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Abstract: The paper presents a distribution-free stochastic model updating approach to address a reliability 

problem based on the 2008 Sandia thermal problem involving a material used for the safety-critical 

components in a nuclear reactor. One of the challenges involves quantifying the thermal reliability of the 

material, along with its uncertainties, given only limited experimental data. To achieve this, the proposed 

methodology involves the moment-matching staircase density function to characterise the variability of the 

aleatory input model parameters based on the available data. To calibrate the staircase density function on 

the respective aleatory parameters, the approximate Bayesian computation technique is implemented, along 

with the Jensen-Shannon divergence as the distance function and the Transitional Ensemble Markov Chain 

Monte Carlo to provide posterior estimates on the parameters of the staircase density function. In doing so, it 

removes the assumption on the distribution class associated with the aleatory characteristics of the input 

model parameters.  This yields a probability box on the aleatory parameters which is then propagated 

through the physics-guided performance function of the material which yields an imprecise probability on 

the thermal reliability of the material. To demonstrate the feasibility and verify the proposed method, the 

results are compared against published results to the problem.  

 

Keywords: Bayesian model updating, Transitional Ensemble Markov Chain Monte Carlo, Staircase density 

function, Imprecise probability. 

 

 

1.  INTRODUCTION 

 

An aspect of nuclear safety is the reliability of the materials used to construct the safety-critical components 

of a nuclear reactor. As such, it is important that a reliability analysis is performed on such materials to 

ensure that the risk of a nuclear-related accident due to a structural compromise is minimised. Such study 

constitutes part of the Level 1 Probabilistic Safety Assessment of the nuclear reactor.   

 

More often, it is inevitable that uncertainties should be considered and characterized when performing 

reliability analysis. Such uncertainties are generally categorized into two types: 1) aleatory uncertainty; and 

2) epistemic uncertainty [1]. In the paper, the problem of polymorphic uncertainty is investigated where both 

types of uncertainty are present simultaneously. Polymorphic uncertainties are characterised using imprecise 

probability models, an example to which is the probability box which will be implemented in the paper [2]. 

Often, the choice of distribution model is made under physical or empirical assumptions. However, such 

choices may not truly reflect the true variability of the given parameter(s). As such, a distribution-free 

approach involving the Staircase Density Function (SDF) is used to remove model uncertainty over the 

distribution class and provide a general approach towards characterising the polymorphic uncertainty in 

reliability analysis under limited data [3].  

 

The proposed approach involves performing stochastic model updating on the shape parameters of the SDF 

via a distance-based approximate Bayesian computation incorporating the Jensen-Shannon divergence. The 

research aim is to demonstrate the feasibility of the proposed framework by implementing it towards 

addressing the reliability problem presented in the 2008 Sandia thermal problem under limited data [4]. To 

achieve the research objective, the paper first introduces the Bayesian model updating framework and the 

distance-based approximate Bayesian computation using the Jensen-Shannon divergence. Following which, 

the mathematical concept of the SDF is presented, and this is proceeded with the presentation of the Sandia 

Thermal problem. From there, the results are obtained and discussed, thereby evaluating the proposed 

method. Finally, the paper concluded with a summary of the contents presented and recommendations for 

future work.  
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2.  BAYESIAN MODEL UPDATING 

 

A widely implemented approach towards stochastic model updating is Bayesian model updating which is 

mathematically defined as [1]: 

 

                         (1) 

 

where P(θ|M) is the prior distribution reflecting the prior knowledge on the inferred parameter(s) θ before 

collecting data D, P(D|θ,M) is the likelihood function reflecting the degree of agreement between the 

observed data D and the prediction from model M given θ, and P(D|M) is the evidence which ensures that 

the posterior integrates to one. Details on each of the above terms in Eq. (1) can be found in Lye et al. 

(2023) [1]. Generally speaking, the inferred parameter(s) may be time-invariant, or time-varying [5]. For 

the paper, the inferred parameters on interest are time-invariant. 

 

However, given that P(D|M) is a numerical constant, the term is usually neglected thereby re-expressing the 

posterior in its un-normalised form: 

 
                                 (2) 

 

As such, the direct Monte Carlo sampling technique becomes inapplicable thereby bringing forth the need 

for advanced sampling techniques [6]. For the work presented in the paper, the state-of-the-art Transitional 

Ensemble Markov Chain Monte Carlo (TEMCMC) method will be implemented owing to its effectiveness in 

sampling from highly skewed, anisotropic posterior distributions [7]. 

