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Abstract

Carbon fiber reinforced polymer composites present excellent mechanical properties, however, their be-

haviour under fatigue and the interaction between the different failure modes is not yet well understood.

This uncertainty, or lack of knowledge, is the reason why they are still not extensively used in the aerospace

industry, where safety is critical. In this paper, Bayesian neural networks trained with approximate Bayesian

computation (BNN by ABC-SS) are used to quantify such uncertainty and undertake a probabilistic safety

assessment. An experiment is carried out using data from composite fatigue testing, where the proposed

algorithm is compared against the state-of-the-art Bayesian neural networks. The results show that, the

flexibility of BNN by ABC-SS to quantify the uncertainty significantly contributes towards a reliable safety

assessment. Measuring the unknowns with confidence can be crucial when safety is at stake.

1. Introduction

Artificial Neural Networks have recently experi-

enced an outstanding development, mostly due to

their successful application to a wide range of fields,

such as computer vision [1] or speech recognition [2].

It is indisputable that they are changing our daily

lives and will continue to do so, however, those al-

gorithms are not always correct in their predictions

and can make mistakes. This is natural and, in

many cases, cannot be avoided given the inherent

randomness of many process on earth [3]. It could

then be stated that all predictions made by arti-

ficial neural networks are, in varying degrees, un-
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certain. Hence, quantifying such uncertainty can

become critical depending on the importance of

the subsequent decision making process [4]. Pre-

cisely, the current methods for identifying fatigue

and its propagation in composite materials need

to deal with a significant amount of uncertainty,

mainly due to the complexity of the fracture pro-

cesses present in these materials [5].

While modern neural networks could provide rel-

atively good predictions in this field, they are un-

helpful if not paired with some notion of how cer-

tain those predictions are. Moreover, that is one

of the reasons why these materials are not used in

the aerospace industry on a large scale, as it is dif-

ficult to assess the degree of belief in the predic-
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tions about the remaining useful life of the mate-

rial. The so-called Bayesian Neural Networks, such

as Hamiltonian Monte Carlo [6, 7], Variational In-

ference [8–10] (Bayes by Backprop [11, 12]) or Prob-

abilistic backpropagation [13], have provided good

results when quantifying the uncertainty in differ-

ent applications. However, they have parametric

weights, predefined cost/likelihood functions and

their learning process is based on the backprop-

agation algorithm [14]. All that translates into

a rigid quantification of the uncertainty, and cer-

tain predisposition to problems such as instabil-

ity or Exploding/Vanishing gradient. Contrariwise,

BNN by ABC-SS [15] have proven great flexibility

to capture the uncertainty inherent in the observed

data, thanks to its gradient-free nature, the non-

parametric formulation of the weights and the ab-

sence of likelihood/cost function.

In this paper, BNN by ABC-SS is applied to an

experiment of micro-crack propagation in carbon

fiber composite materials, and compared against

the state-of-the-art BNN. The predictions from

those algorithms are then used in a probabilistic

safety assessment. The probability of failure is cal-

culated based on the quantification of the uncer-

tainty obtained by each algorithm, with respect to

a predefined failure threshold. The results obtained

show the capacity of BNN by ABC-SS to accurately

quantify the uncertainty in its predictions without

restrictions and based on real observations, provid-

ing very valuable information about the potential

failure of the material. This probabilistic predic-

tion can become critical when evaluating the safety

of an element [16], and of great importance when

used for making decisions regarding maintenance.

BNN by ABC-SS provides a new tool to navigate

through the uncertainty inherent in safety assess-

ments and management.

2. BNN by ABC-SS

Artificial neural networks are used to perform a

wide variety of tasks, such as making predictions

about some target variables. However, those pre-

dictions are not always correct, and they can often

be significantly imprecise depending on many fac-

tors, normally related to the quality of the train-

ing data. Therefore, there exists uncertainty about

the accuracy of the predictions, just like nature is

uncertain itself. It could then be agreed that, in

those cases where the outputs of the ANN are used

for a subsequent decision making process, quanti-

fying the uncertainty or degree of belief is impor-

tant [17]. Bayesian Neural Networks are good at

doing exactly that, given that they provide us with

probabilistic predictions, comprising the most plau-

sible values. Several types of BNN can be found

in the literature, but Variational Inference (Bayes

by Backprop), Probabilistic Backpropagation and

Hamiltonian Monte Carlo have attracted the atten-

tion of the scientific community. However, they all

include gradient descent to update the parameters

of the neural network, and use a parametric formu-

lation (often Gaussian) to define the the weights

and/or the likelihood function, which leads to a

rigid representation of the uncertainty [4].

