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Abstract: Minimizing operator errors during reactor accidents is pivotal for enhancing safety and reliability 
in nuclear power plants, thereby sustaining the use of clean energy. To address this challenge, the integration 
of artificial intelligence (AI) with nuclear safety systems is proposed to optimize operator performance, 
enabling swift and accurate responses to abnormal operational situations. However, the complexity of such 
models which considered as "black boxes," poses a challenge for operators in comprehending their decision-
making processes, leading to a lack of trust. Overcoming this limitation necessitates the application of 
Explainable AI (XAI) to provide transparency in model results, thus establishing trust in AI. This study focuses 
on simulating Loss of Coolant Accident (LOCA) scenarios for various pipe break fractions, utilizing 
supervised machine learning to classify LOCA break types (small, medium, or large). The classification is then 
integrated with regression models to predict variations in safety margins. Followed by the application of metric 
parameters to evaluate their performance. Finally, XAI is utilized to explain the model results, facilitating an 
understanding of the reasons behind their decisions. 
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1.  INTRODUCTION 
Despite advances in the design and safety systems of nuclear power plants (NPPs) aimed at reducing the need 
for operator intervention during reactor accidents, enhancing operator reliability remains crucial to prevent or 
mitigate the consequences of accidents. However, human behavior is complex and difficult to predict, 
particularly during reactor accidents where an accumulation of various factors influences the operator's 
response. Some factors, such as time pressure, alarm hierarchy, and the need to collect data from different 
sources, are observable, while others remain hidden. This complexity poses a challenge in ensuring whether 
the operator will make errors or not. Consequently, there is a pressing need for an alternative approach to 
reduce the load on the operator and support their decision-making. 
The integration of AI with nuclear safety systems addresses this issue by rapidly collecting and analyzing data 
from several detectors, providing accurate suggestions and recommendations. This aids operators in making 
the correct actions, thereby decreasing the likelihood of human failure events (HFE). By the beginning of 2020, 
AI technology had become less complex and more accessible, as reflected by numerous works applying AI in 
the nuclear safety area. These researchers are divided into three main directions: 
Earlier Fault Detection: Applying models such as Long Short-Term Memory (LSTM) [1] or Convolutional 
Neural Network (CNN)-LSTM [2], which utilize past sequential data to forecast the progress of future 
accidents, provide the operator with more time to make appropriate decisions to limit further consequences. 
Fault Classification: Building models such as Graph Neural Network (GNN) [3], Recurrent Neural Network 
(RNN) [4] can characterize the type and location of a failure, enabling the operator to react quickly and 
correctly, especially in scenarios involving multiple failures. 
Risk Assessment and Safety Margin Characterization: Training models to predict changes in safety 
margins [5], providing a clear picture to the operator about the severity of an accident and which resources 
need to be allocated. From 2020 until 2022, the number of published researches using Machine Learning (ML) 
in NPPs increased dramatically; however, the focus of these efforts was on training models that can make 
predictions with high accuracy, which led to increased complexity of the built models. Consequently, the 
trained models became as "Black boxes," making it difficult to understand the reasoning behind their outputs. 
This poses a challenge for the real application of AI in NPPs, where operators need to comprehend the inner 
workings of the model to trust its results. Therefore, there is a necessity for a new generation of models 
to be "Glass boxes," where the operator can easily pinpoint the impact of each variable and use their 
experience and knowledge to validate the model's prediction, consequently enhancing trust in the 
model's results. In 2022 and 2023, the Idaho National Laboratory (INL) published two reports [6, 7] 



17th International Conference on Probabilistic Safety Assessment and Management & 
Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

highlighting the importance of  XAI and promoting the use of explainability as a promising method 
for advancing the integration of AI in NPPs. However, the application of XAI in the nuclear field remains 
in its early stages, hence, this work aims to enrich this area by providing a model combining performance and 
interpretability to establish trustworthiness. 
In the first part of the study, two methodologies (integration and combination) are used to build a model with 
high performance in predicting the type of LOCA failure and evaluating the safety margins variation. And the 
second part intends to explain the reasons behind the model outcomes. 
 
