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Abstract: With the advancement of artificial intelligence (AI) technology, various models have been proposed 
for solving problems in the nuclear field. One representative problem in the nuclear field is event/accident 
diagnosis, and numerous classification models have been developed based on event/accident data acquired 
from simulations. However, in actual nuclear power plants (NPPs), there may be situations where the event is 
ambiguous to classify, or the event is unknown and entirely new. In these cases, most previously developed 
models classify such situations as one of the classes considered during their development, potentially leading 
to inappropriate diagnoses and the establishment of mitigation strategies. 
Moreover, based on NPPs' safety strategies, which rely on diversity, independence, and redundancy, AI models 
should complement human operators and ensure the safety of NPPs. In this regard, AI models should be 
capable of determining whether training for a given situation has been conducted and transferring decision 
authority to human operators when the model is incapable of handling the given situation. 
In this study, to provide the ability to detect untrained situations for the model, several open-set recognition 
methods are adopted for neural network-based models in the nuclear field. To conduct experiments while 
considering the characteristics of AI models in the nuclear field, a neural network-based accident diagnosis 
model is developed. During training, a specific accident class is neglected from the training dataset, and it is 
checked whether the applied open-set recognition methods are capable of detecting untrained scenarios. The 
experiment results have revealed that the applied open-set recognition methods are capable of detecting 
untrained scenarios with acceptable performances. 
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1.  INTRODUCTION 
 
For safe and efficient operation of nuclear power plants (NPPs), operators conduct various tasks such as 
monitoring, maintenance, control, and diagnosis. Among these tasks, event/accident diagnosis is conducted 
for the situation assessment when the plant is under abnormal or emergency condition. Accurate event/accident 
diagnosis is important for securing the safety of NPPs since it is essential for planning proper mitigation 
strategies. As artificial neural network-based artificial intelligence (AI) technology is showing outstanding 
performance across the various fields, many AI models have been proposed for solving problems in nuclear 
field [1-6], and numerous diagnosis models have been developed for event/accident diagnosis [5,6].  
 
Most of existing classification models deduce output among the classes that are included in the training data. 
However, there may be situations in actual NPPs, where the event is ambiguous to classify, or the event is 
unknown and entirely new. In these cases, conventional diagnosis models may deduce wrong diagnosis result 
with high confidence for the input irrelevant to the trained classes. This may induce confusion to the operators 
and potentially leading to the establishment of inappropriate mitigation strategies.  
 
Moreover, to follow the basic safety strategies of NPPs including diversity, independence, and redundancy, 
AI models should complement human operators. In this regard, AI models should be capable of determining 
whether the training for a given situation has been conducted and transferring decision authority to human 
operators when the model is incapable of handling the given situation. 
 
Open set recognition (OSR) is one of the research field related to AI, which aims the identification of untrained 
classes. In this study, the OpenMax method [7] – which is one of the representative OSR method – was applied 
to the neural network-based NPP accident diagnosis model to check whether the method is capable of 
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identifying inputs correspond to untrained classes. For the experiments, an NPP accident diagnosis model was 
developed with neglecting specific accident class from the training dataset and OpenMax method was applied 
to identify data corresponding to untrained accident class. 
 
The rest of the paper is organized as follows. In chapter 2, brief explanations on OSR and OpenMax are 
provided. In chapter 3, processes of the experiments and corresponding results are presented. Chapter 4 
summarizes and concludes the paper. 
 
2.  METHOD: OPENMAX 
 
During the development of various AI models, it is generally assumed that the data used during the 
development (training, validation, and testing) is in the same input space with the data that will be received 
after the application. It is trivial that the performance of the model tends to be higher when the training data 
covers the larger portion of the entire input space, since most of AI models are much better at the interpolation, 
rather than the extrapolation. However, aforementioned assumption may not valid in real-world applications. 
For example, in nuclear field, most of AI models are developed based on simulation data. However, there may 
exists discrepancy between simulation data and actual data owing to the limitations of simulators and various 
factors of uncertainties. Accordingly, data used during the model development and the data that will be 
received after the application may not share the same input space.  
 
Most of conventional classification models deduce output among the trained classes for every given inputs. 
That is, if the model is trained to classify class A, B, C, the model will always deduce one of these classes as 
output even when the given input is correspond to untrained class D. This problem is more emphasized for 
neural network-based classification models, since they tend to deduce highly confident output with near 100% 
classification probability for specific class. The over-confident wrong answer for untrained input may induce 
confusion to the users, and may result in severe consequences if the model is applied to safety-critical systems 
such as NPPs.  
 
