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Abstract: A limit surface is an n-dimensional surface describing a nuclear plant status as a function of selected 

plant parameters that identify the boundaries between failed and safe conditions for the reactor core. A limit 

surface can be used for a dynamic probabilistic risk assessment (PRA) analysis. In this paper, machine learning 

algorithms are applied to predict a limit surface efficiently for a PWR small break loss of coolant accident 

(LOCA). Basic ideas of the algorithms are similar to those of the RAVEN statistical analysis code. As a first 

step, a set of training simulations is run to construct a surrogate model for determining an approximated limit 

surface. The surrogate model is then used to predict where further exploration of the input space could be most 

informative. The new observations are used to update the surrogate model. This kind of adaptive samplings is 

iterated until convergence is obtained. A case study was carried out for the RELAP5 analysis of an accident 

management procedure of the steam generator secondary-side depressurization for a small break LOCA 

scenario with total failure of the high pressure injection (HPI) system in a conventional Westinghouse type 

PWR. The limit surface was investigated for the peak cladding temperatures as a function of the break size 

and the depressurization timing. Several sampling methods were compared from the viewpoint of convergence 

to the limit surface. It was confirmed that using adaptive sampling and machine learning techniques provided 

a remarkable reduction of the time required for the accurate limit surface determination. 
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1. INTRODUCTION 

 

A limit surface is an n-dimensional surface describing a plant status as a function of selected plant parameters 

that identify the boundaries between failed and safe conditions for the core. A limit surface can be used for a 

dynamic probabilistic risk assessment (PRA) analysis. However, the evaluation of the limit surface as a 

function of the coordinates in the input space is computationally expensive, especially when brute force Monte 

Carlo methods are chosen as the sampling strategy. Therefore, applications of machine learning algorithms are 

desired to reduce the computational cost for the limit surface determination.  

 

In this paper, adaptive machine learning algorithms were applied to determine a limit surface for a PWR small 

break loss of coolant accident (LOCA). Evaluations of the algorithms showed that they were able to calculate 

an n-dimensional limit surface with minimal effort.  

 

First, the accident analyses using RELAP5-3D code [1] were carried out for a small break LOCA scenario 

with total failure of the high pressure injection (HPI) system in a conventional Westinghouse type PWR. In 

the case of total failure of the HPI system following a small break LOCA in a PWR, the steam generator (SG) 

secondary side depressurization is necessary for an accident management (AM) in order to allow actuation of 

accumulator systems and reflooding of the core. The key parameters for the AM procedure are the break size, 

the depressurization timing, the number of depressurizing SGs, and the depressurization rate [2]. For the sake 

of simplicity, the investigations in this paper were restricted to the limit surface of the first two parameters. 

The peak cladding temperatures (PCTs) were calculated by the RELAP5 code as a function of the LOCA break 

size and the SG depressurization timing. The limit surface was evaluated as the reference analysis for the 

machine learning applications.  

 

Next, machine learning algorithms were applied to determine the relevant limit surface. The basic ideas of the 

algorithms of this paper are similar to those of the RAVEN statistical analysis code [3]. As a first step, a set of 

training simulations is run to construct a surrogate model for determining an approximated limit surface. The 

surrogate model is then used to predict where further exploration of the input space could be most informative. 

The new observations are used to update the surrogate model. This kind of adaptive samplings is iterated until 

it is converged. Verification of the guessed limit surface is then automatically performed. 
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Finally, the accuracy of the limit surface prediction was evaluated by comparing the prediction to the reference 

analysis by the RELAP5 code. The probability of success and failure was evaluated using the limit surface 

prediction. Several adaptive sampling methods were compared from the viewpoint of convergence to the real 

limit surface.  

