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Abstract: Minimizing operator errors during reactor accidestpivotal for enhancing safety and reliability
in nuclear power plants, thereby sustaining theafisgean energy. To address this challenge, ttegiation
of artificial intelligence (Al) with nuclear safetyystems is proposed to optimize operator perfooman
enabling swift and accurate responses to abnorpetlational situations. However, the complexity ofts
models which considered as "black boxes," posémbenge for operators in comprehending their deicis
making processes, leading to a lack of trust. Qomamog this limitation necessitates the applicatafn
Explainable Al (XAl) to provide transparency in nebdesults, thus establishing trust in Al. Thisdstfocuses
on simulating Loss of Coolant Accident (LOCA) sceos for various pipe break fractions, utilizing
supervised machine learning to classify LOCA bitypkes (small, medium, or large). The classificattotihen
integrated with regression models to predict vemmstin safety margins. Followed by the applicatdmetric
parameters to evaluate their performance. FinAW, is utilized to explain the model results, fatzting an
understanding of the reasons behind their decisions

Keywords: Nuclear safety, Reliability, Operator performanéél, Trustworthiness, Supervised ML,
Transparency.

1. INTRODUCTION

Despite advances in the design and safety systemglear power plants (NPPs) aimed at reducinghéres

for operator intervention during reactor accideatsiancing operator reliability remains cruciaptevent or
mitigate the consequences of accidents. Howevenahubehavior is complex and difficult to predict,
particularly during reactor accidents where an amdation of various factors influences the operator
response. Some factors, such as time pressurm hlararchy, and the need to collect data fromediit
sources, are observable, while others remain hidOeis complexity poses a challenge in ensuringtidre
the operator will make errors or not. Consequerltgre is a pressing need for an alternative approa
reduce the load on the operator and support tleeisihn-making.

The integration of Al with nuclear safety systerddi@sses this issue by rapidly collecting and aadydata
from several detectors, providing accurate suggrestand recommendations. This aids operators inngak
the correct actions, thereby decreasing the likelihof human failure events (HFE). By the beginmhg020,

Al technology had become less complex and moresadue, as reflected by numerous works applyingnAl
the nuclear safety area. These researchers adediiito three main directions:

Earlier Fault Detection: Applying models such dsong Short-Term Memory (LSTM) [1] or Convolutional
Neural Network (CNN)-LSTM [2], which utilize paskeguential data to forecast the progress of future
accidents, provide the operator with more time &kenappropriate decisions to limit further conseges.
Fault Classification: Building models such as Graph Neural Network (GNBY, Recurrent Neural Network
(RNN) [4] can characterize the type and locatioradhilure, enabling the operator to react quickhd
correctly, especially in scenarios involving mukifailures.

Risk Assessment and Safety Margin Characterization: Training models to predict changes in safety
margins [5], providing a clear picture to the operabout the severity of an accident and whicloueses
need to be allocated. From 2020 until 2022, theberof published researches using Machine Leai(hitig

in NPPs increased dramatically; however, the fafuthese efforts was on training models that cakema
predictions with high accuracy, which led to in@ead complexity of the built models. Consequenthyg t
trained models became as "Black boxes," makinficdlt to understand the reasoning behind theitpots.
This poses a challenge for the real applicatioAldh NPPs, where operators need to comprehenchties
workings of the model to trust its resuiherefore, there is a necessity for a new generationodels

to be "Glass boxes," where the operator can epsifyoint the impact of each variable and use their
experience and knowledge to validate the modeégigtion, consequently enhancing trust in the
model's results. In 2022 and 2023, the Idaho Natibaboratory (INL) published two reports [6, 7]
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highlighting the importance of XAl and promotirfietuse of explainability as a promising method
for advancing the integration of Al in NPR4owever, the application of XAl in the nuclear aemains

in its early stages, hence, this work aims to @éntiés area by providing a model combining perfanoeaand
interpretability to establish trustworthiness.

In the first part of the study, two methodologiggdgration and combination) are used to build aehavith
high performance in predicting the type of LOCAUa¢ and evaluating the safety margins variatiomd £he
second part intends to explain the reasons behadbdel outcomes.

2. Methodology

2.1 ANN modd development

The structure of the Artificial Neural Network (ANNmodel comprises multiple layers, including input,
hidden, and output layers. The hidden layers sasvihe central component of the model, housingomesur
interconnected through various combinations of eations. The development of this model involves
importing the requisite dataset and then splitiimgto inputs and outputs, subsequently divided maining,
validation, and testing segments, followed by scpland training the model. This work utilizes two
methodologies to predict the type of failure an@kP€ladding Temperature (PCT), which allows for the
evaluation of safety margin variations. The botprapches are discussed as follows:

« ANN Integrated Moddl: This methodology employs an integration technigiugvo distinct models.
Firstly, a classification model is used to foredhsttype of accident. The results from this maatel
then combined with inputs for a regression modaictv predicts the key parameter, PCT, as shown
in Figure 1.