When ABC-SS [18] is used as the learning en-

gine, those drawbacks disappear, given its non-

parametric weights, and the absence of likelihood

function and gradient evaluation. Mathematically
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speaking, BNN by ABC-SS aims to find the poste-

rior distribution of the weights w and bias b, based

on a training data set D(x, y), and using the Bayes

theorem as follows:

p (θ|D,M) =
p (D|θ,M) p (θ|M)

p (D|M)
(1)

where p (θ|D,M) is the posterior PDF of the pa-

rameters θ = {w, b} ∈ Θ ⊆ Rd in model class

M (architecture of the neural network), p(θ|M) is

our prior knowledge or information, p (D|θ,M) is

known as the likelihood function and p (D|M) is

called the evidence.

Let ŷ = f(θ, x) ∈ O ⊂ Rl be the output of

the BNN, then Equation (1) can be rewritten for

the pair (θ, ŷ) ∈ Θ × O ⊂ Rd+l as p (θ, ŷ|D) ∝

p (D|ŷ, θ) p (ŷ|θ) p(θ), where the conditioning to the

model class M has been omitted for clarity. This

last equation shows that the posterior distribution

of the parameters depends on the likelihood func-

tion, which can be unknown or simply intractable

[19]. The ABC method allows us to avoid the for-

mulation of such likelihood function by selecting,

as posterior samples, the pairs (θ, ŷ) ∈ S ⊆ Θ ×O

which satisfy that ŷ ∼ p (ŷ|θ) fall within a limited

region around the data y given by Bϵ(y) = {ŷ ∈

O : ρ(η(ŷ), η(y))ϵ}, where the metric function ρ(·)

evaluates the closeness between ŷ and y using a

vector of summary statistics η(·) [20]. The pos-

terior PDF of the parameters can now be defined

as pϵ (θ, ŷ|D) ∝ P (ŷ ∈ Bϵ(y)|θ) p(ŷ|θ)p(θ), where

P (ŷ ∈ Bϵ(y)|θ) is the approximated likelihood func-

tion which takes the unity when ρ(η(ŷ), η(y)) ≤

ϵ, and 0 otherwise. In order to make this sam-

pling process more efficient, the Subset Simulation

method [21] is used, which transforms a rare event

simulation problem into a sequence of simulations

with larger probabilities. Indeed, a sequence of

nested regions Sj , j = 1, . . . , ℓ are defined, such

that S1 ⊃ S2 . . . ⊃ Sℓ = S, where Sj = {(θ, ŷ) :

ρ(η(ŷ, η(y))ϵj}, and ϵj+1 < ϵj ∀j = 1, . . . , j. The

interested reader is referred to [18] for further infor-

mation about ABC-SS, and to [15] for details about

the implementation of BNN by ABC-SS.

3. Experimental Framework

A probabilistic safety assessment of composite

structures subjected to fatigue has been carried out.

In this section, the experiment is described includ-

ing how the data sets are prepared, what algorithms

are used, the methodology to assess the probability

of failure, and finally, the results are presented and

discussed.

3.1. Fatigue in composite structures

Structural elements made of carbon fiber rein-

forced polymer (CFRP) present very good prop-

erties, even better than most metals. They are

high performance heterogeneous materials with

very high strength-to-weight ratios. However, it is

still difficult to predict how they will behave un-

der fatigue, as this process is partially unknown

and subject to much uncertainty [22]. Damage in

composites typically comprises different modes [23],

such as intralaminar and interlaminar cracks, fiber-

matrix debonding, fiber kinking and fiber pull-out

among others. They can appear in isolation or in

combination, resulting in a significant change in the

structural performance of the element. This is the

main reason why current physics-based models are
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not suitable, given they may work for specific forms

of damage but not once an additional damage types

appear. That uncertainty is responsible for the very

limited applications of carbon fibre composite ma-

terials to aerospace engineering, where there exist

high safety and reliability standards. Therefore,

it seems sensible to use data-driven solutions that

avoid the formulation of the different modes of fail-

ure, which are also able to quantify the uncertainty

inherent in the fatigue process.

In this manuscript, four different BNN are used

to predict the microcrack density in a CFRP lami-

nate. The data consist of sequences of intralaminar

micro-cracks density measurements for three differ-

ent laminates with the same cross-ply ([02/904]s)

layup. The data used are taken from the NASA

Ames Prognostics Data Repository (CFRP Com-

posites Dataset) [24] and correspond to the lami-

nates TD19, TD21 and TD22. These data come

from a network of 12 piezoelectric (PZT) sensors

using Lamb wave signals [25]. For this study the

dataset is designated as D(x, y), which comprises

loading cycles as inputs x and micro-cracks den-

sity as observed outputs y. Also, the training data

set has been normalized to take values in the range

[0, 1]. For the comparison exercise, the different

BNN are asked to predict the micro-crack density

(ŷ) given the loading cycles x as inputs.