 

2.1.  Transitional Ensemble Markov Chain Monte Carlo 

 

The TEMCMC sampler is a variant of the Transitional Markov Chain Monte Carlo (TMCMC) sampler 

originally developed by Ching and Chen (2007) [8]. A key characteristic of the TMCMC sampling approach 

is that it generates samples from complex-shaped posteriors (e.g., very peaked, or multi-modal) in an 

iterative manner. This is achieved through a series of intermediate functions known as transitional 

distributions Pj which is defined as: 

 

                 (3) 

 

where  j  0 is the sampling iteration number, βj is the tempering parameter such that 0 = β0 < β1 < … < βm-1 

< βm = 1, and m is the final iteration number. This allows for Pj to transit gradually from the prior to the 

posterior.  

 

The sampling procedure follows: At iteration j = 0, samples are generated from the prior via direct Monte 

Carlo sampling. At iteration j = 1, the algorithm computes βj, and samples from iteration j – 1 are updated 

according to Pj via the Affine-invariant Ensemble Markov Chain Monte Carlo sampler. From there, the 

algorithm proceeds to iteration j = j + 1 where the sample updating procedure repeats until the last iteration j 

= m. Full details on the TEMCMC sampler and its algorithm are found in [7].  

 

2.2.  Approximate Bayesian Computation 

 

An essential component of the Bayesian model updating procedure is the definition of the likelihood function 

P(D|θ,M) as seen in Eq. (1). Assuming independence between the Nobs observations, the full analytical 

likelihood is defined as follows: 

 

                                 (4) 

 

However, the evaluation of the full analytical likelihood function in Eq. (4) can be computationally 

demanding since it requires a large amount of model evaluations. Such issue becomes significantly 

pronounced when the model M is computationally expensive. To address such issue, the Approximate 
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Bayesian computation approach is implemented by substituting the full likelihood function in Eq. (4) with 

the distance based approximate likelihood function proposed by Bi et al. (2018) [9]: 

 

                                              (5) 

 

where d is the distance function serving to quantify the statistical difference between the distribution of the 

data D and that of the output from model M, while ε is the width-factor which controls the centralization 

degree of the resulting posterior. As a guide, the width factor should lie within the interval of [10-3, 10-1]. For 

the work presented in the paper, the Jensen-Shannon divergence is implemented as the choice of the distance 

function [10]. 

 

2.3.  Jensen-Shannon divergence 

 

The Jensen-Shannon divergence serves to quantify the difference in distribution between two statistical 

objects using information entropy and is based on the Kullback-Leibler divergence in which the latter is 

defined as [11]: 

 

                        (6) 

 

where Nbin is the total number of bins used to approximate the distributions p1 and p2. However, the 

implementation Kullback-Leibler divergence as the distance function would not be optimal for ABC for the 

following reasons: 1) it does not obey the symmetrical property (i.e., ); and 2) the 

function yields infinity when the support of p1 is not a subset of p2. Hence, the Jensen-Shannon divergence 

was developed to overcome such drawbacks and is defined as: 

 

                          (7) 

 

In the context of ABC, the interest would be to compute  where pM  is the distribution of the model 

prediction while pD is the distribution of the observed data. Its implementation for Approximate Bayesian 

computation was proposed by Yang et al. (2022) and further studied by Lye et al. (2024) to perform model 

calibration and validation for a black-box system under hybrid uncertainties and limited data [10, 11].  

 

An essential component of the Jensen-Shannon divergence is the parameter Nbin. To determine empirically 

the optimal number of bins, the adaptive-binning algorithm proposed by Zhao et al. (2022) is implemented to 

which the procedure follows [12]: 

1) Compute the parameter  following: 

 

                                          (8) 

 

where i,j = 1,…,N and m = 1,…,d. Note that N is the total number of model evaluations 

corresponding to the total sample size from the posterior while Dsim is the simulated data (i.e., model 

prediction); 

2) Compute the Euclidean distance dE between D and Dsim following: 

 

                                          (9) 

 

where  and  are the means of the simulated data and that of the observed data respectively; 

