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Abstract:  
Operation of fish farms offshore increases the need for autonomous operations, monitoring and decision 
support systems. Autonomous systems have different levels of self-governance and may reduce the 
direct physical human operator interaction in operations with the fish cages and tools. The objective of 
this paper is to present current work in a research project related to increased autonomy in underwater 
operations in Norwegian aquaculture. The main focus of the project is on risk management and 
simultaneous localization and mapping (SLAM) of underwater vehicles. The paper discusses how 
research from subsea oil and gas intervention and ocean monitoring, combined with the research work 
in the project, may contribute to improved risk control and risk mitigation for fish farm operators, the 
environment, and fish welfare.    
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1.  INTRODUCTION 
 
In Norway, fish farming is one of the most dangerous occupations. The harsh weather conditions, a high 
manual workload, utilization of heavy equipment, as well as organizational factors, such as a high work 
efficiency pressure, contribute to the risk [1, 2].  Salmon and trout aquaculture started in protected 
coastal areas near shore, but nowadays fish farming has also moved into more exposed locations, due to 
conflicts in the local communities and space restrictions, as well as a need for better production facilities 
and reduced environmental footprint. In addition, the fish cages have grown considerable in size with 
more fish in each cage. The exposed fish farms create even more challenges related to the working 
environment for operators, due to worse sea states.  
 
Operation of fish farms further offshore increases the need for autonomous operations, monitoring and 
decision support systems. Autonomous systems have different levels of self-governance and may reduce 
the direct physical human operator interaction operations with the fish cages and tools. Different levels 
of autonomy (LoA) describe detailed aspects of an autonomous system and operation, including operator 
dependency, communication structure, human-machine interface (HMI), an online risk management 
system, intelligence, planning functionalities, and mission complexity [3]. Advancing from a lower level 
automated system to a higher-level autonomous system is usually a gradual process. Currently, the fish 
feeding systems is one example of low level autonomous system (automated), as most often these are 
controlled remotely from a feeding barge. Another example is inspection, maintenance and repair 
(IMR), which are (underwater) operations performed in each fish cage or on the whole facility. When it 
comes to net inspections, divers or underwater vehicles (UV), i.e., remotely operated vehicles (ROV) 
are used. Net cleaning can be executed with high pressure cleaning rigs operated by cranes or ROVs. 
Several fish farming operations are performed manually, and currently there are no systems with a high 
autonomy level in use in aquaculture.  
 
To ensure safe operations in the challenging work conditions, new and adapted methods that improve 
tools, technology and platforms in aquaculture with more autonomy are needed. The effects of more 
exposed and larger fish farms, and major biological, operational and environmental challenges, increase 
the need for efficient risk management and decision support. This is addressed in the research project 
“Reducing Risk in Aquaculture” [4]. The objective of this paper is to present current work in the research 
project related to increased autonomy in underwater operations in aquaculture. The main topics of the 
project are risk management and simultaneous localization and mapping (SLAM) to improve the 
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autonomy of UV. The paper discusses how research results from subsea oil and gas intervention and 
ocean monitoring, combined with ongoing work in the research project, can contribute to better risk 
control and risk mitigation for fish farm operators, the environment, and fish welfare. The scope of the 
paper is the fish farm itself and its most important operations, which means that hatching, fish processing 
or transportation are not included.  
 
The remainder of this paper is organized as follows: Section 2 introduces fish farming operations in 
today’s sea-based fish farms. The associated risks that need to be considered during operations are 
described in Section 3. Section 4 presents underwater positioning in aquaculture. Section 5 discusses 
uncertainty in underwater positioning related to risk, and Section 6 discusses their potential integration. 
Section 7 states the conclusions. 
 
 
2.  NORWEGIAN AQUACULTURE 
 
In 2016, Norwegian aquaculture produced 1,3 mill. tons of fish, mainly salmon and trout [5]. This 
amount has not changed much since 2012 [6], due to sustainability challenges. Still, the potential for 
growth has been estimated to be fivefold by 2050 compared to 2010 [7], but the industry lacks sheltered 
coastal locations and there are challenges with sea lice, fish escape and waste on the seabed close to the 
farms [8].  
 