Once the predictions from the different BNN

about the microcrack density have been obtained,

and the uncertainty has been evaluated by each of

those algorithms, a probabilistic safety assessment

is carried out. That way, we can assess not only

what we know, but also measure what we do not

know.

3.2. Baseline Algorithms and metrics

As explained in Section 3.1, four different algo-

rithms are used for this experiment. The neural

network structure is common to all of them, com-

prising two hidden layers with 5 neurons each, and

one output layer with one neuron (micro-cracks

density). The hyperparameters have been chosen

individually for each algorithm as follows:

• BNN by ABC-SS : A BNN trained with Al-

gorithm 1 of [15], adapted with a while loop

and σj = σ0p. The hyper-parameters used are

P0=0.1, N=100,000, σ0=0.75, p=0.58 and tol-

erance value ϵ=0.025. The activation function

for the hidden units is ReLU.

• Variational Inference, Bayes by Backprop

(BBP) [11]: A BNN with the baseline architec-

ture, trained with an open source algorithm1

implemented in Keras [26]. The hyperparam-

eters have been chosen based on those found

in the original code with lr = 0.001, epochs =

100, 000 and 500 samples. The activation func-

tion for the hidden units is LeakyReLU.

• Probabilistic Backpropagation (PBP) [13]: A

BNN with the baseline architecture, trained

with the open source algorithm2 provided in

[13]. The number of epochs used is the same

as per the original code, epochs = 30. 500

samples are use to make the predictions.

1https://github.com/krasserm/bayesian-machine-

learning - Variational Inference in Bayesian Neural

Networks
2https://github.com/HIPS/Probabilistic-

Backpropagation
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• Hamiltonian Monte Carlo (HMC) [27]: A BNN

with the baseline architecture, trained with

hamiltorch3. The hyperparameters have been

chosen based on those found in the regression

task of the original code and [6]. The activation

function for the hidden units is LeakyReLU.

500 samples are use to make the predictions.

The performance of the algorithms is evaluated

using the first sensor in TD19 as test data. Their

capacity to quantify the uncertainty is graphically

assessed by the Inter Quantile Range (IQR). Fi-

nally, a safety assessment is undertaken in prob-

abilistic terms, which is then cross-validated with

the observed data to evaluate its consistency.

3.3. Probabilistic Safety Assessment

Safety is critical in aerospace engineering, and it

is the primary driver for all decisions about mate-

rials, designs and technologies to be implemented.

As discussed in Section 4, the behaviour of com-

posite structures under fatigue, and the interaction

between their different modes of failure, are not yet

well understood, which limits their implementation.

Therefore, a reliable evaluation of their probability

of failure is an important step towards a large scale

application.

The proposed methodology starts by setting a

failure threshold for the target variable, micro-crack

density in our case study. This a value which, if ex-

ceeded, the composite structure will perform below

a required safety standard, and does not necessar-

ily mean material breakage. In this context, it is

3https://github.com/AdamCobb/hamiltorch

case specific and may differ depending on the par-

ticular application.. In the experiment described in

this manuscript, the threshold has been set to 0.8

(normalized). Next, the different BNN are trained,

so we can make predictions on the test data. These

neural networks are probabilistic by nature, so their

outputs are not deterministic values but a density

function. The number of samples that we draw

from this output is chosen by the user, and in our

case they can be found in Section 3.2. Finally, the

probability of failure, being 0 very unlikely and 1

very certain, is calculated based on the proportion

of samples that fall beyond the failure threshold, as

follows:

Pfailure =
Number of Samples >= threshold

Total Number of Samples
(2)

The experimental data is also used to calculate

the observed probability of failure, so it can be

compared against the predictions obtained from the

Bayesian neural networks and check if they are con-

sistent.

3.4. Results and Discussion

The performance of the Bayesian algorithms de-

scribed in Section 3.2, evaluated on the CFRP

Composites Dataset from NASA Ames Prognostics

Data Repository, was discussed in Table 1 of [15],

where the accuracy and stability of BNN by ABC-

SS was demonstrated. The capacity of the algo-

rithms to capture the uncertainty inherent in the

training data is graphically assessed in Figure 1.

