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Abstract: Pipelines play a key role in ensuring safe and economical oil and gas transportation. However, 

pipelines are typically operated under harsh working conditions and are hence vulnerable to various failure 

causes, of which corrosion accounts for around 20 percent. Moreover, the consequences of pipeline failures 

may lead to serious production losses, environmental pollution, and even injuries. Therefore, an effective 

method for pipeline corrosion assessment is important to maintain the integrity of oil and gas transportation 

systems. This paper presents a novel method for the assessment of external corrosion in oil and gas pipelines 

using a 1D Convolutional Neural Network (1D-CNN). Our method leverages the ability of 1D-CNNs to 

automatically extract and learn features from pipeline inspection data, enabling effective corrosion prediction. 

The proposed method was demonstrated using real-field pipeline inspection data, and validated by a 

comparative study with conventional machine learning-based methods. This study underscores the potential 

of deep learning techniques, particularly 1D-CNNs, to enhance the accuracy of pipeline corrosion assessment. 
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1. INTRODUCTION 
 

External corrosion in oil and gas pipelines refers to the deterioration of pipeline materials due to 

electrochemical reactions with their immediate surroundings on the outer surface of the pipeline, potentially 

leading to metal loss from pipe walls and structural weaknesses [1]. According to the Pipeline and Hazardous 

Materials Safety Administration (PHMSA), approximately 8% of reported incidents on gas transmission, gas 

gathering, and hazardous liquid pipelines were caused by external corrosion in the U.S. from 2013 to 2017 [2]. 

Therefore, it is pivotal to establish effective management of external corrosion in oil and gas pipelines to 

prevent leaks, spills, and structural failures, thereby preserving pipeline integrity and ensuring safe and reliable 

operation. 

 

As a foundation for corrosion management, corrosion assessment involves identifying, evaluating, and 

monitoring the severity of corrosion in pipelines, guiding proactive efforts to prevent corrosion-related failures, 

and extending the service life of oil and gas pipelines. The essential task of corrosion assessment is to develop 

predictive models for corrosion rate or depth by exploiting pipeline characteristics, environmental parameters, 

and operational factors [3]. In general, the external corrosion assessment models can be broadly categorized 

into three types:  

(1) Physical models are based on a mechanistic understanding of corrosion behavior by referring to the 

fundamental principles of chemistry, physics, and material science, such as the De Waard carbonic acid 

corrosion model [4]. However, physical models often rely on simplifying assumptions and cannot fully 

capture the complexity of the real-world corrosion environment. This leads to discrepancies between 

model predictions and actual observations in the field, restricting their practical applicability. 

(2) Empirical models are based on statistical analysis of historical corrosion data (e.g., multivariate regression 

analysis) to establish relationships between corrosion rates and various influencing factors such as 

environmental conditions, pipeline characteristics, and operating parameters [5, 6]. These models offer 

simplicity and interpretability to predict corrosion behavior, while they have limited flexibility in 

capturing nonlinear relationships or complex interactions between variables.  

(3) Data-driven models aim to take advantage of machine learning methods' greater flexibility and accuracy 

in modeling complex relationships and patterns in data, making them particularly well-suited for corrosion 
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assessment in oil and gas pipelines, where the relationships between variables may be nonlinear and 

multifaceted [7]. As a result, data-driven models have recently drawn growing attention for corrosion 

assessment in oil and gas pipelines, balancing accuracy with practicality and efficiency in field 

applications [8]. Some of the most widely used machine learning methods are support vector regression 

[9], random forest [10], and back-propagation neural networks [11]. Notably, neural network-based 

models can outperform most conventional machine learning methods in pipeline corrosion prognostics 

[12-14].  

 

In this paper, we present a 1D Convolutional Neural Network (CNN)-based model for external corrosion 

assessment that automatically extracts and learns a representation directly from the field dataset of oil and gas 

pipelines. Several convolutional layers are employed to capture the data structure and learn various filters 

essential for the predictive task. Ultimately, we illustrated the proposed framework using a real-field dataset 

acquired at dig sites over three years for onshore buried pipelines operating in southern Mexico for up to 50 

years. The performance of the proposed model was also demonstrated by a comparison to 13 other machine 

learning methods. 

 

The remainder of the paper is organized as follows: Section 2 describes the real-field corrosion dataset of 

onshore buried pipelines and details the data preprocessing. Section 3 presents the proposed 1D-CNN-based 

model and discusses the results with a comparative study of 13 machine learning models. Section 4 provides 

concluding remarks and future directions.  