Salmon in fish farming is mostly hatched in freshwater tubs and tanks onshore. When the salmon is able 
to live in seawater, they are moved to a sea-based fish farm, where they remain for 14-22 months until 
they have gained a weight of around 4-6 kg. Then they are slaughtered and processed, before transported 
to the end user market [9]. Fish farms are constructed in different ways, but the most typical commercial 
farm consists of a fleet or barge surrounded by cages floating in the sea, each with a collar and net 
moored to the sea bottom. The trend towards moving fish farms offshore has led to the development of 
new concepts, of which some are influenced by the offshore oil and gas industry. Ocean farm 1 [10] is 
one example of such a concept, which was commissioned and put into operation in 2017. 
 
Important operations in a fish farm are fish transfer, feeding and transport of feed, inspections of 
equipment, measurement of oxygen, cleaning of nets, removal of dead fish, delousing, health and 
biomass control, and inspections, maintenance and repair [11]. Several of these operations involve the 
use of service vessels, and heavy equipment, such as cranes and ROV, exposing the personnel to 
operational risk [12].  
 
 
3.  RISK IN AQUACULTURE 
 
ISO 31000 [13] defines risk as the “effect of uncertainty on objectives”. An effect can both be positive 
and negative, but the scope of this paper focuses on potential losses. Further, it is stated that “risk is 
often expressed in terms of the consequences of an event and the associated likelihood of occurrence” 
Uncertainty is defined as “the state, even partial, of deficiency of information related to, understanding 
or knowledge of an event, its consequence, or likelihood”. 
 
[14] state that two different events could have the same probability of occurring. The basis for 
establishing the probabilities, however, could be entirely different. [15] discusses a risk perspective 
constituted by:  

{𝑎𝑎, 𝑐𝑐, 𝑞𝑞|𝑘𝑘}    (1) 
 
The hazardous event is represented by a, consequences by c, uncertainty by q, whereas k is the 
background knowledge and basis used to determine a, c, q. Since uncertainty is closely linked to risk, 
rather than probability only, q is used rather than p to open for various quantitative and qualitative ways 
of expressing uncertainties [16].  
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Risk analysis identifies a set of events a’ and consequences c’. {𝑎𝑎, 𝑐𝑐′} may be a collision between a UV 
and a fish net in a fish cage. 𝑐𝑐′ are then the consequences to the environment, to the fish itself, and 
economic losses.  q can be expressed by probabilities, but it may not necessarily include all uncertainties 
in assumptions and background knowledge. Hence, for autonomous systems operating in a challenging 
and unpredictable environment with limited or no a-priori information, q can be assumed to be high and 
k low. Uncertainty needs to be recognized and reduced by improving our knowledge basis [3]. The 
background knowledge 𝑘𝑘 depends on available data, expert judgements and models representing 
different phenomena involved, and include assumptions, suppositions and the choice of models. In risk 
assessment, data for hazardous events and accident scenarios may be scarce, which means that a 
probability model is difficult to establish [15]. 
 
[17] suggest to consider five consequence dimensions of risk in aquaculture. These are risk to personnel, 
risk to material assets, risk to the environment, risk to fish welfare, and food safety. Risk to personnel 
focuses on risk to fish farm employees mainly. The main causes to fatalities are loss of vessel, man 
overboard and blow by an object [2]. Serious injuries are often due to blowing from objects, falls, and 
entanglement [1]. Risk to environment includes negative impact, such as waste/hazardous compounds 
on the sea bottom, escape of fish and genetic interaction with wild salmon [8, 18]. Before the standard 
NS 9415 was introduced in 2004, structural failures were a major cause to salmon escapes. A large-scale 
escape involves   > 10 000 fish [18].  
 
Risk to material assets consider potential damage to the fish farm structures and vessels. Risk to fish 
welfare includes impact on fish health, such as parasite infections. Sea lice infections reduce the fish 
health condition and may be transmitted to wild salmon under certain conditions, increase the 
consumption of medications, and may cause mortalities [19, 20]. The presence of sea lice and fish escape 
are the major environmental problems in salmon fish farming [21]. Every year, sea lice infections cost 
the industry around €1 billion [22]. Different countermeasures and delousing efforts exist, but they 
typically also cause hazards to fish health and welfare [23]. 
 
Food safety is related to safe consumption of salmon and potential impact on consumer´s health. Heavy 
metals’ toxicity has been raised as an issue of concern, but [24] showed that the levels of mercury, 
arsenic, dioxins, PCBs and DDTs in Norwegian farmed Atlantic salmon from 1999 to 2011 were below 
the EU maximum allowable limits. The requirements to salmon as food requires strict control throughout 
the production process, and Norwegian salmon is safe [25]. 
 
