Towards R&D Breakthroughs in Imperfect Maintenance Modeling

Pierre-Etienne Labeau

pelabeau@ulb.ac.be

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

"In fact, you are "part of an experiment" (I know it sounds bad, but usually in this case the guinea-pig survives.)" (E. Zio)

So I decided to train to have the odds in my favor...

Preamble

- Large events like PSAM/Esrel:
 - □ Important in exchanging ideas and networking
 - □ ... but time for discussion very short after talks
- Ever dreamt of smaller events with the right experts, less presentations, more animated talks, a fight between ideas...
- ... and a smell of burnt neurons at the end of the day?

 ESRA-funded seminar on imperfect maintenance modeling hold on May 11 in the EDF R&D premises near Paris (coorganized by C. Bérenguer and W. Lair)

+/- 15 participants, mostly linked to the ESRA TC on maintenance modeling

Agenda and goals

Overview of effective age models for imperfect maintenance

Some industrial problems

Session 1: how to tackle these industrial problems?

Session 2: relevance of current approaches and of new developments

Session 3: accounting for expertise in imperfect maintenance modeling

ULB

Time to jump into action...

Outline

- > Preamble
- Classical imperfect
 - preventive maintenance models
- The industrial perspective
- Relevance of alternative approaches
- Conclusions

JNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPI

Outline

Preamble

- Classical imperfect
 - preventive maintenance models
- The industrial perspective
- Relevance of alternative approaches
- Conclusions

JNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Classical imperfect preventive maintenance models

- Different ways of modeling aging and maintenance efficiency
- Workshop focus: lifetime distribution and effective age concept
- Various classical models for imperfect maintenance... that are sometimes paradoxical and opposite to engineering intuition

Models based on shifting time in the lifetime distribution

- Reduction of the equipment's failure rate: decrease of the failure rate by a factor 0 < γ < 1</p>
- Reduction of the equipment's effective age: rejuvenation of part of the service duration of the component
- after restoration of part of its performances

Age

(Calendar) age of an equipment t: time interval elapsed from its operation start in an as-good-as-new state

- Effective age of an equipment τ : fictitious age, given the undergone repair and maintenance actions, and to be considered for the prediction of the future failure probability of this equipment
- → Linked to a measure of the level of *rejuvenation* brought to a component after an intervention

Possible equivalence between both approaches?

(iff monotonously increasing failure rate)

Before maintenance

Proba density function of the next failure time: f(t)(associated cdf F(t))

After maintenance

Proba density function of the next failure time:

$$\widetilde{f}(t) = \begin{cases} 0 & t \le t_{PM} \\ \frac{f(t - (t_{PM} - \tau_{PM}))}{1 - F(\tau_{PM})} & t > t_{PM} \end{cases}$$

D'EUROPE

 \rightarrow Left-truncation of the distribution

= Distribution conditional to a (fictitious) failureless operation until τ_{PM}

Implicit assumption!

Intrinsic failure time distribution f(t) unaffected by the maintenance process

No direct equivalence $\Delta\lambda \leftrightarrow \Delta\tau$:

- * Preventive Maintenance (PM): not only when λ has increased in a perceivable way...
- Successive PM actions: can maintain (for a while) a piece of equipment in an unchanged status wrt failure likelihood, but other performances can degrade, residual wear-out accumulates..., effects of the usage time appear – often before translating into a failure probability increase

Could a PM be AGAN wrt λ and imperfect wrt (future?) 'performances'?

UXELLES, UNIVERSITÉ D'EUROPE

REL 2012 – Helsinki – 29 June 2012

Evolution of the effective age?

\rightarrow Linked to the maintenance efficiency ρ

$$τ_n = τ_{n-1} + (1-ρ).\Delta t$$

Kijima 1

= Proportional Age Setback

 \equiv Arithmetic Age Reduction ARA₁

τ_n = (1-ρ).(τ_{n-1} + Δt)

Kijima 2 = Proportional Age Reduction

 \equiv Arithmetic Age Reduction ARA $_{\infty}$

« Minor PM » Recovery of part of the additional aging since the last intervention « Major PM »

Recovery of part of the aging since the start of operation

Kijima M., Morimura H., Suzuki Y., 1988, "Periodical replacement problem without assuming minimal repair", *Eur. J. Oper. Res*; **37**:194–203.

Martorell S., Sanchez A., Serradell V., 1999, "Age dependent reliability model considering effects of maintenance and working conditions", *Rel. Engng. Syst. Safety*; **64**:19–31.

Doyen L., Gaudoin O., 2004, "Classes of imperfect repair models based on reduction of failure intensity or effective age", *Rel. Engng. Syst. Safety*; **84**:45–56.

Intermediate case: Arithmetic Age Reduction ARA_m $\Rightarrow \tau_n = \tau_{n-1} + \Delta t - \rho \sum_{j=0}^{m-1} (1-\rho)^j (n-j) \Delta t$ (difficult to relate to practice however)

PE IS GENERAL

Particular cases

Minimum repair or inspection without rejuvenation

component reset in operation with no modification in its degradation level

- \rightarrow « as bad as old »
- → Effective age unchanged (ρ = 0)

Perfect maintenance

component brought back to its initial performances by totally suppressing the effects of aging

→ « as good as new »

UNIVERSITÉ

→ Effective age reset to zero (ρ = 1)

LIBRE DE BR

Let's hit some points...