To consider the untrained class problem, various Open set recognition (OSR) methods have been proposed. 
OSR methods change the paradigm of classification problem from the closed-set classification to the open-set 
classification by granting model the ability to identify data that cannot be properly classified as one of the 
trained classes.  
 

 
Figure 1. Schematic of the closed-set classification concept 

 

 
Figure 2. Schematic of the open-set classification concept 
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The OpenMax [7] is one of the representative OSR method with intuitive concepts, and can be applied to the 
trained classification models without the changes of model’s structure and parameters. The OpenMax method 
is applied through preparation step and execution step. In preparation step, the standards for OSR is prepared 
based on the activation vector (AV) profiles of training data. In execution step, OSR is conducted for given 
input data based on the standards deduced in the preparation step. Here, AV implies the set of node values of 
the output layer, before the activation function calculation. 
 
Preparation step consists of data sorting, AV profiling, and extreme value fitting sub-steps. In data sorting sub-
step, only correctly classified training data are selected and used in further sub-steps. 
 
In AV profiling sub-step, mean AV and mean distance between mean AV and AVs of each selected data are 
calculated for each trained class. In this study, Euclidean-cosine distance is used for distance calculation, which 
considers both Euclidean distance and cosine similarity. Euclidean-cosine distance can be calculated as follows. 
 

𝐸𝐶_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × (1 − 𝐶𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)                           (1) 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ‖(𝑉ଵ − 𝑉ଶ)‖ଶ                                                  (2) 

𝐶𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ‖𝑉ଵ‖ଶ ∙ ‖𝑉ଶ‖ଶ                                                   (3) 

 
Where 𝐸𝐶_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is Euclidean-cosine distance, 𝑉ଵ and 𝑉ଶ are given AVs and ‖∙‖ଶ implies the L2-norm. 
 
In extreme value fitting sub-step, distribution of the distances between AVs of every selected data and mean 
AV of corresponding class is estimated based on extreme value theory [8]. During the distribution estimation, 
hyperparameter 𝜂 (eta) should be determined which sets the number of values that are treated as ‘extreme’ 
value. In this study, Weibull distribution was used for distribution estimation. Probability density function of 
Weibull distribution can be represented as follows.  
 

𝑓(𝑥; 𝜆, 𝑘) = ቊ
௞

஛
(

௫

஛
)௞ିଵ𝑒ି(௫/ఒ)ೖ

, 𝑥 ≥ 0

0,                              𝑥 < 0
                                                    (4) 

 
Where k and λ are positive shape and scale parameter of the distribution, respectively. 
 
Execution step consists of AV calculation, probability calculation, and AV revision sub-steps. In AV 
calculation sub-step, AV of the given input and its distances from mean AVs of every trained classes are 
calculated.  
 
In probability calculation sub-step, probabilities that the distance to be lower than the distances between AV 
of the given input and mean AVs for every trained classes. If the AV of the given input is similar to the mean 
AV of specific class, then the probability for that class would be low, and vice versa. The calculated probability 
for class n is denoted as ωn. 
 
In AV revision step, based on the probability values ωn, AV is revised and classification probabilities are 
calculated based on revised AV. Elements of AV are revised based on the elements of original AV and 
calculated probability values as follows. 
 

𝑣௡
ᇱ = (1 − 𝜔௡) × 𝑣௡                                                                   (5) 

𝑣଴
ᇱ = ∑ (𝜔௡ × 𝑣௡)௡                                                                      (6) 

𝑛 = 1, 2, … 𝑁 (N: number of trained classes)  

 
Where 𝑣௡  and 𝑣௡

ᇱ  represents the element correspond to the trained class n  before and after the revision, 
respectively. 𝑣଴

ᇱ  represents the added element correspond to the untrained class after the revision. 
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After the revision of AV, classification probabilities can be calculated based on Softmax function. 
Classification probability for class n and untrained class can be represented as follows. 
 

𝑃𝑟(𝑘) =
ୣ୶୮൫௩೙

ᇲ ൯

ୣ୶୮൫௩బ
ᇲ ൯ା∑ ୣ୶୮൫௩೙

ᇲ ൯೙
                                                            (7) 

𝑃𝑟(𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑) =
ୣ୶୮ (௩బ

ᇲ )

ୣ୶୮൫௩బ
ᇲ ൯ା∑ ୣ୶୮ (௩೔

ᇲ)೙
                                                    (8) 

 𝑛 = 1, 2, … 𝑁 (N: number of trained classes)  

 
Where 𝑃𝑟 (𝑛) is the revised classification probability for class n, and 𝑃𝑟 (𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑) is the classification 
probability for untrained class.  
 
Figure 3 and 4 are schematics of the preparation step and execution step of the OpenMax method, respectively. 
 

