate 

effectively through HSI mechanisms. To assess this skill, the effect of elements such as decision 

transparency, explainability, and responsiveness on alerts, warnings, and control transitions events 

should be considered [36].  

• Bias: This factor refers to the tendency of decision-making based on selected information, while 

excluding information that does not agree with the conceived conclusions. For the driver, multiple types 

of cognitive biases may be relevant (e.g., expectation, confirmation, belief). Given the lack of formal 

training, this factor becomes more important in determining the overall behavior of the driver [37]. For 

the ADS, this factor may express elements influenced by quality of the training data (data-based) and 

sophistication of the perception-localization-planning capabilities (algorithm-based bias), as well as 

sensor limitations under different conditions (sensor-based bias).  

• Perceived Familiarity: This factor represents how the agents’ decision-making process is influenced 

by recent events. In the case of the driver, the emphasis is placed on the memory of recent situations, 

while for the ADS this would be linked to the completeness and robustness of the training and testing 

phases. This factor is particularly important when assessing the driver’s performance over multiple 

exposures to takeover events [19]. This factor may also be used to assess how operational experience is 

gradually introduced into the ADS’s behavior through software and training data updates [15], [31].  

• Risk Tolerance: This term encapsulates the agent’s concern for safety and attitude towards risk. This is 

particularly important for rule-based decision making, traffic law compliance, and prioritizing safety 

based on contextual cues. For the driver, this may a be a defining factor in calibrating time budgets for 

takeovers and other emergency situations [38]. In the case of the ADS, the underlying risk tolerance is 

a result of the learnt driving behavior and imposed safety margins determining the level of 

‘aggressiveness’ navigating uncertain circumstances [39].  

 

2.2. Situation Factors  
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Situation or stressor-based factors are characteristics of the scenario external to the system and their effect on 

the agent’s performance. In general, these factors are applicable to both the driver and the ADS. These factors 

are usually dynamic in nature, evolving as the scenario progresses, however some may only be set during 

design-time in the case of the ADS.  

• Conditioning events: This factor refers to external events, latent failures, and alert-triggering events 

that influence scenario evolution, such as ODD breaches, vehicle failures, connectivity failures, and 

other factors that should trigger a DDT fallback response from the ADS and appropriate takeover actions 

from the driver [32]. Additionally, more subtle factors may be considered as well, such as less-than-

adequate hardware or software conditions that affect system performance (e.g., faulty sensors, a flat tire). 

Similarly, conditioning events may also originate from the driver’s behavior (as perceived by onboard 

DMS) [2]. 

• External environment: This factor can represent how both agents perceive the overall complexity of 

the driving conditions (e.g., weather, road geometry, traffic density) and interactions with other road 

users (e.g., other vehicles, cyclists, pedestrians). The effect of these elements may be mainly observed 

on the agent’s risk tolerance, time-budget perception, and takeover performance  [40].  

• Information load: This represents the information and cues presented by elements external to the agent, 

including their team members and the external environment. Usually, this is used to represent the alarms 

and indicators. From the driver’s perspective, the design and calibration of safety alarms plays a critical 

role in correctly assessing risk, especially in emergency situations [41]. To the ADS, this factor is related 

to system design factors (Resource Availability), where time and capacity limitations of conflict-

resolving algorithms in data processing, localization, and planning tasks may lead to unreasonable 

latency and unsafe action execution. This may highly relevant when considering V2X applications, i.e., 

communications between vehicles and infrastructure [42]. 

• Non-task load: In this context, non-task related loads represent any tasks additional to the required 

DDTs. For the driver, this refers to the Non-Driving Related Tasks (NDRT) voluntary engagement and 

its effect on maintaining adequate situational awareness [28], [41]. For the ADS, this is directly affected 

by the system’s design philosophy, e.g., the freedom from interference (FFI) between safety-critical and 

non-safety-critical tasks [26].  

• Task load: This factor is an individual-level representation of the overall system design, accounting for 

the actual task allocation schemes and resulting task demand assigned to each agent [43], [44]. For the 

driver, this may be reflected in the procedure to takeover or handover control from/to the vehicle, 

including confirmation or veto actions, or the system’s degree of reliance on their monitoring capacities. 

For the ADS, this factor reflects the demand placed upon its computational resources to manage 

competing interests, such as navigation and safety goals, potentially leading to delayed processing, 

performance degradation and potentially unsafe situations [27], [39].  