It can be seen that, while the mean predictions of

PBP and HMC might be accurate, they fail to ac-

curate capture the variability of the training data,
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resulting in an unrealistic quantification of the un-

certainty. Contrariwise, BNN by ABC-SS seems to

adapt significantly well to the training data, enclos-

ing the vast majority of the data points. And that

flexibility to capture the plausibility of the outputs,

mostly thanks to the non-parametric formulation of

the weights and the absence of likelihood function,

is what makes BNN by ABC-SS suitable for use in

probabilistic safety assessments.

Figure 1: Probability density function of the predictions

made by the different Bayesian Neural Networks on test data.

The darker grey area represents the interquartile rage of the

predictions, while the light grey area are the lower and upper

quartiles. The black crosses are the training data points.

.

The probability of failure has been calculated

for the last cycles of the experiment, following the

methodology explained in Section 3.3, and the re-

sults are shown in Table 1. It can be seen that

BNN by ABC-SS provides the closest probabilities

to the observed data. This is clear when compar-

ing the average difference (root mean squared error)

between the probabilities given by the different al-

gorithms and the observed data, which are: BNN

by ABC-SS (0.15), HMC (0.29), PBP (0.31) and VI

(0.24). The results in Table 1 have also been illus-

trated in Figure 2, where we can see that the green

line is the best fit to the observed data. Moreover,

those data suffer from noise, which is mot likely re-

sponsible for the negative slope in some parts of the

dashed grey curve. This issue is solved by all four

algorithms, as they are monotonically increasing,

however, HMC and PBP seem to provide a more

simple approximation, going from 0 to 1 in just a

few loading cycles.

Figure 2: Evaluation of the probability of failure (0 to 1),

based on the predictions made by the different Bayesian Neu-

ral Networks. The threshold for plausible failure was set at

0.8 micro-crack density (normalized). BNN by ABC-SS is

shown in green, HMC in red, PBP in blue, Variational In-

ference in pale orange, and the probability of failure based

on observed data is shown in dashed grey line.

.

Finally, the predictions made by BNN by ABC-

SS during the last cycles of the experiment are

shown in Figure 3 (green PDF), and compared

against the given data (grey PDF). While the shape

of those density functions are not a perfect match,

the overall estimation about the probability of fail-

ure, meaning the area of the PDFs located to the

right of the threshold line (red), are acceptably ac-
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Table 1: Probability of failure, based on the probabilistic predictions made by the proposed algorithms. The failure threshold

is set at 0.80 micro-crack density (normalized).

Probability of failure, from 0 (very improbable) to 1 (certain)

Number of cycles

50000 75000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Observed 0.00 0.00 .00 0.00 0.39 0.80 0.58 0.90 0.81 0.89 0.86

BNN by ABC-SS 0.00 0.00 0.01 0.05 0.17 0.37 0.63 0.82 0.88 0.89 0.88

HMC 0.00 0.00 0.00 0.00 0.00 0.04 0.97 0.98 0.98 0.98 0.98

PBP 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

VI 0.00 0.00 0.00 0.00 0.02 0.15 0.48 0.78 0.93 0.98 0.99

curate. Again, this is thanks to the flexibility of

BNN by ABC-SS to capture the uncertainty and

variability found in the data.

Figure 3: Probability density function of predictions made

by BNN by ABC-SS at different loading cycles. Those pre-

dictions, shown in green, are compared against the observed

data, which are shown in light grey.

.

4. Conclusions

Composite structures, such as carbon fiber re-

inforced polymers, present very good properties

and potential applications in the aerospace filed.

However, there exist a lack of knowledge regard-

ing their behaviour and performance when they are

subjected to fatigue, and therefore, it is difficult to

predict their remaining useful life. Those gaps in

the current scientific knowledge can be express as

uncertainty, which can be measured. Whilst there

are many different methods to deal with the un-

certainty, BNN have demonstrated a good perfor-

mance and are increasing in popularity within the

scientific community.

Four different Bayesian Neural Networks have

been applied to the CFRP Composites Dataset

from NASA Ames Prognostics Data Repository, so

their capacity to capture the uncertainty could be

evaluated. Then, a probabilistic safety assessment

was carried out based on the predictions made by

the algorithms. BNN by ABC-SS provided the
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best results, demonstrating flexibility to capture

the variability in the data. Thereby, its predictions

about the probability of failure approximated sig-

nificantly well the observed data.

While there doesn’t exist a unique physics-based

model to explain the mechanisms of failure in com-

posite structures, Bayesian Neural Networks, and

specially BNN by ABC-SS, could become a use-

ful tool to quantify the uncertainty inherent in the

behaviour of composite materials. Moreover, their

predictions can be used in subsequent probabilis-

tic safety assessments, which in turn helps to make

better informed decisions regarding maintenance,

or the potential replacement of the structural ele-

ment.
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