4.  UNDERWATER POSITIONING OF AUTONOMOUS SYSTEMS IN AQUACULTURE 
 
More exposed locations for aquaculture makes the use of remote control and underwater vehicles (UV) 
feasible for underwater operations. According to [26], ROV is an example of a tethered UV and can be 
enhanced with more autonomous functionality. Frequent inspections of the fish farm are important to 
prevent fish escapes and damage to equipment [18]. Diving can be hazardous and the use of manually 
operated ROVs is costly. The lack of high communication bandwidth in underwater environments 
means that tethered vehicles are necessary for live monitoring, which may be hazardous during operation 
in confined areas, such as in a fish cage, e.g., due to entanglements. A major challenge is to determine 
the position of the UV relative to its surroundings, especially due to currents and waves impacting and 
deforming the net structure [27, 28], in addition to the fish moving around in the cage.  
 
Figure 1 presents a qualitative event tree for loss of position of a UV in aquaculture, including the 
consequences collision and successful recovery. A collision with the fish net, for example, may cause a 
hole leading to fish escape, affecting several of the consequence dimensions in Section 3, such as 
negative environmental impact, loss of reputation, and economic losses.  
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Figure 1. Event tree for loss of position of an UV in a fish cage, which may lead to collision with 
obstacles, such as ropes or fish net. 
 
To utilize UV in aquaculture safely, there is a need for robust localization and positioning systems that 
are capable of estimating position relative to obstacles. Solutions can be based on vision or sonar sensors 
mounted on the vehicle, typically, along with Doppler Velocity Logger (DVL) and Inertial Navigation 
System (INS) for dead reckoning capability. This can also be combined with an acoustic transponder 
system located on the aquaculture structure. However, the configuration of an acoustic transponder 
system for range measurements is a key challenge [29]. Motion in near surface transponders may have 
a negative effect on the positioning system. Motion around a fish cage is caused by environmental 
disturbances from currents and waves, which may lead to errors in the position estimate. This type of 
error needs to be as small as possible for accurate positioning of the UV. Demanding weather conditions 
also create oscillations in the transponders if mounted near the surface. 
 
Sandøy et al [30] has proposed an extended Kalman filter (EKF) solution, which includes an error 
dynamics model integrated in the pseudo-range measurement model. The paper suggests a procedure to 
identify the parameters in the error model, which has been experimentally tested in the marine 
cybernetics lab at NTNU. The results of the work show that the proposed EKF is able to compensate for 
the wave motion, decreasing the root mean square (RMS) errors compared to no compensation, 
providing more accurate localization.  
 
Today, UVs in terms of autonomous underwater vehicles (AUVs) are mostly applied in open waters, 
and there are only a few examples of use in more confined environments. ROVs are used in more 
confined applications, including aquaculture, even though umbilical entanglement is a major concern 
[31]. A possible solution for localization could be to acquire a map of the fish net online and localize 
the UV relative to it. This solution is called simultaneous localization and mapping (SLAM) [32, 33].  
  
Localization is about estimating a vehicle´s location. The environment around the vehicle may be 
known, but not its location. Mapping means building a map, and SLAM does localization and mapping 
at the same time. SLAM may be less accurate than just localization when mapping is known. SLAM is 
fundamental for most navigation systems and is a fundamental problem for truly autonomous systems. 
SLAM is central to a range of indoor, outdoor, air and underwater applications for both manned and 
autonomous vehicles [32]. SLAM has become increasingly popular in underwater navigation [34], but 
nobody has investigated underwater SLAM in an aquaculture environment.  Work in the Reducing Risk 
in Aquaculture Project [4] is ongoing to develop SLAM, using sonar for range and bearing 
measurements to obstacles.   
 
 
5.  UNCERTAINTY IN UNDERWATER POSITIONING FROM A RISK PERSPECTIVE 
 
5.1 Uncertainty in risk assessment 
 
In probabilistic risk analysis, a distinction may be made between aleatory or stochastic uncertainty and 
epistemic uncertainty. The former refers to variation in a population of similar items, and may be 
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represented by a probability distribution, for example the Gaussian with mean 𝜇𝜇 and variance 𝜎𝜎2 . 
Aleatory uncertainty may be illustrated by the rolling of a dice. The probability 𝑝𝑝𝑖𝑖 is the fraction of 
outcomes with 𝑖𝑖.  
 