3) Compute the bin width parameter w following: 

 

                                                 (10) 

 

4) Finally, compute the number of bins Nbin following: 
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                                                               (11) 

 

As an adaptive variable, the number of bins is bounded such that:  

 

                                                        (12) 

 
3.  STAIRCASE DENSITY FUNCTION 

 

For the work presented in the paper, the hybrid uncertainties over the physical parameters of interest are 

characterized using the SDF. The SDF is a moment-matching meta-model developed by Crespo et al (2018) 

that models a given data distribution based on its rth central moment mr defined as [13]: 

 

                                                   (13) 

 

where the integration limits  constitutes the bounded support set over the staircase random variable 

z, the function fz is the density function, and μ is the expected value of the data variable z. It needs to be 

highlighted that m0 = 1, m1 = 0, m2 is the variance, m3 is the third-order central moment, and m4 is the fourth-

order central moment. The parameters constituting the staircase random variable are: θz = {Δz, μ, m2, m3, m4} 

which are constrained following a series of inequalities: Θ = {θz: g(θz) ≤ 0} derived from 14 moment 

constraints on which details are found in Crespo et al. (2018) [13]. Based on the constraints, for a given 

support set Δz, the feasible intervals of μ, m2, m3, and m4 are as follows: 

 

                   (14) 
 

The density function fz is defined mathematically as: 
 

                                                                                         (15) 
 

where Nb = 50 denotes the number of bins, hib is the height of the SDF in the ib
th bin, and  

 is the length of each sub-interval. It is to be noted that hib  ≥ 0 for all Nb bins and that their 

values are obtained by solving the following convex optimization problem: 
      

                                    (16) 

 

where J(h) is the cost-function defined as: 
 

                                                                         (17) 
 

for which I is the identity matrix. The cost-function defined in Eq. (17) would yield a staircase random 

variable which minimises the squared sum of the likelihood at each bin [3]. 

 
4.  CASE STUDY: SANDIA THERMAL PROBLEM  

 

The case study is based on the 2008 Validation Challenge workshop hosted by Sandia National Laboratories 

to which full details can be found in Dowding et al. (2008) [4]. The objectives of the case study are: 1) to 

characterise the variability of the aleatory variables using the SDF and evaluate its effectiveness; and 2) to 

analyse the reliability of a given material thermal property against a regulatory requirement. 

 

4.1.  Background 
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The set-up involves a slab material which can be used to construct a nuclear reactor vessel containment 

structure. The thermal property of the slab material is such that its temperature response T under different 

heating conditions is mathematically defined from physics as a truncated infinite series following [4]: 

 

  (18) 

 

where Ti = 25oC is the initial ambient temperature, L = 0.0190 m is the thickness of the slab, x is the location 

variable along the thickness of the slab, t is the time since the start of the heating process, q is the heat flux, k 

is the thermal conductivity of the slab, and ρCp is the heat capacity of the material. The boundary conditions 

are constant heat flux on the x = 0 m face and adiabatic on the x = L face.  

 

The regulatory requirement on the material stipulates that at time t’ = 1000 s after the heat flux exposure of q 

= 3500 W/m2, the probability that the surface temperature of the slab Ts (i.e., at x = 0 m) exceeds Tf  = 900 oC 

must be less than the threshold probability value pf  = 0.01 such that: 
                                                                             

 

                                                         (19) 
                                                    
The aleatory variables are the material thermal properties k and ρCp and it is assumed that the two parameters 

are independent from one another. Hence, the need to characterise the variability of the two parameters 

which is done based on a set of 20 experimental data, for each parameter, obtained across five different 

temperature response values: T = {20, 250, 500, 750, 1000} oC. The corresponding numerical data for each 

variable is presented in Table 1 while their corresponding scatter plot diagrams are illustrated in Figure 1.  

 

Table 1. Numerical data for each material property given each value of T. 

 

 
 

 

 

 

 

 

 
 

 
 

Figure 1. Scatter plot diagrams for k and ρCp, along with histograms for ϵk and ρCp. 