 

2. REFERENCE ANALYSIS BY RELRAP5 CODE 

 

2.1. Accident Scenario 

 

In the case of total failure of the HPI system following small break LOCA in pressurized water reactors, the 

break size is so small that the primary system does not depressurize to the accumulator injection set point and 

the core is uncovered extensively. Therefore, SG secondary-side depressurization is necessary for the AM 

procedure in order to allow accumulator system actuation and the core reflooding. The effectiveness of SG 

secondary-side depressurization in small break LOCAs with HPI failure has been investigated experimentally 

at the Large Scale Test Facility (LSTF) (see for example, [2]). The key parameters for the AM procedure are 

the break size, the depressurization timing, the number of depressurizing SGs, and the depressurization rate 

[2]. However, the effectiveness of the AM procedure for the actual plant design and operational characteristics 

should be investigated.  

 

In the author’s previous study [4], the uncertainty propagation analyses were performed for a conventional 

Westinghouse type PWR for a small break LOCA scenario assuming conditions of the accident management 

(AM) procedure as based on plant emergency operation manuals. 

 

Figure 1 shows a nodalization model of a conventional Westinghouse type PWR. The RELAP5 model consists 

of the reactor vessel, primary loop, pressurizer, SGs, and emergency core cooling system (ECCS). The reactor 

core is represented by the average power channel, the high power channel and the highest power channel, all 

of which are divided into six sections in the axial direction. The SG U-tubes are simulated by eight cells for 

the straight part and two cells for the bent part. In order to simulate countercurrent flow limitation (CCFL) in 

 

 

 
 

Figure 1. RELAP5 nodalization for reference PWR 
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the SG U-tubes, the CCFL model is activated at the SG inlet junctions. The Wallis type correlation is used as 

the CCFL model. In addition to the core and SG U-tubes, heat structures in the reactor vessel, primary loop, 

and SG secondary-side are also simulated. The secondary system is provided with main and auxiliary feed 

water systems, relief and isolation valves, and the main steam line. The RELAP5 default critical flow model 

is activated for single-phase vapor flow at the main steam relief valves. The break is simulated with the valve 

component connected to the cold leg of the loop with the pressurizer. 

 

Table 1 summarizes the analysis conditions. In accordance with the AM procedure provided as the plant 

emergency operations, the SG secondary-side depressurization is conducted 2 minutes after the core exit 

temperature (CET) reaches 350°C by opening the secondary atmospheric relief valves fully.  

 

Figure 2 shows the analysis results for the primary system pressure and the rod surface temperature in the case 

of the 3 inch break. Because the HPI is assumed not to work, the core uncovering can occur when the reactor 

coolant system (RCS) pressure is too high for the accumulators (ACCs) and low pressure injection (LPI) 

system to make up for the break flow. After the initiation of the SG secondary-side depressurization, the 

secondary-side pressure falls below the RCS pressure, and the primary-side pressure closely follows the 

secondary-side pressure. After the primary-side pressure falls below the pressure set point initiating injection 

by the ACCs, the ACCs inject water into the cold legs and that results in the core reflooding. The effectiveness 

of the AM procedure should be investigated under the various break conditions and depressurization timings.  

 

Table 1. Analysis conditions  

Device operation Analysis conditions 

Initial core power Rated power 

Reactor trip Pressurizer pressure low 

Turbine trip At the same time as reactor trip 

Safety injection signal Pressurizer pressure low 

RCP coast down At the same time as safety injection signal 

Main feedwater stop At the same time as reactor trip 

Auxiliary feedwater 60s after break, All loops 

Main steam relief valve Automatic operating 

Initiation of HPI system Inoperative 

Initiation of ACC injection All loops 

Initiation of LPI system All loops 

Initiation of SG secondary-side depressurization 
2 min after the CET reached 350°C, Full opening of 

atmospheric relief valves of all loops 

 

 

        
(a) Primary system pressure                                              (b) Rod surface temperature 

 

Figure 2. Analysis results: 3 inch break [4] 
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2.2. Limit Surface 

 

The limit surface is the boundary in the simulation space between system failure and system success. The key 

parameters for the AM procedure are the break size, the depressurization timing, the number of depressurizing 

SGs, and the depressurization rate. For the sake of simplicity, the investigations in this study were restricted 

to the limit surface defined by the first two parameters.  

