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Abstract:  
This paper is concerned with the planning of accelerated reliability demonstration tests. The approach 
presented herein uses the hypothesis testing context of the Probability of Test Success for assessment of test 
configurations. The framework yields advantages in the planning of the tests and allows for an effortless 
selection of the correct test parameters e.g. load level height and number of load levels, sample sizes as well 
as a statistically sound test planning. Due to the integration of the Probability of Test Success in accelerated 
reliability demonstration tests as the statistical power of the test, the most efficient one can be selected which 
still holds a high probability of demonstrating the required reliability of the product. 
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1.  INTRODUCTION 
 
Products shall be developed in such a way that they are able to endure the loads they are subjected to during 
their use. This requirement is placed by customers, governments, and regulations as well as the company itself. 
In order to make sure such a reliability requirement is met, physical reliability demonstration tests are essential 
prior to market entry [1]. The engineers are then faced with the challenge of choosing the best suitable test in 
order to determine the actual reliability of the product [2]. The greater the sample size in the test, the more 
accurate the information gets. However, this is in contrast to the possibilities a company has in order to be 
successful on the market, since the budget should be kept as small as possible. To overcome this challenge, 
accelerated reliability demonstration tests can be used [3]–[5]. They allow for a shorter test time by increasing 
the load. To conduct such accelerated reliability demonstration tests, the test has to be planned in such a way 
to achieve a successful reliability demonstration in the shortest time possible and at the same time using the 
smallest sample size possible, while not exceeding the available budget. For this, several parameters must be 
chosen. For example, the number and height of load level needs to be defined, as well as the share of specimens 
amongst those [6].  
Existing approaches usually deal with the distribution of specimens in terms of load level height, number of 
load levels as well as sample size in order to get a best possible estimate of the parameters of the lifetime model 
[7]. For example placing the specimen on only a few load levels is advised to do if the load limits are known 
[4]. On the other hand, if the variance of the parameter estimation is taken into account, several optimization 
criteria can be found, such as A-, D- or I-Optimality [8], [9]. However, they are not focusing on the reliability 
demonstration itself but rather on the lifetime model such plans are trying to estimate. In order to get an 
estimate about the probability of successfully demonstrating the reliability requirement the Probability of Test 
Success was introduced [10]–[12]. It can derive a required sample size to achieve the desired probability of a 
successful reliability demonstration. Even for failure-based tests and accelerated reliability demonstration tests 
required sample sizes can be calculated. This concept has been studied for non-accelerated tests [13]–[15]. For 
this, the effects of uncertainty [15], [16], interval censoring [14] as well as the additional use of prior 
knowledge by means of Bayes’ theorem [5], [16], [17] have been studied. Also for demonstration of system 
reliability, analyses have been conducted [12], [18]–[20]. Herzig et al. showed that the Probability of Test 
Success is suited for an advanced planning of accelerated tests in terms of overall expenditure and a tradeoff 
between accuracy and resources [21], [22]. This approach also coincides with the optimal distribution of 
specimen between higher and lower load level according to Nelson [8], [9], but is able the take the assessment 
even further and take the actual reliability demonstration into account and thus allows for the identification of 
an optimal test. In addition, Benz et al. demonstrated the use of common load profiles in this concept and 
compared the most common strategies for placing the specimen on the load levels [23], [24]. However, none 
of the existing research makes use of the recent development of considering the Probability of Test Success as 
the statistical power of a reliability demonstration test, as introduced in [11], [18], [25]. This context helps in 
developing easy to implement algorithms and procedures for the identification of the optimal test in the 
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individual case [11]. Recent studies show the applicability of this method to failure-free tests, as well as failure-
based tests for systems with multiple failure mechanisms [12], [18], [20], [26]. Furthermore, the additional use 
of Bayes’ theorem was introduced to cope with the usually high effort involved in non-accelerated tests [12], 
[16]. Although first studies for accelerated tests have been made [13], [21], [22], [27], the hypothesis testing 
framework still needs to be established for those type of tests. 
 