2. Methodology 
2.1 ANN model development  
The structure of the Artificial Neural Network (ANN) model comprises multiple layers, including input, 
hidden, and output layers. The hidden layers serve as the central component of the model, housing neurons 
interconnected through various combinations of connections. The development of this model involves 
importing the requisite dataset and then splitting it into inputs and outputs, subsequently divided into training, 
validation, and testing segments, followed by scaling and training the model. This work utilizes two 
methodologies to predict the type of failure and Peak Cladding Temperature (PCT), which allows for the 
evaluation of safety margin variations. The both approaches are discussed as follows: 

• ANN Integrated Model: This methodology employs an integration technique of two distinct models. 
Firstly, a classification model is used to forecast the type of accident. The results from this model are 
then combined with inputs for a regression model, which predicts the key parameter, PCT, as shown 
in Figure 1. 

• ANN Combined Model: In this technique, the two models receive the same inputs, and the outputs 
from both models are generated concurrently. This approach helps compress the overall model 
structure and reduces simulation time, as illustrated in Figure 2. 
 

 

 
Figure.1 ANN integrated model 

 

 
Figure.2 ANN combined model 
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2.2 ANN model evaluation  
After training the model (integrated, combined), the next step is to evaluate their performance using the 
appropriate metric parameters for both regression and classification algorithms: 

• Regression model evaluation: The regression model is used to predict the PCT. Table 1 displays 
the statistical parameters used to evaluate the results of this algorithm. Where, y is actual values and  
����  is predicted values. 

 
Table 2. Metric parameters for regression model  [8] 

 
Metric 
parameter  

Propriety Equation 

Coefficient of 
determination  

is a statistical measure of how well the 

regression predictions approximate the actual 

data points. 

 

�� = 1 − ∑�
 − 
�����

∑�
 − 
���  (1) 

 

Mean absolute 
error  
 

A commonly used measure of error for 
estimation problems. ��� = 1

� ��� − ����� (2) 
 

Root mean square 
error 
 

is considered an excellent general-purpose 
error metric for numerical predictions. 

         ���� = �
� �∑ � − ����              (3) 

Mean square 
error 

is a simple square of the difference between the 
measured and observed values. 

       ��� = �
� ∑�� − ������

                 (4) 

 
 

• Classification model evaluation: To assess the classification algorithm, four evaluation matrices 
are employed, with their appropriateness discussed in Table 2. Where, TP (True Positives), TN (True 
Negatives), FP (False Positives), and FN (False Negatives). 
 

Table 2. Metric parameters for classification model  [9, 10] 
Metric 
parameter  

Propriety Equation 

Accuracy  This metric assesses the ratio of correct 

predictions to incorrect ones made by the 

model. 

 

��� =  �� + ��
�� + �� +  � +  � 

(5) 

  
 

Precision  This parameter reflects how cautiously the 
model makes positive predictions. 
 

���� =  ��
�� +  � 

(6) 
 

Recall  Used to assess how well the model generalizes 
in identifying positive cases. 
 

��� = ��
�� +  � 

(7) 
 

F1-score  This score indicates the equilibrium between 
precision and recall in the model’s 
performance. 

 1 =  2 ×  ���� × ���
���� + ��� 

(8) 
 

 
2.3 ANN model explainability 
The evaluation of model performance alone is insufficient to rely on their outcomes, due to hidden 
reasons and complex relations upon which the model bases its predictions; therefore, it is considered 
a "Black box." Therefore, the application of XAI through the use of the Shapley Additive 
Explanations (SHAP) package is employed, offering several capabilities including global and local 
interpretability. These features enable the revelation of the inner workings of the model and 
demonstrate how it arrives at its results, thereby transforming it into a "Glass box model." 
Consequently, this transparency enhances trust in the model's predictions, as illustrated in Figure 3. 
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Figure.3 XAI for ANN model  