T [oC] 20 250 500 750 1000 

k 

 

[W/m oC] 

0.0496 0.0628 0.0602 0.0657 0.0631 

0.0530 0.0620 0.0546 0.0713 0.0796 

0.0493 0.0537 0.0628 0.0694 0.0692 

0.0455 0.0561 0.0614 0.0732 0.0739 

ρCp 

 

[J/m3 oC] 

3.76 × 105 3.87 × 105 4.52 × 105 4.68 × 105 4.19 × 105 

3.38 × 105 4.69 × 105 4.10 × 105 4.24 × 105 4.38 × 105 

3.50 × 105 4.19 × 105 4.02 × 105 3.72 × 105 3.45 × 105 

4.13 × 105 4.28 × 105 3.94 × 105 3.46 × 105 3.95 × 105 



17th International Conference on Probabilistic Safety Assessment and Management & 

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

 

The problem is divided into two parts: 1) to characterise the polymorphic uncertainty associated with the 

material thermal properties k and ρCp given the limited data set; and 2) to perform the reliability analysis on 

the thermal properties of the given slab material. 

 

4.2.  Polymorphic uncertainty characterisation  

 

Based on the scatter plots presented in Figure 1, there is a significantly strong correlation between k and T 

where the Pearson correlation coefficient between the two quantities is at 0.870. Such observation is 

consistent with the underlying physics and presents the need to account for the relationship between k and T. 

To do so, a linear regression is done to model such relationship and the resulting linear model is defined as 

[14]: 

 

                                                   (20) 
 

where ϵk is the residual of the linear model for which its data is obtained from Eq. (20) using the data for k 

and T in Table 1. It is assumed that ϵk is independent of temperature. 

 

From the scatter plot in Figure 1, it is observed that that is a relatively weak correlation between ρCp and T 

where the Pearson correlation coefficient between the two quantities is at 0.127. As such, the dependency 

between the two quantities can be neglected and they are taken to be independent from one another. The 

histogram representation of the distribution of ϵk and ρCp are illustrated in Figure 1. 

 

Given no information over the distribution class of the aleatory variables ϵk and ρCp, the SDF is used to 

model the distribution of the two parameters. For each quantity, the Bayesian model updating framework is 

implemented to infer the shape parameters of the SDF, namely: θ = {μ, m2, (m3/(m2)
3/2), (m4/(m2)

2)}; where 

(m3/(m2)
3/2) is the skewness parameter while (m4/(m2)

2) is the kurtosis parameter. The support set of the SDF 

for ϵk is set at Δϵk = [-0.02, 0.02] W/m oC while that for ρCp is set at ΔρCp = [300000, 500000] J/m3 oC. For 

each of the aleatory variable, the prior distributions on the SDF parameters θz are set as Uniform 

distributions whose respective bounds are defined as per Eq. (14) and presented in Table 2.  

 

Table 2. Uniform prior bounds to the SDF parameters for ϵk and ρCp. 

 

The likelihood function is defined as per Eq. (5). For the case of inferring θz to model the SDF for ϵk, the 

width parameter is set at ε = 0.050 W/m oC whereas for the case of inferring θz to model the SDF for ρCp, the 

width parameter is set at ε = 0.008 J/m3 oC. The rationale behind the choice of such width parameter values is 

to provide sufficient convergence on the posterior estimates of the inferred parameters – i.e., 5 sampling 

iterations for the case of ϵk  and 6 iterations for the case of ρCp by the TEMCMC sampler. 

 
4.3.  Results and discussions 

 

The resulting histogram representation of the posterior sample distribution of the respective inferred 

parameter is presented in Figure 2. From which, a risk-based estimate on the reduced epistemic bounds of the 

inferred parameters is obtained by considering the credible intervals at alpha-level of 0.86 for the shape 

parameters to the SDF for ϵk and that for ρCp. The resulting credible interval estimates obtained for the 

respective inferred parameter are presented in Table 3. 

 

Table 3. Results to the credible interval estimates to the SDF parameters for ϵk and ρCp. 