 

 

2. DATA DESCRIPTION AND PREPROCESSING 
 

This study adopts a real-field corrosion dataset acquired at dig sites over three years for onshore buried 

pipelines operating in southern Mexico for up to 50 years [15, 16]. The dataset has 259 data samples; 9 outlier 

samples were removed, leaving 250 data samples for this study. As displayed in Table 1, the corrosion severity 

is represented by the maximum pit depth as the target variable of the predictive model; the inputs are the 12 

influencing variables consisting of the local soil properties and operating parameters. Figure 1 shows the 

maximum pit depth distribution and trend over the pipeline age.  Figure 2 shows the distribution of the local 

soil properties and operating parameters. 

 

Table 1. Corrosion severity and influencing variables for corrosion assessment 

 

 

 

 

 

 

 

 

 

 Variables  Notation Type of Variables 

Corrosion Severity Maximum pit depth dmax Continuous 

Operating Parameters 
Pipeline age t Continuous 

Coating type ct Ordinal 

Local Soil Parameters 

 pH ph Continuous 

Pipe-to-soil potential pp  Continuous 

Soil resistivity re Continuous 

Water content wc Continuous 

Bulk density bd Continuous 

Dissolved chloride cc Continuous 

Bicarbonate bc Continuous 

Sulfate ion concentrations sc Continuous 

Redox potential rp Continuous 

Soil textural class  class Nominal  
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Figure 1. Trend of maximum pit depth over pipeline age and distribution of maximum pit depth 

 

 
Figure 2. Distribution of local soil parameters and operating parameters 

 

The dataset is preprocessed by the following: (a) one-hot encoding the nominal features: each nominal value 

is converted into a new column and assigned a 0 or 1 value to the column and the number of nominal values 

equals the number of columns; (b) encoding the ordinal feature: the 5 coating types are ordered by its degree 

of protection against corrosion and is hence converted into a numerical integer between 1 and 5; (c) 

standardizing the continuous features: the continuous value of the datasets are standardized to have a mean of 

0 and a standard deviation of 1. Finally, there are 22 features in the preprocessed dataset, which consist of the 

normalized continuous features, and encoded nominal and ordinal features. It then proceeded to split the 

standardized dataset into a training dataset Xtrain, validation dataset Xval and testing dataset Xtest, all of which 

account for 70%, 15%, and 15% of the total datasets. 
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3. MODEL DEVELOPMENT AND RESULTS 
 

The 1D CNN is used as the backbone model in this study as illustrated in Figure 3. The model receives data in 

18 × 1 dimensions as an input, followed by 3 convolutional layers, whose kernel sizes are {64×1, 32×1, 16×1}, 

respectively, and the kernel numbers are {7, 3, 2}, respectively. A max-pooling layer with a pooling size of 2 

× 1 is appended to each convolutional layer. After the convolution and pooling operations, the extracted 

features are flattened as the input to a dense layer of 64 units and then an output layer of 1 unit, indicating the 

corrosion severity. The activation function used is the rectified linear unit (ReLU) function, except the softplus 

function in the output layer, imposing the positive requirement of pit depth values. The network is trained 

using the loss function of mean square error (MSE) and the Adam optimization algorithm with a learning rate 

as 1 × 10−3, and the number of training epochs is 200. Once the model is well trained, the corrosion severity 

(i.e., maximum pit depth) can be properly estimated through a forward pass of the proposed model.  

 

 
 

Figure 3. Configuration of a 1D convolutional neural network-based model for external corrosion assessment 

 

 
Figure 4. Predictive Results Using 1D Convolutional Neural Network 

 

Figure 4 displays the results based on our proposed model. To further corroborate our proposed model's 

performance, we compared 13 other widely used machine learning-based regression models. The results of the 

comparative study are summarized in Table 2. Note that we use the parameter settings of those ML models in 

Python to keep the reproducibility of the results. The models’ performance is evaluated using the metrics of 

root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R-Square).  
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Table 2. Performance of pipeline corrosion assessment using the proposed model and 13 other models  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 
 

In this study, we have demonstrated the efficacy of using a 1D-CNN-based model for external corrosion 

assessment in oil and gas pipelines. Through extensive training and testing on a real-field onshore pipeline 

inspection dataset, the proposed model exhibited superior performance for corrosion assessment against 

conventional machine learning techniques. The results highlight the ability of the 1D-CNN to automatically 

learn and extract relevant features from raw data. This research underscores the transformative potential of 

deep learning techniques in the field of pipeline integrity management. Future work will focus on enhancing 

the model's accuracy and explainability, along with its integration with other data sources and broader 

application to other pipeline types and corrosion scenarios. Adoption of such advanced technologies can result 

in more proactive and reliable pipeline integrity management, ultimately safeguarding critical infrastructure. 
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