2.  PROBABILITY OF TEST SUCCESS: HYPOTHESIS TESTING FOR RELIABILITY 
 
The development of a product has to ensure the required functionality is provided. This has to be validated by 
physical tests. Since the fulfillment of the requirements cannot be assumed without observing them, a 
hypothesis about the reliability requirement can be formulated. To reject or confirm such hypothesis, the 
reliability demonstration test is conducted. The reliability demonstration test can thus be regarded as a 
hypothesis test for reliability [11], [12]. The reliability requirement is defined by a required life treq at required 
reliability Rreq. Since a test can only reject a hypothesis about the absence of a phenomenon under investigation 
[28], the null hypothesis H0 represents the non-fulfillment of the reliability requirement. The conducted test 
shall gather information so that the null hypothesis can be rejected. Since the statistical power of a test 
corresponds to the discovery of the alternative to the null hypothesis, the alternative hypothesis H1 represents 
the fulfillment of the reliability requirement. Thus the hypothesis for a reliability demonstration test are [11], 
[12]: 

𝐻!:		𝑡" 	< 𝑡#$%       (1) 
𝐻&:		𝑡" ≥	 𝑡#$%       (2) 

 
With tR being the estimated quantile of the lifetime of the product at required reliability. The required 
confidence Creq of a reliability demonstration test corresponds to the probability of rejecting the null hypothesis 
although it is actually true, i.e., the product does actually not achieve the reliability requirement. This is the 
type I statistical error [29]. The type II error, however, describes the probability of falsely accepting the null 
hypothesis. Its complement, the statistical power of a test, is the probability of correctly rejecting the null 
hypothesis. By using the hypothesis of eq. 1 and 2, the Probability of Test Success Pts is the statistical power 
of the reliability demonstration test and equals the probability of a successful demonstration of the 
requirements [11], [12]. The Pts can only be provided for a certain failure distribution. If the product endures 
the loads well during operation, high lifetimes are to be expected and therefore also greater failure times. These 
would result in an estimated failure distribution in the reliability test, which is more likely to fulfill the 
reliability requirement. For a test planning using the Pts, prior knowledge about the expected failure behavior 
of the product needs to be available. If none can be estimated properly, a parameter study can be conducted 
instead. To describe the over fulfillment of the reliability requirement, the safety distance s was introduced 
[10]: 

𝑠	 = 	1	– '!"#
'$

       (3) 

  
With 𝑡( being the lifetime quantile at required reliability given by prior knowledge. If the product does exactly 
meet the requirement, the safety distance becomes zero. The distribution of the lifetime quantile under validity 
of the null hypothesis 𝑓)% is called null distribution and its location is 𝑡#$% for the limit case of lim

*→!,
𝑡( = 𝑡#$%. 

The alternative distribution under validity of the alternative hypothesis 𝑓)& has location of 𝑡( for the case of 
𝑠 = 1. To calculate the Probability of Test Success 𝑃-*, the following integrals need to be evaluated [11], [12], 
[15]: 

	𝑃'. = ∫ 𝑓)&(𝑡")	d𝑡"
/
''!()

       (4) 

   𝐶 = ∫ 𝑓)%(𝑡")	d𝑡"
''!()
!        (5) 

 
The value 𝑡0#1- needs to be calculated according to 𝐶#$%. To estimate the distributions 𝑓)% and 𝑓)&two methods 
are proposed in [11], [12]. The first one being a bootstrap algorithm, which samples failure times from prior 
knowledge according to the test sampling scheme. By estimating the failure distribution and calculating the 
lifetime quantile in each iteration, the integrals can be calculated similar to a percentile bootstrap confidence 
bound [30], [31]. The failure distribution used for 𝑓)& is the one from prior knowledge as far as 𝑠 > 0 and the 
one used for 𝑓)% is shifted, so that 𝑠 = 0 as in the limit case. The Second method is an analytic one, which is 
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based on the asymptotic properties of the maximum likelihood estimator and the central limit theorem [11], 
similar to Fisher confidence bounds [1].  
By making use of the variance-covariance matrix 𝑉 as the inverse of the Fisher Information matrix 𝐼 [32] 
 

	𝑉 =
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  (6) 

 
the partial derivatives of the Log-Likelihood [32] Λ  
 

	Λ(𝑃&, 𝑃2, … , 𝑃3) = ln NΠ7,9,: 	𝑓(𝑡7) ⋅ Q1 − 𝐹S𝑡9TU ⋅ 𝐹(𝑡:)V     (7) 
 
of the failure distribution 𝐹(𝑡) (cdf with pdf 𝑓(𝑡) and parameters 𝑃&, 𝑃2, … , 𝑃3) can be used together with the 
partial derivatives  

	Ψ = X4;
,&(=)
46&

, 4;
,&(=)
46*

, … , 4;
,&(=)
46+

Y      (8) 
 
 of the quantile function 𝐹,&(𝑞) of the failure distribution, to calculate the variance of the lifetime quantile  
  