 

Figure 3 shows the PCTs calculated by RELAP5 as function of the LOCA break size and the SG 

depressurization timing for the reference analysis in Section 2.1. The break size was varied from 0.5 inches to 

5.0 inches. The depressurization timing was varied from 600s to 18974s. The boundary between the orange 

and blue areas shows the discrete coarse limit surface with the threshold of 1473K.  

 

In the case of the 5-inch break, the ACC injection was initiated early due to rapid depressurization of the 

primary system, the PCTs started to drop after the ACC injections, and the PCT did not reach 1473K for each 

depressurization timing. In the case of the 1 inch break, the accident event progressed slowly and the start time 

of the cladding heat up was also delayed. The PCTs started to drop after the ACC injections and they were 

followed by the LPI system activation. It is important to accurately evaluate the depressurization timing to 

ensure the success of the AM strategy for the various break sizes. 

 

The continuous limit surface for the reference case in this study was evaluated by spline interpolation of the 

PCTs calculated by RELAP5. 

 

 

  

 
Figure 3. Coarse limit surface determined by the RELAP5 code 

Break size
[in]

Depressurization timing [s]

600 755 951 1197 1507 1897 2389 3007 3786 4766 6000 7554 9509 11972 15071 18974

5.00 906.0 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 906.1 

4.50 939.7 951.8 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 944.1 

4.00 858.7 979.9 1037.5 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 1038.2 

3.50 721.6 839.6 1090.7 1320.5 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 1334.4 

3.25 631.0 807.5 819.2 1252.6 1640.3 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

3.00 631.0 648.4 709.4 966.1 2122.2 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

2.75 631.0 631.0 631.0 697.2 1244.3 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

2.50 631.0 631.0 631.0 719.2 656.8 1851.7 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

2.25 631.3 631.3 631.3 631.3 631.0 735.4 2122.1 2122.2 2122.2 2122.2 2122.2 2122.2 2122.2 2122.2 2122.2 2122.2 

2.00 631.0 631.0 631.0 631.0 631.0 631.0 661.2 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

1.75 631.0 631.0 631.0 631.0 631.0 631.0 631.0 665.2 1512.3 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

1.50 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 1048.1 2122.1 2122.1 2122.1 2122.1 2122.1 2122.1 

1.25 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 2122.1 2122.1 2122.1 2122.1 2122.1 

1.00 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 631.0 2122.2 2122.2 2122.2 

0.75 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 631.2 

0.50 631.3 631.3 631.3 631.3 631.3 631.3 631.3 631.3 631.3 631.3 631.3 631.3 631.0 631.0 631.0 631.0 
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3. ANALYSIS METHOD USING MACHINE LEARNING 

 

3.1. Surrogate Model 

 

In this paper, a surrogate model, also known as a reduced order model (ROM), was applied for efficient 

prediction of the limit surface that was evaluated in Section 2.2. 

  

The surrogate model is a mathematical representation to predict a figure of merit of a physical system. Such a 

model offers a simpler and computationally faster mathematical representation which emulates the high 

fidelity of a computationally expensive system analysis code based on a small number of training runs. In order 

to predict a limit surface efficiently, a reduced order model is used to reduce the analysis computational cost 

by reducing the number of needed points and prioritizing the area of the input space that needs to be explored. 

 

In this paper, the surrogate model was represented by Gaussian process regression with the squared exponential 

kernel. This surrogate model approximates the real response function of the system using Kriging-based 

interpolators.  

 

3.2. Sampling Strategy 

 

In this paper, the following sampling strategies were used in the training process of the surrogate model, and 

they were compared from the viewpoints of computational cost and the accuracy of the limit surface prediction.  