 
Figure 3. Schematic of the preparation step of the OpenMax method 
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Figure 4. Schematic of the execution step of the OpenMax method 

 
3.  EXPERIMENTS 
 
3.1. Data Acquisition and Preprocessing 
 
For the development of accident diagnosis model, data was acquired from the simulation. Compact nuclear 
simulator (CNS) developed in Korea atomic energy research institute (KAERI) [9] was used. Reference plant 
of CNS is Westinghouse 3-loop 900 MWe pressurized water reactor.  
 
During the simulation, three kinds of accident scenarios were considered including loss of coolant accident 
(LOCA), steam generator tube rupture (SGTR), and main steam line break (MSLB). For the diversity, 
variations on tube break sizes and break locations were applied. Simulation was conducted for 20 minutes 
(plant time) starting from the reactor trip occurred by malfunction infusion, and 19 kinds of instrumentation 
signals were acquired that are considered as important for the accident diagnosis. 
 
For the preprocessing, minimum-maximum (min-max) normalization was applied to set the range of all values 
of variables between 0 and 1, and unit data with 5 minutes length was generated from the data between 5 to 15 
minutes (plant time) with 10 seconds interval.  
 
As a result, totally 930, 465, and 1116 unit data were generated for the LOCA, SGTR, and MSLB accident 
scenarios, respectively. Among them, 70%, 15%, and 15% of unit data was used for training, validation, and 
testing, respectively.  
 

Table 1. Considered accident scenarios and their variations  
 
 
 
 
 

 

Accident type Break sizes (cm2) Break loops Break locations 
LOCA 15, 20, 25, 30, 35 Loop #1, #2, #3 Cold leg, hot leg 
SGTR 4, 8, 12, 16, 20 Loop #1, #2, #3 - 

MSLB 500, 600, 700, 800, 900, 1000 Loop #1, #2, #3 
Inside of the containment,  
Outside of the containment 
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Table 2. Acquired variables and their units 
 
 
 
 
 

 
 
 
 

 
3.2. Model Development 
 
After the data acquisition and preprocessing, a neural network-based accident diagnosis model was developed. 
For simplicity, model was developed to have six fully-connected layers only.  
 
To evenly consider the untrained class, models were separately developed with changing the neglected accident 
scenario from the training data. The ‘Case 1’ models have developed with neglecting MSLB data; the ‘Case 
2’ models have developed with neglecting SGTR data; and the ‘Case 3’ models have developed with neglecting 
LOCA data.     
 
In addition, models were also separately developed with changing the activation functions to consider the 
effects of the kind of applied activation function. Except the Softmax activation function at the output layer, 
the ‘ReLU’ models were developed with applying rectified linear unit (ReLU) activation functions; the ‘ELU’ 

models were developed with applying exponential linear unit (ELU) activation functions; and the ‘tanh’ 
models were developed with applying hyperbolic tangent (tanh) activation functions.  
 
As a result, totally nine models were developed with changing the neglected accident scenario from the training 
data, and the type of activation function. Each models are denoted as “ReLU/Case 1”. Every models have 
achieved 100% accuracy for classifying trained accident scenarios.  
 

ReLU(𝑥) = ൜
𝑥           𝑖𝑓 𝑥 > 0
0           𝑖𝑓 𝑥 ≤ 0

                                                           (9) 

ELU(𝑥) = ൜
𝑥                           𝑖𝑓 𝑥 > 0

𝛼(exp(𝑥) − 1) 𝑖𝑓 𝑥 ≤ 0
                                                    (10) 

tanh(𝑥) =
ୣ୶୮(௫)ିୣ୶୮ (ି௫)

ୣ୶୮(௫)ାୣ୶୮ (ି௫)
                                                              (11) 

 

 
Figure 5. Schematic of the structure of developed accident diagnosis model 

 
 
 
 

Variables Units 
Cold leg temperature (loops 1/2/3) 
Pressurizer pressure, wide range 
Pressurizer level 
Steam generator pressure (loops 1/2/3) 
Steam generator level, wide range (loops 1/2/3) 
Feedwater line flowrate (loops 1/2/3) 
Steam line flowrate (loops 1/2/3) 
Containment radiation 
Secondary system radiation 

℃ 
kg/cm2 
% 
kg/cm2 
% 
ton/hr 
ton/hr 
mRem/hr 
μCi/cc 
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3.3. OpenMax Application 
 
For the developed accident diagnosis models, the OpenMax method was applied for OSR. The experiments 
were repeatedly conducted with changing the hyperparameter 𝜂. Table 3 presents the best results with the 
highest mean accuracy.  
 