 

 

 

 

 

Parameters ϵk ρCp 

μ [-0.02, 0.02] W/m oC [300000, 500000] J/m3 oC 

m2 [0, 1.60 × 10-3] (W/m oC)2 [0, 1.00 × 1010] (J/m3 oC)2 

m3 [- (3.20 × 10-5)/3√3, (3.20 × 10-5)/3√3] (W/m oC)3 [- (4.00 × 1015)/3√3, (4.00 × 1015)/3√3] (J/m3 oC)3 

m4 [0, (6.4 × 10-7)/3] (W/m oC)4 [0, (4.00 × 1020)/3] (J/m3 oC)4 

Parameters ϵk ρCp 

μ [-1.24 × 10-3, -1.06 × 10-3] W/m oC [4.00 × 105, 4.01 × 105] J/m3 oC 

m2 [7.44 × 10-5, 7.72 × 10-5] (W/m oC)2 [2.99 × 109, 3.27 × 109] (J/m3 oC)2 

m3/(m2)3/2 [0.03, 0.19]  [-0.21, -0.07] 

m4/(m2)2 [4.03, 4.22]  [2.37, 2.52] 



17th International Conference on Probabilistic Safety Assessment and Management & 

Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

 

 

 
 

Figure 2. Histogram to the posterior samples obtained for the corresponding inferred parameters of the SDF. 

 
From the above results to the credible interval estimates to the SDF shape parameters, a probability box is 

constructed over ϵk and ρCp using Double-loop Monte Carlo. For each aleatory variable, a total of Ne 

epistemic samples are obtained uniformly from the epistemic four-dimensional hyper-rectangle whose 

bounds are defined by the resulting credible interval defined in Table 3. For each epistemic sample set 

realisation, a total of Na aleatory samples are obtained from the resulting SDF using the given epistemic 

sample set as the input shape parameters. Repeating the generation of aleatory samples using all Ne epistemic 

sample set inputs, this produces Ne distinct SDF sample empirical cumulative distributions. The bounds to 

the empirical cumulative distribution ensemble constitute the probability box. The procedure is implemented 

for {Ne , Na} = {1000, 10000} to which the resulting probability box for ϵk and ρCp are presented in Figure 3. 

 

 
 

Figure 3. Probability box of ϵk and ρCp (in blue) with the empirical cumulative distribution of the data (red). 

 

Based on Figure 3, it is observed that the resulting probability boxes generally enclose the empirical 

cumulative distribution of the data for both ϵk and ρCp which indicates that the distribution-free stochastic 

model updating approach is well-verified against the data provided.  

 
4.4.  Reliability analysis 

 

For the reliability analysis, a performance function g is defined such that: 
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                                                    (21) 
 

where T(k, ρCp) is defined following Eq. (18). As seen in Eq. (21), the safe domain is defined as g < 0 while 

the failure domain is defined as g > 0. As such, the interest is to compute the failure probability P(g > 0) 

whilst accounting for the polymorphic uncertainty due to k and ρCp. 

 

As seen in Eq. (18), the temperature T of the slab material is a function of k which itself is a function of the 

temperature T as seen in Eq. (20). This presents a system of two equations which can be solved iteratively 

based on the approach by Ferson et al. (2008) to compute the probability box of g as follows [14]: Firstly, a 

normal distribution is fitted over the entire 20 data points of k where the mean and standard deviation of the 

20 data points serve as the shape parameter of the normal distribution. This is the unconditional distribution 

of k that is independent of T. From there, a Double-loop Monte Carlo procedure is implemented where for 

each Ne realization of the sample distribution of ϵk and ρCp, the unconditional distribution of k is used to 

generate Na  seed samples of  k as input from which an output distribution on T, given the current sample 

distribution of ρCp, is obtained. This output distribution on T is then used as input to compute k via Eq. (20) 

given the current sample distribution of ϵk. The resulting distribution of k is then used to reseed the process 

until the distribution of T converges such that the area dA enclosed by the empirical cumulative distribution 

of the current samples of T and that of the previous samples of T is sufficiently small. The convergence 

criteria is when dA < 0.6, for which dA is computed following [14]: 

 

                                                                (22) 

 

where F1 and F2 are the previous and current empirical cumulative distribution functions of T respectively 

within which the area of interest is enclosed. Upon achieving convergence, the Na values of g are computed 

based on the resulting sample distributions of k and ρCp. The above procedure is repeated Ne times using all 

Ne sample distributions of k and ρCp obtained from the analysis in Section 4.3. This generates Ne sample 

distributions of g, each of sample size Na, from which a probability box of g is constructed following the 

procedure in Section 4.3 and is illustrated in Figure 4. 

 

 
 

Figure 4. Empirical cumulative distribution of the performance function g along with the histogram and 

empirical cumulative distribution of the probability of not meeting the regulatory requirement across Ne  runs. 