 

(i) Monte Carlo sampling 

(ii) Latin hypercube sampling 

(iii) Adaptive sampling 

 

In Monte Carlo sampling (MC), random values from 

each provability distribution are generated repeatedly 

at random. The random value selected for one 

sampling does not affect the random value for the next 

sampling. In Latin Hypercube sampling (LHS), each 

probability distribution is divided into segments of 

equal probability, and random values are generated 

from each segment, reducing the number of cases in 

which random value generation is biased toward a 

particular range of the probability distribution. 

Therefore, compared to Monte Carlo sampling, Latin 

Hypercube Sampling can achieve the same level of 

statistical accuracy with fewer trials. 

 

Monte Carlo sampling and Latin hypercube sampling 

are forward samplers. These kinds of once-through 

samplers are not effective enough to train the limit 

surface. On the other hand, an adaptive sampling 

strategy is highly effective to prioritize the area of the 

sampling space that needs to be explored. Figure 4 

shows the workflow of the algorithm for this strategy [5]. As a first step, a set of training simulations is run to 

sample the system responses. Those calculations are used to train a reduced order model, which is then used 

for determining an approximated limit surface. The reduced order model is then used to predict where further 

exploration of the input space could be most informative. The new observations are used to update the reduced 

order model. This process is iterated until convergence is obtained. This way, the most information possible is 

gained in a small number of carefully selected sampled points, limiting the number of expensive trials needed 

to understand features of the system space.  

 

  

 
 

Figure 4. Adaptive sampling algorithm [5] 
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The procedure for the adaptive sampling in this paper is as follows. First, a small number of training data are 

randomly sampled, and the surrogate model is constructed using these training data. Next, the training data 

point is chosen randomly on the limit surface predicted in the previous step, and the surrogate model is updated 

using the added training data. The added training data point on the limit surface in the previous step is chosen 

as the point which is located the farthest from all the training data points selected in the previous step. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1. Limit Surface Predictions 

 

Figure 5 compares the limit surfaces predicted by the Gaussian process surrogate models using the sampling 

strategies: (a) Monte Carlo sampling, (b) Latin hypercube sampling, and (c) adaptive sampling. The number 

of the training data for the surrogate model was 80 for each sampling strategy. The blue points in the figure 

show the training data points. The red areas show the failed area of the reference analysis as obtained by the 

RELAP5 code, the PCTs of which were over 1473 K. PCTs over two-dimensional input space of the break 

area and the depressurization timing were evaluated for the 160x160 grid points by splined interpolation of the 

RELAP5 analysis results for the 16x16 grid points. 

 

Figure 5(a) shows the limit surface evaluated by the Monte Carlo sampling. The crude Monte Carlo sampling 

could not cover the whole two-dimensional input space with 80 training data. Therefore, the predicted limit 

surface of 1473 K was located away from that of the reference analysis by the RELAP5 code.  

 

Figure 5(b) shows the limit surface evaluated by the Latin hypercube sampling. Compared with the Monte 

Carlo sampling in Figure 5(a), the training data points in the input space were spread evenly over the whole 

area. However, the training data points were also located away from the 1473 K line of the reference analysis; 

therefore, the predicted limit surface also was located away from that of the reference analysis by the RELAP5 

code. 

 

Figure 5(c) shows the limit surface evaluated by the adaptive sampling. The sampling procedure was as follows. 

First, 8 training data points in the input space were randomly sampled, and the surrogate model was constructed 

using the training data. Next, the training data point was chosen from the 1473 K line of the predicted limit 

surface of the previous step as the point which was the farthest from all the training data points selected in 

former steps. The surrogate model was updated using the RELAP5 analysis result on the added training data 

point. This procedure was repeated until the number of the training data was 80. As shown in the figure, the 

training data points were located near the 1473 K line of the reference analysis; therefore, the predicted limit 

surface also was located near that of the reference analysis by the RELAP5 code.  

 

4.2. Accuracy Evaluation of Predicted Limit Surfaces 

 

The accuracies of the predicted limit surfaces were evaluated by comparing them with the limit surface of the 

reference RELAP5 analysis.  