	VarS𝑡=T = Ψ?𝑉Ψ.       (9) 
  
Using this variance and the central limit theorem, the confidence distribution of the lifetime quantile can be 

estimated as 𝑡=~𝒩]𝑡=; _VarS𝑡=T` [11], [12] which is then used for 𝑓)&and 𝑓)%. The calculation of the 𝑃-* 

results in [12], [16] 
 

𝑃-* = 1 −ΦQΦ,&Q𝐶#$%; 𝑡#$%, (1 − 𝑠) ⋅ bVar(𝑡")U; 𝑡(, bVar(𝑡")U   (11) 
  
Whereas Φ(𝑥; µ, σ)  is the cumulative distribution function (cdf) at 𝑥  of the normal distribution with 
parameters 𝜇 and 𝜎 and Φ,&(𝑞; 𝜇, 𝜎) is the quantile function of the normal distribution for the proportion 𝑞. 
The herein used failure times 𝑡7 and censored times 𝑡9, 𝑡: are calculated as expected times using the quantile 
function and respective censoring scheme of the test [11]. The advantages of the analytic approach are the 
short computation time, since no Monte-Carlo Simulation has to take place, and the good approximation. The 
bootstrap method on the other hand does allow for all sampling schemes and boundary conditions that may be 
present during the individual tests. It also allows for very accurate estimations if high iteration counts are used 
[11], [25]. For a more detailed explanation on the calculation of the Probability of Test Success as well as the 
effect of certain influencing parameters, refer to [11], [12], [15], [16], [18], [20], [25], [26]. The 𝑃-* can also 
be calculated for failure free tests [11]. 
 
3.  ACCELERATED RELIABILITY DEMONSTRATION TEST AS A HYPOTHESIS TEST 
 
In order to know how much the failure times are reduced by increasing the load, a lifetime model is required 
[1], [3]. The most used lifetime models in reliability engineering are the SN-curve according to Wöhler and 
Basquin [4], [7] for mechanical loads as well as the Arrhenius equation for temperature loads [1], [3]. The 
most used failure distribution in this context are the Weibull distribution 𝒲(𝑡; τ, 𝑏) [1], [33] with parameters 
τ and 𝑏 as well as the lognormal distribution 𝒩@AB(𝑡; 𝜇, 𝜎) with parameters 𝜇 and 𝜎. We will use those in the 
following to establish the algorithms and equations needed for the calculation of the Probability of Test Success 
𝑃-*. For estimating the lifetime in actual field usage, it is crucial to have a proper and representative estimate 
of the relevant load profile in the field. This usually is also a quantile in the form of e.g. a 95 % customer usage 
[34]. It is better to have a load profile with several load steps rather than a block profile or even a block load 
profile derived e.g. from standards. In order to use SN-curves, it is important to use the correct equivalent 
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stress (e.g. von Mises stress [35]) and also have properly calibrated models to calculate those stresses and their 
components as well as the best concept available to evaluate local stresses at the correct location of the product 
[4]. When using the Arrhenius model, it is equally important to make sure the temperature load at the relevant 
location on the product is used. For both models it is important, to use the appropriate counting algorithm, e.g. 
rainflow counting for SN-curve [34] and dwell time counting for the Arrhenius model. In order to do a 
reliability demonstration using those two models, specimen have to be subjected to load. In the case of the SN-
curve, to alternating load and in the case of the Arrhenius model they have to be subjected to thermal load, 
usually constant. The failure times of the specimen are then used to do an estimate of the parameters of the 
respective models. The reciprocal value of the damage is the estimate of the lifetime quantile. Using a Fisher 
confidence bound and comparing it to the reliability requirement can result in a successful reliability 
demonstration [1]. Since the failure times scatter however, this will not always be the case. It depends on the 
actual lifetime model parameters, the safety distance, the scattering parameters, the sample sizes, the load 
profile and its shape as well as the load levels during testing. The 𝑃-* does overcome this challenge. 
 