 
4.5.  Results and discussions 

 

Based on the probability box illustrated in Figure 4, the resulting interval of probability P(g > 0) is presented 

in Table 4 along with other published results as a form of comparison: 
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Table 4. Numerical results to the reliability analysis along with the corresponding reference. 

 

 

 

 

It can be seen from Table 4 that the probability interval of P(g > 0) generally encloses the published results, 

with the exception of the result published by Brandyberry (2008) [15] whose result falls outside the resulting 

bounds. Such observation verifies and demonstrates the applicability of the proposed distribution-free 

stochastic model updating approach in quantifying the reliability of the given slab material surface 

temperature exceeding a threshold value under polymorphic uncertainty and limited data. However, it needs 

to be highlighted that the upper-bound value of P(g > 0) is still above the regulatory requirement defined in 

Eq. (19) by four times. 

 

An additional analysis is performed to obtain the probability of meeting the regulatory requirement. The 

following procedure is undertaken: For each of the Ne sample distributions of g, the probability P(g > 0) is 

obtained. This allows for Ne values of P(g > 0) to be obtained from which a histogram and the empirical 

cumulative distribution are illustrated in Figure 4. From the resulting empirical cumulative distribution of 

P(g > 0), the probability of the regulatory requirement being met across Ne realisations of sample distribution 

of g is 0.120. 

 

A possible reason for the the upper-bound value of P(g > 0) exceeding the predefined requirement by a 

significant margin could be attributed to four factors: 1) the temperature model defined in Eq. (18); 2) the 

model that relates the temperature dependence of k; 3) the temperature-independent assumption on ρCp; and 

4) the independence assumption between k and ρCp. For the first factor, the temperature model assumes that 

the input parameters are temperature-independent especially k and ρCp. Such assumption is for the 

convenience of the analyst to reduce the complexity of the problem. It was found in Ferson et al. (2008) that 

the consideration of temperature dependence on the input parameter such as k would have a significant effect 

on the reduction on the probability P(g > 0) [14]. For the second factor, a linear model was used to model the 

temperature dependence of k which may not be the true physics-based model. A linear model was chosen out 

of convenience based on the scatter plot profile between k and T provided in Figure 1. The choice of such 

temperature dependence model can have an effect on the computation of P(g > 0) and this applies when 

considering the third factor. Finally, for the fourth factor, the independence assumption between k and ρCp 

was made to reduce the complexity of the problem. However, it is to be acknowledged that there could be 

some form of dependency between the two parameters in reality which, if accounted for, would have a 

significant impact on the results to P(g > 0). 

 
5.  CONCLUSION 
 

The paper has proposed a distribution-free stochastic model updating framework to perform a physics-guided 

reliability analysis. It comprises of two key features: 1) the use of the Staircase Density Function to 

characterise the polymorphic uncertainty of model parameters without assuming any class of distribution 

model thereby removing the element of model uncertainty; and 2) the novel implementation of the Jensen-

Shannon divergence as the distance function for the distance-based approximate Bayesian computation to 

perform the model updating procedure. To demonstrate the feasibility and robustness of the proposed 

approach, the 2008 Sandia thermal problem is used as the case study and application example which 

provides a realistic setting to a significant degree. The results to the reliability analysis show that the 

imprecise probability of the slab material exceeding a threshold temperature generally encloses the published 

values presented in Table 4. This verifies and validates the proposed distribution-free stochastic model 

updating approach. 

 

Further research efforts can be invested towards the following: 1) comparing the reliability results using the 

proposed framework, but with different distance functions for the distance-based approximate Bayesian 

computation such as the Bhattacharyya and the Bray-Curtis distance functions; 2) to consider the physics-

based temperature models for k and ρCp and compare the results of the reliability analysis; and 3) to consider 

the uncertain dependency between k and ρCp and propagate such uncertainty within the reliability analysis 

using the proposed approach. 

 

Reference Paper [14] [15] [16] [17] 

P(g > 0) [0, 0.05] 0.05 0.08 0.03 0.02 
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To provide a better understanding to the proposed framework and to allow for the reproducibility of the 

results presented in the paper, the MATLAB codes to the study are made accessible on GitHub via:   

https://github.com/Adolphus8/stochastic-model-updating.git  
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