 
3.  Result and discussion  
3.1 ANN models comparison results  
The  Personal Computer Transient Analyzer (PCTRAN) software’s open data is used  [11]  is employed to 
train a model that simulates a LOCA in a PWR3P, with failure variations ranging from 1% to 100%. Ten 
parameters are selected as inputs for the model: Reactor Power (QMWT, MW), Steam Generator Pressure 
(PSGA, Bar), Pressurizer Level (LVPZ), Reactor Coolant System Pressure (P, Bar), Reactor Coolant Loop 
Flow (WRCA, t/h), Hot Leg Temperature (THA, ℃), Cold Leg Temperature (TCA, ℃), Average RCS 
Temperature (TAVG, ℃), Steam Generator A Heat Removal Power (QMGA), and RCS Liquid Volume 
(VOL). The target variables are Peak Clad Temperature (TPCT, ℃) and the type of failure (small, large, 
medium). The total dataset generated comprises 44,639 instances, with 70% allocated for training, 20% for 
testing, and 10% for validation. 
Two methodologies, combination and integration, are applied, utilizing two supervised machine learning 
techniques: regression and classification. The corresponding metric parameters for both the classification and 
regression models are employed, with the results displayed in Tables 1 and 2. Both the combined and integrated 
ANN models demonstrated excellent #$ score, exceeding 99%, and good accuracy. However, the integrated 
model showed an accuracy that was 3.15% higher than that of the combined model. Furthermore, the accuracy 
of the integrated model stabilized quickly, whereas the combined model required 600 epochs to begin 
stabilizing, as seen in Figure 4. On the other hand, the MAE for both models decreased rapidly, reaching their 
lowest values within 250 epochs, as illustrated in Figure 4. 
 

Table.1. Regression metric parameters comparison for integrated and combined model 
ANN 
Model 

Determination 
coefficient 

MAE MSE RMSE 

Train Test Train Test Train Test Train Test 
Integrated  99.79 99.76 5.37 5.51 182.17 207.87 13.49 14.41 
Combined 99.56 99.56 7.91 8.22 308.84 961.28 17.57 19.78 

 
Table.2. Classification metric parameters comparison for integrated and combined model 

ANN 
Model 

Accuracy Precision Recall F1 
Train Test Train Test Train Test Train Test 

Integrated 96.98 96.96 96.51 96.52 96.25 96.27 96.35 96.36 
Combined 93.83 93.90 94.00 94.07 93.54 93.57 93.65 93.69 

 
Figure 5 depicts the losses for both models, where the integrated method shows the lowest and earliest 
stabilization of losses in the classification model compared to the combined technique. Meanwhile, for the 
regression model, both the integrated and combined methods demonstrate similar behaviour and stabilize 
approximately simultaneously.   
The confusion matrix is used to further compare the two techniques for the classification model, as shown in 
Figure 6. The results indicate that both methods struggle to distinguish between medium LOCA (class 1) and 
large LOCA (class 2). Specifically, the integrated method incorrectly predicted class (1) as class (2) 163 times, 
while the combined method made 206 misclassifications. However, both models (combined and integrated) 
can easily differentiate between class (2) and small LOCA (class 0). 
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Figure 7 illustrates the regression predictions of PCT for both the integrated and combined models, with each 
method demonstrating good fit. However, the combined model shows slightly higher residuals, with some 
samples significantly deviating from the best fit line. 
 

          
Figure 4. Combined and integrated models’ comparison for accuracy and MAE  

 

         
Figure 5. Combined and integrated models’ comparison for losses  

 
 

        
Figure.6 Combined and integrated models’ comparison for confusion matrix  

 



17th International Conference on Probabilistic Safety Assessment and Management & 
Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

Finally, both methods exhibited excellent predictive performance for the regression model, while for 
classification, the integrated technique showed marginally better accuracy than the combined model. However, 
the combined model required fewer parameters and consumed less time than the integrated model, thereby 
demonstrating better overall performance and proving to be the more appropriate choice. 
 