Wöhler-Lognormal Model 
 
The Wöhler-Lognormal model makes use of the Basquin equation and the lognormal distribution. The equation 
of the failure distribution results in [3] 

𝑓CöE(𝑡) =
&

'⋅G√2I
𝑒,

-./(1),./-34⋅6
7
74

8
,9

::
*

*;* .      (12) 
  
With parameters 𝑁J, 𝑆J, 𝑘 of the Wöhler model and 𝜎 as the standard deviation of the logarithmic failure times 
of the lognormal distribution. The parameters 𝑁J, 𝑆J can be combined to a single parameter. However, the 
Wöhler model is usually defined by two parameters, which represent the load 𝑆J (usually stress in MPa) and 
the number of load cycles 𝑁J which can be endured at this load. 𝑘is the slope of the model. For the estimation 
of those parameters 𝑆J will be a fixed in this paper. The damage induced by the load profile with load levels 
𝑆@AKL = [𝑆&, 𝑆2, … , 𝑆M] and cycles 𝑡@AKL = [𝑡&, 𝑡2, … , 𝑡M] is calculated by 
  

𝐷CöE = Σ9M
'<

N4⋅O
7<
74
P
,9	.       (13) 

  
Since the parameters of the Wöhler model represent the 50	% quantile, the lifetime quantile for 𝑅#$% is 
  

𝑡",CöE =
Q=!"#
Q>ö@

⋅ 𝑡#$% =
𝒩.AB
,&S"!"#;	!,GV

W<
C 1<

34⋅-
7<
74

:
,9

	 ⋅ 𝑡#$%     (14) 

 
as far as the load profile is representant of the required lifetime 𝑡#$%. 
 
Wöhler-Weibull Model 
 
The Wöhler-Weibull model makes use of the Basquin equation and the Weibull distribution. The equation of 
the failure distribution is 

𝑓Cö𝒲(𝑡) =
Y

N4⋅O
7
74
P
,9
⋅(, @Z(!.\)),
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D
v '
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7
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,9
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D

.   (15) 

 
𝑏 is the Weibull shape parameter of the Weibull distribution. Here a parametrization with (− ln(0.5)),

&
D is 

used. This is so that the parameters of the Wöhler model estimated using this equation, represent the 50	% 
quantile and not the 63.2	% quantile. The respective lifetime quantile using this model is calculated by 
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𝑡",Cö𝒲 =
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Q>ö𝒲

⋅ 𝑡#$% =
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./	(%.F) P

&/D	
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	 ⋅ 𝑡#$%.     (16) 

This equation is also valid for the load profile with 𝑆@AKL and 𝑡@AKL representative of 𝑡#$%. 
 
Arrhenius-Lognormal Model 
 
The Arrhenius-Lognormal model makes use of the Arrhenius equation and the lognormal distribution. The 
resulting equation is [3] 

𝑓_E(𝑡) =
&

'⋅G√2I
𝑒,

J./(1),./J4⋅K
L4
9⋅MNN

*

*;* .      (17) 
 

Here, the parameters of the Arrhenius equation are the activation energy 𝐸J and 𝐴 as a constant. The variable 
𝑘 represents the Boltzmann constant [36] as 8.6173 ⋅ 10,\ eV/K. The damage which is induced by the load 
profile with 𝑚 load levels 𝑆@AKL and respective dwell times 𝑡@AKL representative of 𝑡#$% is 
  

𝐷_E = Σ9M
'<

J⋅`
L4
9⋅7<

	.       (18) 

To calculate the lifetime quantile for 𝑅#$% the equation is, similar to eq. 14 and 17: 
 

𝑡",_E =
Q=!"#
QO@

⋅ 𝑡#$% =
𝒩.AB
,&S"!"#;	!,GV

W<
C 1<

4⋅K

L4
9⋅7<

	 ⋅ 𝑡#$%.     (19) 

Arrhenius-Weibull Model 
 
The Arrhenius-Weibull model makes use of the Arrhenius equation and the Weibull distribution. The failure 
distribution is  

𝑓_𝒲(𝑡) =
Y

J⋅`
L4
9⋅M⋅(, @Z(!.\)),

&
D
] '

J⋅`
L4
9⋅M⋅(, @Z(!.\)),

&
D
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Y,&

⋅ 𝑒
,a 1

4⋅K
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9⋅M⋅(, ./(%.F)),

&
D
b

D

.   (20) 

  
Again, the equation allows for the parameters of the lifetime model to be estimated as a 50	% quantile. The 
lifetime quantile using the load profile results in 

𝑡",_𝒲 =
Q=!"#
QO𝒲

⋅ 𝑡#$% =
O
./	(=!"#)
./	(%.F) P

&/D	

W<
C 1<

4⋅K

L4
9⋅7<

	 ⋅ 𝑡#$%.     (21) 

Using these equations, lifetime quantiles can be calculated for the relevant load profiles. In order to calculate 
the Probability of Test Success for tests which are estimating the lifetime quantile through the use of these 
models, the confidence distribution of these lifetime quantiles under validity of both hypotheses 𝑓)! and 𝑓)& 
need to be estimated, see eq. 1, 2, 4 and 5. A bootstrap procedure as well as an analytic procedure will be 
presented in the following. They are able to estimate the two distributions by using above equations. 
 