Usually: $\rho_i = \rho = 1 - \varepsilon \forall i$ 1.

Moreover if $\Delta t_i = \Delta t \forall i$, and if the component is reliable:

After the nth PM action without any failure from the start (ARA_{∞}):

$$\tau_{n} = \varepsilon.(\tau_{n-1} + \Delta t)$$

$$= \varepsilon.(\varepsilon.(\tau_{n-2} + \Delta t) + \Delta t) \implies \tau_{n} = \varepsilon.\Delta t.\frac{1 - \varepsilon^{n-1}}{1 - \varepsilon} \rightarrow \frac{\varepsilon}{1 - \varepsilon}\Delta t$$

$$= \dots$$

$$= (\varepsilon^{n} + \varepsilon^{n-1} + \dots + \varepsilon).\Delta t$$

 \geq Effective age \rightarrow limit value independent of the number of PM actions carried out

No more trend towards degradation

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERS

Not realistic!!

Rem: situation not met with ARA

2. Numerical value of $\rho = 1 - \epsilon$? Related to the gain in the mean residual lifetime (MRL) of the component

Before maintenance

$$MRL^{-} = \int_{t_{PM}}^{\infty} (t - t_{PM}) \cdot \frac{f(t)}{1 - F(t_{PM})} dt$$

After maintenance

ULB

$$MRL^{+} = \int_{t_{PM}}^{\infty} (t - \tau_{PM}) \cdot \frac{f(t - (t_{PM} - \tau_{PM}))}{1 - F(\tau_{PM})} dt$$

 $= fct(\varepsilon)$

 \rightarrow gain in the mean residual lifetime:

$$MRL^+ - MRL^- = fct(\varepsilon)$$

→via expert elicitation

UNIVERSITÉ LIBRE DE BRUXELLES. UNIV

3. Implicit hypotheses

- pdf after maintenance = pdf before maintenance, only a shift in time Verifiable??
- Equipment with a unique failure mode. What if multiple failure modes or multi-component systems?
 - → dependences between maintenance impacts

- 4. Maintenance impact proportional to a PM period?
- Any variability in the maintenance epoch affects the resulting state of the component Consistent with practice??
- 5. Relevance for maintenance optimization?
- Estimation of ρ made from field data
 i.e. based on a previously applied PM policy (hence Δt)
- ρ then used to optimize Δt for future operation →Implicit assumption that ρ and Δt are independent. True??

Resulting state after PM possibly not strongly dependent on Δt , but not $\rho!$

Outline

- > Preamble
- Classical imperfect
 - preventive maintenance models
- The industrial perspective
- Relevance of alternative approaches
- Conclusions

JNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPI

The industrial perspective

While struggling theoreticians can still iron out problems...

... industrials must stay in troubled waters!

UNIVERSITÉ LIBRE DE BRUXELL

Some difficulties and challenges

- Parameter estimation when only small / highly censored historical data samples are available?
- Parameter estimation when different values of (Weibull parameters, efficiency) provide highly similar behaviors?

Expert judgement, Bayesian approach...?

- Heterogeneity in systems and in operational conditions
 Covariates, frailty models...?
- Selection of a model (Kijima 1 or 2, ...)?

Goodness-of-fit tests and model selection criteria?

Optimization of the periodicity of a systematic planned maintenance strategy consisting in carrying out several tasks?

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Outline

- > Preamble
- Classical imperfect
 - preventive maintenance models
- The industrial perspective
- Relevance of alternative approaches
- Conclusions

JNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROP

Relevance of alternative approaches

- Main idea: Escaping the linearity of Kijima-1 and -2 models to account for intuition...
- Actual execution time of a PM a bit later than/ahead of the scheduled time « in a reasonable way »

→ No impact on the resulting degradation state of the item

- Too long delay: Irreversible degradation and/or more intensive/costly maintenance to be carried out
- → Maintenance "elasticity"
- PM action: list of well-scheduled tasks to be carried out
- \rightarrow Component returned to a target degradation (i.e. age)
- As-Good-As-Expected (AGAE) Maintenance

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPI

- How long can you stay in "elasticity" conditions? How long can you rejuvenate the component back to its AGAE state?
- No matter how regularly and neatly the car is preventively maintained, its performances will unavoidably tend to decrease as a result of aging

→ Inescapability of aging

→ Replacement compulsory at some point

Outline

- Preamble
- Classical imperfect
 - preventive maintenance models
- The industrial perspective
- Relevance of alternative approaches

Conclusions

JNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Conclusions (1/2)

- Review of imperfect maintenance impact models based on the effective age concept
- Usually easy to implement...
 ... yet some drawbacks and counter-intuitive characteristics

Challenges:

- Guidelines for industrials to select a model and estimate parameters
- 2. Relevance of alternative approaches dropping the implicit linearity of the classical models?

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPI

Conclusions (2/2)

- Relevance of discussions in workshops associated to technical committees?
 - The experts are there
 - Crosspoints between methods and actual problems
 - Open discussion not always instantaneous however...
- Still a useful step towards more efficient problem solving and fruitful collaborations

PSAM 11 – ESREL 2012 – Helsinki –

GOING FOR GOLD I