¢« ANN Combined Model: In this technique, the two models receive the senpets, and the outputs
from both models are generated concurrently. Thisr@ach helps compress the overall model
structure and reduces simulation time, as illustrén Figure 2.
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2.2 ANN mode evaluation
After training the model (integrated, combinedg tiext step is to evaluate their performance usiag
appropriate metric parameters for both regressmoinctassification algorithms:
* Regression model evaluation: The regression model is used to predict the F@ble 1 displays
the statistical parameters used to evaluate thétsesf this algorithm. Wherg, is actual values and
Y,re is predicted values.

Table 2. Metric parameters for regression modél [8

Metric Propriety Equation
par ameter
Coefficient of is a statistical measure of how well the -y )2
. . - . R2=1-22 “Jpre 1)

determination regression predictions approximate the actual Yy — )2

data points.
Mean absolute A commonly used measure of error for 1 2
error estimation problems. MAE = NZIY - Ypre| @)
Root mean squareis considered an excellent general-purpose RMSE =X Y=Y, (3)
error error metric for numerical predictions. N e

. . . 2
Mean square is a simple square of the difference between the p;op — lz(y ~Yyre) 4
errol measured and observed val N

« Classfication model evaluation: To assess the classification algorithm, four ewduamatrices
are employed, with their appropriateness discussgédble 2. Where, TP (True Positives), TN (True
Negatives), FP (False Positives), and FN (Falseabiezs).

Table 2. Metric parameters for classification mo@&l 10]

Metric Propriety Equation

parameter

Accuracy This metric assesses the ratio of correct ACC = TP +TN (5)
predictions to incorrect ones made by the " TP+TN +FP+FN
model.

Precision This parameter reflects how cautiouslg t PREC = TP (6)
model makes positive predictions. ~ TP+ FP

Recall Used to assess how well the model genesalizREC TP ©)
in identifying positive cases. TP+ FN

Fl-score This score indicates the equilibrium leetw Fl = 2 x PREC X REC (8)
precision and recall in the model's - PREC + REC

performance

2.3 ANN model explainability

The evaluation of model performance alone is incieffit to rely on their outcomes, due to hidden
reasons and complex relations upon which the muakads its predictions; therefore, it is considered
a "Black box." Therefore, the application of XAlrtlugh the use of the Shapley Additive
Explanations (SHAP) package is employed, offerieagesal capabilities including global and local
interpretability. These features enable the reiaiabf the inner workings of the model and
demonstrate how it arrives at its results, therédaypsforming it into a "Glass box model."
Consequently, this transparency enhances trueeimbdel's predictions, as illustrated in Figure 3.
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Figure.3 XAl for ANN model

3. Result and discussion

3.1 ANN modes comparison results

The Personal Computer Transient Analyzer (PCTRadf)ware’'s open data is used [11] is employed to
train a model that simulates a LOCA in a PWR3Phétilure variations ranging from 1% to 100%. Ten
parameters are selected as inputs for the modekt®ePower (QMWT, MW), Steam Generator Pressure
(PSGA, Bar), Pressurizer Level (LVPZ), Reactor @oblSystem Pressure (P, Bar), Reactor Coolant Loop
Flow (WRCA, t/h), Hot Leg Temperature (THAC), Cold Leg Temperature (TCAC), Average RCS
Temperature (TAVG,C), Steam Generator A Heat Removal Power (QMGA), B&S Liquid Volume
(VOL). The target variables are Peak Clad TempesafiPCT,C) and the type of failure (small, large,
medium). The total dataset generated comprises844rBtances, with 70% allocated for training, 2fif%
testing, and 10% for validation.

Two methodologies, combination and integration, applied, utilizing two supervised machine learning
techniques: regression and classification. Theesponding metric parameters for both the classidinaand
regression models are employed, with the resuddaljed in Tables 1 and 2. Both the combined ategjiated
ANN models demonstrated excelld®? score, exceeding 99%, and good accuracy. Howeweintegrated
model showed an accuracy that was 3.15% higherthtzof the combined model. Furthermore, the amyur

of the integrated model stabilized quickly, wherd¢las combined model required 600 epochs to begin
stabilizing, as seen in Figure 4. On the other htr&lMAE for both models decreased rapidly, reaglheir
lowest values within 250 epochs, as illustrateHigure 4.

Table.1l. Regression metric parameters comparisontiEgrated and combined model

ANN Deter mination MAE M SE RMSE
M odel coefficient

Train Test Train Test Train Test Train Test
Integratec 99.7¢ 99.7¢ 5.37 5.51 182.17 207.87 13.4¢ 14.41
Combinet 99.5¢ 99.5¢ 7.91 8.2 308.8¢ 961.2¢ 17.5% 19.7¢

Table.2. Classification metric parameters comparfeo integrated and combined model

ANN Accuracy Precision Recall F1

Model Train Test Train Test Train Test Train Test
Integrate: 96.9¢ 96.9¢ 96.51 96.5:2 96.2¢ 96.27 96.3¢ 96.3¢
Combinet 93.8: 93.9( 94.0( 94.07 93.5¢ 93.57 93.6¢ 93.6¢

Figure 5 depicts the losses for both models, witleeeintegrated method shows the lowest and earliest
stabilization of losses in the classification modeinpared to the combined technique. MeanwhilefHer
regression model, both the integrated and combinethods demonstrate similar behaviour and stabilize
approximately simultaneously.