3.1.  Bootstrap Calculation Procedure 
 
The Bootstrap calculation procedure is similar to those presented in [11], [12]. However, the failure distribution 
now becomes dependent on the load 𝑆 in the equations 12, 16, 19 and 22. 
First, the failure times on the test load levels 𝑆-$*- = [𝑆-$*-,&, 𝑆-$*-,2, … , 𝑆-$*-,c] with their respective sample 
size 𝑛 = [𝑛&, 𝑛2, … , 𝑛!], are generated using a pseudo random number generator and the quantile function of 
either the lognormal distribution or the Weibull distribution, alternatively, a rejection sampling method can be 
used [25]. However, the quantile function must take into account the load level height according to above 
equations. The failure times together with the load levels are then used to estimate the parameters of the 
Wöhler-Lognormal model, the Wöhler-Weibull model, the Arrhenius-Lognormal model or the Arrhenius-



17th International Conference on Probabilistic Safety Assessment and Management & 
Asian Symposium on Risk Assessment and Management (PSAM17&ASRAM2024) 

7-11 October, 2024, Sendai International Center, Sendai, Miyagi, Japan 

Weibull model. The lifetime quantile is then calculated using the load profile 𝑆@AKL and 𝑡@AKL and the respective 
quantile functions stated above. By iterating this algorithm multiple times, e.g. 10,000 times, a sample from 
the distribution of 𝑡",)& is obtained. To correct possible estimation bias (e.g. from MLE [37], [38]) the values 
of the sample should be corrected according to  
  

𝑡",)&,7 =
'=,Q&,R⋅'!"#
Q$⋅'=,Q&,F%%

.       (22) 

  
In order to correspond to the hypothesis of eq. 1 and 2. With 𝐷( being either 𝐷CöE, 𝐷Cö𝒲, 𝐷_Eor 𝐷_𝒲 and 
𝑡",)&,\!% being the median of the generated values of the bootstrap procedure. Since the lifetime model only 
requires a linear shift, so that 𝑠 = 0 of 𝐻!  is fulfilled, the lifetime quantiles under validity of 𝐻!  can be 
calculated using the values of 𝑡",)&,7 as follows: 

𝑡",)%,7 =
'=,Q&,R⋅'!"#
'=,Q&,F%%

.       (23) 

Using those values, the 𝑃-* calculates to 
𝐶#$% =

! fghi$#	Aj		'=,Q%k''!()
lA-K@	Zghi$#	Aj	1-$#K-1AZ*

       (24) 

𝑃-* =
fghi$#	Aj		'=,Q&m''!()

lA-K@	Zghi$#	Aj	1-$#K-1AZ*
		.       (25) 

 
3.2.  Analytic Calculation Procedure 
 
For the analytic calculation procedure, the asymptotic behavior of the maximum likelihood estimate (MLE) 
regarding the parameters of the model according to the central limit theorem is used [11], [12]. The failure 
distributions models of eq. 12, 15, 17 and 20 need to be plugged into eq. 6 to 9. However, instead of using the 
quantile function in eq. 8, the logarithm of the quantile function shall be used, since the lifetime quantile is 
always greater than zero. The resulting equations without censoring are the following. 
 
Wöhler-Lognormal Model 
 
Partial derivatives of the Log-Likelihood for variance covariance matrix: 
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Partial derivatives of the logarithmic quantile function: 
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Wöhler-Weibull Model 
 
Partial derivatives of the Log-Likelihood for variance covariance matrix: 
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Partial derivatives of the logarithmic quantile function: 
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Arrhenius-Lognormal Model 
 
Partial derivatives of the Log-Likelihood for variance covariance matrix: 
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Partial derivatives of the logarithmic quantile function: 
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erf,&(𝑥) is the inverse of the error function erf(𝑥) = 2

√I
∫ 	𝑒,'*d𝑡y
!  [39] and has to be solved numerically. 