• Task complexity: This factor refers to the cognitive and execution demands of the task at hand. This 

considers elements such as the difficulty in diagnosis, executing, knowledge required, procedural steps, 

precision required and the ambiguity of driving situations [43], [45]. As for task load, it can be extended 

to the computational demands of the ADS agent – for instance, differentiating between tasks performed 

within the ODD or in response to an ODD breach – and other contextual information increasing vehicle 

maneuver difficulty (e.g., road geometry, traffic density, weather conditions).  

• Time load: This factor is defined as the ratio of time available to perform an action and the time to take 

an action. It is highly relevant to both the driver and the ADS agent, bounded by system design, physical 

limitations and time required to complete certain tasks [38], [46].  

• Stress: This factor is considered solely for the driver. Previous studies have shown mixed results in 

terms of increasing or decreasing driving stress, indicating that the stress perceived by drivers in 

automated driving settings is greatly influenced by attitude towards driving and the level of driving 

automation [45]. 

• Perceived situation severity/urgency: This factor is related to the potential consequence perception of 

the agents and its influence on the decision-making process. Both severity and urgency play an important 

role for the driver [38], [47]. In the case of the ADS, however, these are expressed through the 

aforementioned risk metrics and safety margins that guide the decision-making process [17].  

• Perceived decision responsibility: This factor is related to the agent’s perception of the responsibility 

and accountability of their actions. This is particularly important to consider in the case of driving 

environments, where both agents interact with multiple other road users. This factor represents the 
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driver’s perceived responsibility to intervene in a scenario should the ADS or themselves fail to prevent 

or mitigate a hazardous scenario [48]. 

 

2.3. Team Factors  

 

Teams are complex and dynamic systems, whose performance is significantly affected by individual and 

situation factors described above. On one hand, teams increase problem-solving resource availability and 

provide the capacity to adapt to different situations. On the other, team dynamics introduce coordination 

challenges dependent on individual team-behaviors, such as cohesion and role awareness, communication, and 

authority gradients within the team [7], [49]. In turn, these elements are affected by the technical and non-

technical skills of each member, as well as the mutual trust and understanding [4]. While additional granularity 

of factors can provide greater flexibility [10], the main team factors are summarized as the following:  

• Team Cohesion: This factor refers to how team members interact with each other. This usually refers 

to social cohesion – understood as a measure of the effect of an individual’s comfort within a team, 

degree of compatibility between team members, group morale and group attitude on team performance 

[37]. For the driver, it is important to characterize the comfort of the human operator interacting with 

the ADS as a team, reflected on their personal experience, the belief in shared goals (i.e., safety) and 

trust towards the autonomous agent [50], [51]. This social construct of cohesion may appear challenging 

to associate with ADS functions and performance. However, together with other risk behavior factors, 

these are determined by the ADS’s design and training. In particular, given the rise of DMS and their 

relevance to system-initiated takeover requests, allowing a degree of calibration in detection and 

communication tasks may prove to be crucial while drivers gain more experience [29], [52].  

• Role Awareness: Refers to how each team member perceives their duties, responsibilities, and their role 

within the team. It reflects multiple individual-level factors, and it is related to how each member acts 

in accordance with the expectations of the role. This factor may be crucial in automated driving contexts, 

as the attitude of the driver towards the team’s roles, responsibilities, and goals may be critical under 

emergency situations [44]. A lack of understanding of the ADS’s limitations and the implications of the 

driver’s role could severely impact the team’s ability to reach the high-level goals [48], [50].  

• Direct Supervision: This factor represents the direct effect of leadership over a team’s behavior, in 

which the individual factors of the leader are highly significant [10]. This factor plays a key role in team 

settings, particularly in those procedure-based and control room environments. In the context of 

automated driving, driver-ADS relationships are perceived as a vertical hierarchy, where the driver 

should have complete veto power over the ADS functions [53]. However, shared control paradigms and 

safety mechanisms against driver impairment do raise questions on whether the ADS can implement 

control transition actions without the driver’s consent. Further discussion on this topic is required to 

uncover complex authority and error management dynamics within HATs [16], [54]. 

• Team Communication: This refers to the ability of team members to transfer and receive information 

to perform their tasks. Although frequently considered a system factor, automated driving contexts may 

warrant explicitly considering the design and availability of HSI mechanisms as communication-related 

team factors. Two distinct aspects can be considered: the driver’s interaction with the HSI for non-safety 

related functions and the ADS’s vehicle control transition management [36], [55]. From the ADS’s 

perspective, the transmitted and received communication format, mode, and content are determined by 

design. Therefore, only aspects related to the quality and effectiveness of the communication are 

considered as team communication factors [4].  