The confusion matrix is used to further comparettfee techniques for the classification model, aswahin
Figure 6. The results indicate that both methodggte to distinguish between medium LOCA (clasarig
large LOCA (class 2). Specifically, the integrateethod incorrectly predicted class (1) as clasg §3)times,
while the combined method made 206 misclassifioatitlowever, both models (combined and integrated)
can easily differentiate between class (2) andIsb@CA (class 0).
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Figure 7 illustrates the regression predictions of PCbdtin the integrated and combined models, with each
method demonstrating good fit. However, the combimediel shows slightly higher residuals, with some
samples significantly deviating from the best fit line.
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Finally, both methods exhibited excellent predictive pentomce for the regression model, while for
classification, the integrated technique showed maligibetter accuracy than the combined model. However
the combined model required fewer parameters and pwtiless time than the integrated model, thereby
demonstrating better overall performance and provirigetthe more appropriate choice.
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Figure 7. Combined and integrated models’ comparisoPCT prediction

3.2 ANN mode s explainability results

In the previous part the combined technique demondtia&best performance, however the inner working
and the reason behind model prediction remain hiddeding to lack of the trust. Therefore, in this section
the XAl will apply through using SHAP package to revealirtficision underlying and offering the
transparency of the model. The Figure 8 illustrated sumpiat for the combined model including regression
and classification explanations.

The results shows that PSGA is the most significant paesfegtboth regression and classification models,
and this aligning with engineering meaning, where the &dosolant in the primary loop resulting of the
reducing the capability of removing the heat by seconddeylsading to increasing significantly the steam
generator pressure (PSGA). However, the order oféopminder contributed parameters for each model is
different. The most influential variables for regressfdidN are TAVA, THA and TCA, consequently, the
model relaying on the temperature’s values of hot aftdilegs and average RCS to predict PCT, and this is
reasonable. In the other hand the classificationelscgimploy the volume, pressure and average temperature
of the RCS to characterize the type of the classes whese variables (VOL, P, TVAG) have closes
conurbation values for class prediction.

In the previous part, the combined technique demonstitadaest performance; however, the inner workings
and the reasons behind the model predictions remaineen, leading to a lack of trust. Therefore, in this
section, the XAl will be applied using the SHAP packageeveal the underlying decision-making processes
and offer transparency in the model's predictions.

Figure 8 illustrates a summary plot for the combined madeluding explanations for both regression and
classification components. The results show that Steaner@en Pressure (PSGA) is the most significant
parameter for both regression and classification modihls. aligns with the engineering understanding that
the loss of coolant in the primary loop results in reduneat removal capacity on the secondary side, leading
to a significant increase in PSGA.

However, the order of the remaining top-contributing peaters differs for each model. The most influential
variables for the regression ANN are TAVG, THA, an@A, indicating that the model relies on the
temperatures of the hot and cold legs and the avera§ed®perature to predict PCT. This reliance is logical,
as the variations in these temperatures directly impace#utor core temperature.

On the other hand, the classification models utilize therme| pressure, and average temperature of the RCS
to characterize the type of classes, where theseblesi@/OL, P, and TVAG) have different natures and
contribute closely to class prediction. This diversity lemdshallenges in distinguishing between classes,
reflected by a decrease in accuracy, unlike the ssgne model which strongly bases predictions on a single
variable nature (temperature). The dominant contributioiihese temperature variables results in excellent
accuracy for the regression model.

To provide deeper interpretability and a clearer undedstg of the model behaviour, the SHAP waterfall
plotis utilized (Figure 9), which illustrates the locaprinability of the models (regression and classification)
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for one sample case. The results show that PSGAeissitinificant variable, consistent with the global
explainability; however, its influence differs for each mipdontributing positively in the classification model
and negatively for the regression model. This validaptlvious conclusion that the regression model relies
on temperature variation to predict PCT.
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Figure 8. Classification and regression models’ ganson for global interpretability
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Figure 9. Classification and regression models’ ganson for local interpretability

4. CONCLUSION
This work aims to enhance operator performance durld@A by utilizing machine learning to forecast
accident types and PCT values. This allows for auation of safety margin variations and the severity of
the accident, enabling operators to make swift and apgptepecisions to mitigate the consequences. The
main conclusions are discussed as follows:

* The combined model demonstrated the best performehnagcterized by greater simplicity and good

accuracy, and was less time-consuming in predictingypiedf failure along with PCT.

¢ The use of XAl explained the behavior of the combimediel and the rationale behind its predictions.
Therefore, the combined model demonstrated both pegformance and transparency, thus establishing
operator trust in the model's predictions, leading t@eoéd safety and reliability in nuclear power plants.
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