 
Arrhenius-Weibull Model 
 
Partial derivatives of the Log-Likelihood for variance covariance matrix: 
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Partial derivatives of the logarithmic quantile function: 
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The 𝑃-* can be calculated as 
 

𝑃-* = 1 −Φ@AB QΦ@AB
,& Q𝐶#$%; lnS𝑡{`=T , (1 − 𝑠) ⋅ bVar(𝑡")U; ln	(𝑡(),bVar(𝑡")U   (54) 

 
With Φ@AB(𝑥; 	𝜇, 𝜎) as the cumulative distribution function of the lognormal distribution and Φ@AB

,& (𝑞; 	𝜇, 𝜎)  as 
its quantile function and VarSlnS𝑡=TT = Ψ?𝑉Ψ. 
 
3.3.  Comparison of Calculation Procedures 
 
The two proposed calculation procedures based on the established hypothesis testing concept are compared 
exemplarily in the following using the fixed parameters shown in Tab. 1. 
 

Table 1. Parameters for comparison 
 Parameter Values 
Wöhler 𝑁! = 10"; 𝑆! = 60;	𝑘 = 5  
Arrhenius 𝐴 = 10#$; 𝐸! = 0.8 
Scattering 𝜎 = 0.6; 𝑏 = 2.5 

Load profile 𝑆%&'([180, 60, 30];  𝑡%&'([10), 4 ⋅ 10*, 5 ⋅ 10"] ⋅
+!"#$
+%

(1 − 𝑠) 

Test Configuration 𝑆,-., = [200, 100]; 𝑛 = [15, 5] 
Reliability Requirement 𝑅/-0 = 0.9; 𝐶/-0 = 0.9;	𝑠 = 0.5;	𝑡/-0 = 1	(normalized) 

 
The safety distance of eq. 3 is varied in Fig. 1. It can be seen that the approximation of the analytic procedure 
is very good for all four models. If different scattering of the failure times is present, the approximation is also 
good, but deviates a bit from the values calculated using the Bootstrap procedure, as seen in Fig. 2. The 
Approximation of the Analytic Procedure is suitable for the usage of finding feasible solutions of test 
configuration, if a variation of the total sample size is analyzed, as in Fig. 3. The sample shares on the high 
and low load level stayed the same. 
 

 
Figure 1. Comparison of Bootstrap and Analytic Calculation Procedure for varying safety distances 𝑠. 
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Figure 2. Comparison of Bootstrap and Analytic Calculation Procedure for varying parameters 𝜎 and 𝑏. 

 
 

 
Figure 3. Comparison of Bootstrap and Analytic Calculation Procedure for varying sample sizes 𝑛-A-K@. 

 
3.4.  Procedure for Planning of Efficient Accelerated Reliability Demonstration Tests  
 
In order to identify the test configuration best suited to provide a successful reliability demonstration using 
one of the four lifetime models, a large parameter space must be analyzed. For the assessment of the tests, the 
𝑃-* has to be calculated. Due to the computational effort of the bootstrap approach, the analytic procedure can 
be used in order to narrow the feasible parameter space. Afterwards, the bootstrap procedure can be used for a 
more accurate calculation of the 𝑃-*. By this, the question if more than one load level needs to be tested, how 
high the load levels shall be and how many specimens are to be tested on those load levels can be answered. 
Since the scattering of the lifetime model parameters are considered in this approach and are captured in the 
calculated lifetime quantiles which are used for the 𝑃-* calculation, the shape of the load profile does matter 
and a reduction to a block profile is not advisable 
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4.  CONCLUSION 
 
The Probability of Test Success 𝑃-*  is a suitable metric to assess accelerated reliability demonstration tests. It 
is shown how the 𝑃-* can be understood as the statistical power of such an accelerated test. This is done by 
using the hypothesis definitions of the 𝑃-* and developing and establishing the required equations in order to 
make use of it for the accelerated tests. The lifetime models used in this paper are the Wöhler-Lognormal, 
Wöhler-Weibull, Arrhenius-Lognormal and Arrhenius-Weibull. For these, the equations are derived and two 
calculation procedures which make use of the hypothesis testing context are developed. The first one being a 
bootstrap approach and the second one is an analytic one, which allows for a very fast computation and thus 
enables the identification of the optimal test, since usually a large parameter space needs to be evaluated. A 
comparison of those calculation procedures shows good approximation of the analytic approach to the 
bootstrap approach for all four model. The approach and equations herein are a crucial step towards the 
planning of highly efficient accelerated reliability demonstration tests. 
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