 

Figure 6 shows the prediction accuracy of the depressurization timings on the limit surface with the increasing 

number of training data. The depressurization timings on the predicted limit surfaces are compared against 

those on the RELAP5 limit surfaces for each break size.  

 

For Monte Carlo sampling, the case for 20 sample training data had poor accuracy in predicting the 

depressurization timings, especially for the earlier depressurization timing of break diameters around 3 inches. 

The case for 40 sample training data predicted late depressurization timings (i.e. non-conservative). The cases 

for 60 and 80 samples training data also resulted in large variations in the prediction accuracy of the 

depressurization timing. 
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(a) Monte Carlo sampling 

 

 
(b) Latin hypercube sampling 

 

 
(c) Adaptive sampling 

 

Figure 5. Limit surface predictions 
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For Latin hypercube sampling, the overall prediction accuracy was better than that of Monte Carlo sampling, 

but the prediction accuracy was poor and the variability was large in the case of earlier depressurization timings 

of break diameters around 3 inches. 

 

For adaptive sampling, the prediction accuracy of the depressurization timing was good for the case of 40 

sample training data, and the prediction accuracy improved as the number of training data increased. Although 

the accuracy was relatively worse for the late start of the depressurization with break diameters of around 1 

inches, it is not considered to be particularly important for the accuracy evaluation when there is a late start of 

depressurization of the AM procedure. 

 

  

  
(a)  20 samples                                                                 (b)  40 samples 

 

    

(c)  60 samples                                                                  (d)  80 samples 
 

Figure 6. Prediction accuracy of the depressurization timings on the limit surface 
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4.3. Probability of Success and Failure 

 

When setting the 1473 K line of the PCTs as the threshold, the probability of success and failure was evaluated 

for each sampling strategy.  

 

Figure 7 shows the ratios of the numbers of points in the input space for which PCTs predicted by the surrogate 

models were over 1473 K versus the increasing numbers of training data. The red dashed line shows the ratio 

of the RELAP5 reference analysis, the value of which was 0.312. As shown in the figure, the ratios predicted 

by the adaptive samplings converged to the ratio of the reference analysis.  

 

Table 2 summarizes the difference in the ratio of points in the input space for which PCTs predicted by the 

surrogate models were over 1473 K from that of the RELAP5 reference analysis with increasing numbers of 

training data. The adaptive sampling could evaluate the ratio the most accurately. 

 

 
 

Figure 7. Ratios of numbers of points in the input space for which PCTs predicted by the 

surrogate models were over 1473 K with increasing numbers of training data 

Number of training data [-]

Table 2. Difference in the ratios of points in the input space for which PCTs predicted by the surrogate 

models were over 1473 K from that of the RELAP5 analysis with increasing numbers of training data  

 

Numbers of 

Training 

Data 

Difference from RELAP5 

MC LHS Adaptive 

10 -0.047   0.112   0.003  

20 -0.075  -0.054   0.002  

30 -0.003  -0.006  -0.013  

40 -0.092  -0.053   0.006  
50  0.043  -0.015  -0.003  
60 -0.006   0.036   0.003  
70  0.003  -0.011   0.004  

80  0.007  -0.014   0.000 
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5. CONCLUSION 

 

The limit surface is an n-dimensional surface describing the nuclear plant status as a function of selected plant 

parameters, and it identifies the boundaries between failed and safe conditions for the reactor core.  In this 

paper, adaptive machine learning algorithms were applied to predict a limit surface efficiently for a PWR small 

break loss of coolant accident (LOCA).  

 

As a first step, a set of training simulations was run to construct a surrogate model for determining an 

approximated limit surface. The surrogate model was then used to predict where further exploration of the 

input space could be most informative. The new observations were used to update the surrogate model. This 

kind of adaptive samplings was iterated until convergence was obtained.  

 

The limit surface was investigated for the peak cladding temperatures as a function of the break size and the 

depressurization timing. It was confirmed that using adaptive sampling and machine learning techniques 

provided a significant reduction in the time required for accurate limit surface determinations. 
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