Epistemic uncertainty is caused by lack of knowledge k, which means that it may be reduced if more 
knowledge becomes available. This is also called subjective uncertainty. Other issues that contribute to 
uncertainty in risk assessments are complex systems, tightly coupled systems, new technology, software 
intensive systems, dynamic systems, and system interaction with the environment. These issues make it 
difficult to reveal all relevant hazardous events. In addition, model uncertainty, parameter uncertainty, 
consequence uncertainty, calculation uncertainty, uncertainty due to time pressure and wrong/missing 
competence may affect the results of the risk assessments. Hence, it is challenging to take uncertainties 
into consideration sufficiently in risk assessment [35]. Still, risk analysis may become more valuable 
with higher uncertainty [36]. 
 
5.2 Uncertainty and the risk perspective in underwater operation in aquaculture 
 
There is uncertainty in a UV´s motions and observations. Motion increases the uncertainty of the system. 
The main issue in probabilistic underwater robotics is to estimate the state of the vehicle from sensor 
data. The vehicle has to rely on its sensors to estimate its state, i.e., the position and orientation. Sensor 
measurements may be influenced by noise and outliers and this may result in uncertainty in the 
estimation of the vehicle state. Probabilistic state estimation calculates belief distributions over potential 
states.  
 
The state of the vehicle is characterised by different dynamic and static aspects variables related to the 
environment and the vehicle itself. Examples are pose, velocity, sensor functioning or not, the location 
of obstacles around, etc. The future state of the vehicle at time t can be denoted 𝑥𝑥𝑡𝑡. The previous state 
is denoted 𝑥𝑥𝑡𝑡−1. Measurement data at time t are denoted 𝑧𝑧𝑡𝑡, whereas control input is denoted 𝑢𝑢𝑡𝑡. The 
state and measurements can be considered to be determined by probabilistic laws and conditional 
probabilities of previous states and measurements given by: 
 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥0:𝑡𝑡−1, 𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡)     (2) 
 
A belief distribution assigns a probability to possible states based on the previous state posterior, i.e., a 
prediction, before including the measurement at time t, which is called the correction or measurement 
update. This is the main principle of the Bayes filter algorithm [32]. 
 
In SLAM, the vehicle path and map are unknown and the map and pose estimates are correlated. The 
mapping between observations and map, however, is unknown. Selecting the wrong data associations 
can have severe consequences (divergence). [32] show how the errors in the localization and mapping 
are represented by probability theory. This can be further exploited in the use of SLAM in aquaculture.  
 
In risk analysis, Bayesian analysis is a common tool in which Bayes’s theorem is used to update the 
representation of the epistemic uncertainties in light of new data to obtain the posterior distributions 
[37]. Hence, the current inclusion of uncertainty in SLAM algorithms has a narrower interpretation than 
in risk analysis according to Eq. 1, but improvements in SLAM should consider uncertainty in a wider 
sense. 
 
In general, a mission planning algorithm for a UV takes into account the state of the vehicle when 
developing its guidance law. Ideally, for positioning and localization of an underwater vehicle, there 
should be perfect knowledge k of the state and no uncertainty. This means that the UV would know its 
position correctly, as well as the location of the goal. Further, all actions executed by the UV would 
have perfectly predictable outcomes 𝑐𝑐´. In practise, however, error will accrue during the UV’s execution 
of actions, and the ocean environment is unpredictable and unstructured, further contributing to 
deviations in the UV’s position and path, even with sensor based reactive control to make adjustments. 
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Hence, there will always be risk involved in the UV operation, but consideration of risk defined 
according to Eq. (1) is currently not an integrated part of vehicle guidance and control. Traditionally, 
the anticipated uncertainty associated with robots are calculated in terms of probabilities for each 
decision outcome (𝑝𝑝(𝑎𝑎)), represented by frequentist probabilities.  However, with such an approach, 
important aspects of risk are ignored, since: 
• Consequences c are not explicitly considered, but are linked to the vehicle’s decision outcomes in 

terms of deviations in the optimal path only; 
• Hazardous events a only include the vehicle’s decisions and deviations from the path, not potential 

technical failures related to the condition of the vehicle and environmental disturbances;  
• The probability of a decision outcome p(a) could be a poor prediction of the actual consequence c 

given that a occurs; 
• The knowledge k supporting the probabilities could be strong or wrong and may change during 

operation.  
• The probabilities do not cover risk influencing factors (RIFs). A RIF can be defined as “an aspect 

(event/condition) of a system or an activity that affects the risk level of this system or activity”. If a 
RIF is not possible to measure directly, there is a need for an operational definition of the RIF [38]. 