Table 3. Best results with the highest mean accuracy 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
The experiments revealed that the application of OpenMax method enables the identification of untrained class 
with over 99% accuracy, except for “ReLU/Case 1” and “tanh/Case 1” models. Results were also shown that 
if OpenMax method is applied properly with adjusting hyperparameter 𝜂 , its negative affect to the 
classification performance for trained classes can be minimalized.  
 
Since hyperparameter 𝜂 determines the number of ‘extreme’ value while conducting extreme value fitting sub-
step, higher value of 𝜂 tends to make the estimated distribution to be more emphasized for extreme values. 
Accordingly, OpenMax application with higher 𝜂 value generally result in increased OSR performance, while 
it may deteriorate the classification performance for trained classes. Therefore, it is necessary to consider the 
trade-off relation between OSR performance and classification performance for trained classes, and find 
optimal hyperparameter value for practical application. 
 
In most cases, determining optimal hyperparameter value would be difficult since data for unexpected 
situations are generally unavailable. As an alternative, sub-optimal 𝜂  value can be found by conducting 
experiments similar to the experiments conducted in this study that assume specific class as untrained class.  
 
Regarding the kind of applied activation function, the models correspond to “Case 2” and “Case 3” have shown 
similar performances regardless of the kind of applied activation function. However, for the models correspond 
to “Case 1”, model with ELU activation function have shown best performance, followed by models with tanh 
and ReLU activation functions. Especially, “ReLU/Case 1” model has shown poor OSR performance.  
 
Although ELU, ReLU, and tanh activation functions are widely applied for models dealing with time-series 
data, the experiments revealed that the OSR performance can be varied drastically according to the kind of 
applied activation function. This result emphasizes the importance of comparison between various model 
configurations for better OSR performance, including the kind of applied activation function. 
 
 
 
 

Cases Act. Fct. LOCA SGTR MSLB 

Case 1 
(Untrained:  
MSLB) 

ELU 
98.92% 
(-1.08%) 

100.00% 
(-0%) 

99.06% 

ReLU 
100.00% 
(-0%) 

98.92% 
(-1.08%) 

37.77% 

tanh 
99.28% 
(-0.72%) 

98.57% 
(-1.43%) 

89.38% 

Case 2 
(Untrained:  
SGTR) 

ELU 
100.00% 
(-0%) 

100.00% 
100.00% 
(-0%) 

ReLU 
100.00% 
(-0%) 

100.00% 
100.00% 
(-0%) 

tanh 
100.00% 
(-0%) 

100.00% 
100.00% 
(-0%) 

Case 3 
(Untrained:  
LOCA) 

ELU 100.00% 
99.28% 
(-0.72%) 

98.66% 
(-1.34%) 

ReLU 100.00% 
100.00% 
(-0%) 

100.00% 
(-0%) 

tanh 100.00% 
98.57% 
(-1.43%) 

100.00% 
(-0%) 
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Figure 6. Examples of accuracy trends according to the hyperparameter 𝜂 with changing the neglected 

accident cases (ELU/*). a) trends of “ELU/Case 1” model, b) trends of “ELU/Case 2” model, c) trends of 
“ELU/Case 3” model. 
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Figure 7. Examples of accuracy trends according to the hyperparameter 𝜂 with changing the applied 

activation functions (*/Case 1). a) trends of “ELU/Case 1” model, b) trends of “ReLU/Case 1” model, c) 
trends of “tanh/Case 1” model. 
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4.  CONCLUSION 
 
As conventional neural-network based NPP event/accident diagnosis models always deduce output among the 
trained classes, they may deduce inappropriate output when the input correspond to untrained class is given. 
In this study, OpenMax method was adopted as one of the representative OSR method to grant model the 
ability for identifying input data that correspond to untrained class. The experiments were conducted based on 
accident diagnosis model, developed by using simulation data acquired from CNS. Several accident diagnosis 
models were developed with changing the untrained class by neglecting specific class from the training data, 
and the OpenMax method was applied for identifying inputs correspond to neglected class. The experiment 
results have shown that if hyperparameter tuning is properly conducted, the OpenMax method is able to 
conduct OSR accurately with minimalized classification performance deterioration for trained classes. 
Furthermore, from the several results that shown relatively poor OSR performance, it was revealed that the 
type of activation function may heavily affect OSR performance of the OpenMax method. Therefore, it is 
necessary to conduct experiments for finding optimal hyperparameter and comparing various model structures 
including the type of activation function, to achieve high OSR performance in future applications of the 
OpenMax method.   
 
Although this study has found the significance of the activation function and hyperparameter value on the 
model performance, further studies are necessary to find the reasons for the varying performances. Therefore, 
the OpenMax method’s OSR performance for the models with more complicated structures will be investigated 
as future works. In addition, the comparative studies on the OpenMax method and other OSR methods will be 
conducted.  
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