• Team Coordination: This factor serves as an output to characterize the team’s performance of several 

tasks [10]. It involves the division of responsibilities and teamwork in planning, scheduling, and action 

implementation; hence, it involves all other team factors, and can be expressed through responsiveness 

and engagement indicators [49], [53]. This factor aims to represent the collaboration and task 

interdependence between the ADS and the driver, particularly in control transition scenarios [4], [17].  

 

3. DISCUSSION  
 

The safety and traffic effects of the projected increase of ADS technology’s adoption on public roads continue 

to be actively researched. Assessing driver-ADS relationships as teams introduces a wide breadth of tools, 

literature, and technical language that can provide greater interpretability of the effect of the ADS design on 

the driver’s performance, as opposed to characterizing them only as technology users [56]. Likewise, extending 

PSF nomenclature to describe driver-ADS team relationships paves the way for exploiting model-based PRA 
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and HRA frameworks in mobility contexts. The use of quantitative model-based risk assessments can provide 

actionable information for the design of risk-reduction operational and design measures. For this, efforts are 

required to systematically collect data to quantify error and failure probabilities for hardware, software, and 

human elements in the system. In this sense, the PSF hierarchy introduced in [7] is intended to be used in a 

data-informed way, i.e., collapsible depending on data availability. While many of the identified factors related 

to the ADS are dependent on design-time decisions which may prove a challenge to quantify (e.g., risk 

tolerance, attention, system maturity, skills), there are many indicators that can be useful to track operation-

time performance, efficiency, and latency (e.g., resource availability, task load). Characterizing driver and 

team factors can be more straightforward, given that the effect of system design on human-vehicle interactions 

have been extensively researched through human factors perspective. This presents many opportunities to 

develop and quantify metrics to incorporate in PRA models, such as responsiveness, rate of engagement, and 

overall takeover quality. For instance, scenario perception factors (e.g., perceived urgency, severity, 

responsibility) are mostly related to the subjective experience of the driver, assessed through well-established 

tools to measure workload [57], [58] and other methods based on physiological signals [40]. A highly studied 

factor is the driver’s trust in the automated system; therefore, efforts should be directed to collecting and 

translating these studies’ results into PRA data. Further discussion on potential data sources is required, 

particularly to represent the ADS design-time related factors. This work presents a discussion on the 

applicability of selected individual, scenario, and team factors to driver-ADS HATs. However, other elements, 

such as organizational and system factors, can play a critical role in this team’s performance, considering the 

different organizations involved in the design and implementation of these systems. As consumer-level 

adoption increases, discussions about driver training and certification will also become more relevant [33], 

amidst ongoing regulatory discussions. Expanding the analysis to the systems that support the driver-ADS 

HAT also provides a path forward to fairly recognize the potential benefits of increasing ADAS/ADS 

deployment, for both driver performance and traffic safety, while also recognizing the effect of inadequate 

system design and calibration can lead to increased risk for road users.  

 

4.  CONCLUSION 

 

The adoption of consumer-level vehicles equipped with automated driving functions will continue to be a 

highly researched topic. As in the case of other high-risk engineering systems, risk assessments have played a 

central role in regulation development. In the case of transportation environments, the short timeframes of 

traffic incidents highlight the importance of humans and autonomous machine systems working together as a 

team rather than isolated individual components. Establishing clear communication, trust calibration, and error 

correction mechanisms for on-board drivers-ADS teams is key to prevent or mitigate time-critical hazards., 

Focusing on team dynamics present in driver-ADS relationships through the technical language and models 

provided by HRA can help bridge a gap between extensive human factors studies, model-based risk 

assessments, and traffic safety assessments. As reliance on automated driving technology increases, 

understanding which factors influence takeover performance – and how these may be expressed in Risk 

Assessments – is an important step to assess risk and derive risk-reducing recommendations at design and 

operation time. The concepts presented in this work are the first foundations to develop an HRA model tailored 

for ADS-driver teams. This, with the purpose of providing input to qualitative and quantitative risk 

assessments, can then be used to develop risk reduction measures needed to support the safe operation of ADS, 

such as training, industry standards, and best practices.  
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