   
Figure 7. Combined and integrated models’ comparison for PCT prediction  

 
3.2 ANN models explainability results  
In the previous part the combined technique demonstrated the best performance, however the inner working 
and the reason behind model prediction remain hidden, leading to lack of the trust. Therefore, in this section 
the XAI will apply through using SHAP package to reveal their decision underlying and offering the 
transparency of the model. The Figure 8 illustrated summary plot for the combined model including regression 
and classification explanations.  
The results shows that PSGA is the most significant parameter for both regression and classification models, 
and this aligning with engineering meaning, where the loos of coolant in the primary loop resulting of the 
reducing the capability of removing the heat by secondary side leading to increasing significantly the steam 
generator pressure (PSGA). However, the order of top remainder contributed parameters for each model is 
different. The most influential variables for regression ANN are TAVA, THA and TCA, consequently, the 
model relaying on the temperature’s values of hot and cold legs and average RCS to predict PCT, and this is 
reasonable. In the other hand the classification models employ the volume, pressure and average temperature 
of the RCS to characterize the type of the classes where these variables (VOL, P, TVAG) have closes 
conurbation values for class prediction. 
In the previous part, the combined technique demonstrated the best performance; however, the inner workings 
and the reasons behind the model predictions remained hidden, leading to a lack of trust. Therefore, in this 
section, the XAI will be applied using the SHAP package to reveal the underlying decision-making processes 
and offer transparency in the model's predictions.  
Figure 8 illustrates a summary plot for the combined model, including explanations for both regression and 
classification components. The results show that Steam Generator Pressure (PSGA) is the most significant 
parameter for both regression and classification models. This aligns with the engineering understanding that 
the loss of coolant in the primary loop results in reduced heat removal capacity on the secondary side, leading 
to a significant increase in PSGA. 
However, the order of the remaining top-contributing parameters differs for each model. The most influential 
variables for the regression ANN are TAVG, THA, and TCA, indicating that the model relies on the 
temperatures of the hot and cold legs and the average RCS temperature to predict PCT. This reliance is logical, 
as the variations in these temperatures directly impact the reactor core temperature. 
On the other hand, the classification models utilize the volume, pressure, and average temperature of the RCS 
to characterize the type of classes, where these variables (VOL, P, and TVAG) have different natures and 
contribute closely to class prediction. This diversity leads to challenges in distinguishing between classes, 
reflected by a decrease in accuracy, unlike the regression model which strongly bases predictions on a single 
variable nature (temperature). The dominant contribution of these temperature variables results in excellent 
accuracy for the regression model. 
To provide deeper interpretability and a clearer understanding of the model behaviour, the SHAP waterfall 
plot is utilized (Figure 9), which illustrates the local explainability of the models (regression and classification) 
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for one sample case. The results show that PSGA is the significant variable, consistent with the global 
explainability; however, its influence differs for each model, contributing positively in the classification model 
and negatively for the regression model. This validates the previous conclusion that the regression model relies 
on temperature variation to predict PCT.  
 

   
Figure 8. Classification and regression models’ comparison for global interpretability   

 

   
Figure 9. Classification and regression models’ comparison for local interpretability 

 
4.  CONCLUSION 
This work aims to enhance operator performance during LOCA by utilizing machine learning to forecast 
accident types and PCT values. This allows for an evaluation of safety margin variations and the severity of 
the accident, enabling operators to make swift and appropriate decisions to mitigate the consequences. The 
main conclusions are discussed as follows: 

• The combined model demonstrated the best performance, characterized by greater simplicity and good 
accuracy, and was less time-consuming in predicting the type of failure along with PCT. 

• The use of XAI explained the behavior of the combined model and the rationale behind its predictions. 
Therefore, the combined model demonstrated both high performance and transparency, thus establishing 
operator trust in the model's predictions, leading to enhanced safety and reliability in nuclear power plants. 
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