 
Some of the above-mentioned aspects are discussed on a generic basis in [39]. The risk perspective and 
the challenges related to underwater operation in aquaculture is illustrated in Figure 2. The figure shows 
that there is considerable risk involved with UV operation in aquaculture, which is necessary to 
incinerate in positioning and localization algorithms developed for UV operating in aquaculture.   
 
In Figure 2, one may assume that the hazardous event 𝑎𝑎 is loss of position and q is the uncertainty about 
the localization of the UV (ROV). The consequences 𝑐𝑐′ may change depending on where the ROV is 
located: collision with ropes in the middle of the fish net (at time (𝑇𝑇 = 𝑡𝑡 − 1) may lead to other 
consequences 𝑐𝑐𝑡𝑡−1 than collision with the fish net itself, i.e.,  𝑐𝑐𝑡𝑡 (at time (𝑇𝑇 = 𝑡𝑡)). In addition, the 
uncertainty 𝑞𝑞 changes, depending on the accuracy and type of positioning system and the type and 
quality of sensors. Since the fish net moves with waves and currents, it may be more difficult to 
determine the distance to the fish net with sufficient precision at time (𝑇𝑇 = 𝑡𝑡) than at time (𝑇𝑇 = 𝑡𝑡 − 1). 
Hence, the uncertainty 𝑞𝑞𝑡𝑡 increases, the consequence 𝑐𝑐𝑡𝑡 becomes more severe, and, depending on the 
sensors available, our knowledge basis 𝑘𝑘𝑡𝑡 may decrease; i.e., the risk increases from time (𝑇𝑇 = 𝑡𝑡 − 1) 
to time (𝑇𝑇 = 𝑡𝑡). 

   
             
Figure 2. Illustration of fish cage with a flexible net, which is exposed to sea current. The ROV is moving 
inside the cage from the middle towards the fish net. 
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6.  A CONCEPTUAL DISCUSSION OF IMPLEMENTATION OF A RISK PERSPECTIVE IN 
UNDERWATER POSITIONING IN AQUACULTURE  
 
A potential integration of the risk perspective (Eq. 1) would be an extension and potentially an 
improvement to SLAM. This might be done in different ways, as presented in the following. 
 
6.1. Risk based path planning in aquaculture 
 
Currently for a robot, uncertainty 𝑞𝑞 is considered in terms of frequentist probabilities 𝑝𝑝, and updated 
when new information becomes available (measurements 𝑧𝑧). When a UV selects its actions, it is driven 
by goal achievement. In addition, it might be of interest to minimize “cost” in terms of time, 
consumption of energy, or number of collisions. Such trade-offs can be expressed by use of value 
functions [32]. 
 
According to [40], expected value decision-making is not adequate for low probability, large 
uncertainty, and high consequence events. Two hazardous events may be represented by probability 
distributions with the same expected values, but they may be centered differently, which means that risk 
mitigation should focus on different decision strategies. Hence, there may be a need for including risk 
aversion considerations, which may be implemented by expected utility theory. The challenge, however, 
is to express a utility function useful for risk management decisions [41].  
 
According to [42], a direct approach to risk control of an AUV is path planning adaptation. In particular, 
this is relevant for AUV inspection tasks, for which the hazardous event collision is important to 
consider (cf. Figure 2). Such an approach may provide advantages compared to existing methods for 
path planning, which mainly optimize the minimal cost or operational time. [42] proposes a hierarchical 
approach with risk integration, in which a mapped environment with known obstacles is assumed. The 
starting and ending position, in addition to weighting of different criteria of relevance for path planning, 
can be considered by the AUV itself, enhancing autonomy. The criteria can be determined based on 
RIFs, for example, those included in the nodes in the risk model for underwater operation in aquaculture, 
shown in Figure 3. 
 
The approach in [42] can be applied for autonomous underwater operations in aquaculture, if a 
dynamic environment is included. In addition, since data computation capacity may be limited, the 
proposed approach may be desirable. Figure 2 shows that the risk related to position loss changes 
during UV operation in the fish cage. Figure 3 shows that position loss is influenced, for example, by 
changes in the risk factors (e.g., current).  
 

 
Figure 3. Qualitative BBN/influence diagram of underwater operation in aquaculture with nodes and 
RIFs related to the probability of loss of position of the UV for two different time instances. 
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6.2. Risk-based operational envelopes as decision support tool  
 
For a UV, collision with obstacles may in some cases not be so critical. Colliding with a rope may lead 
to entanglement and mission abortion. The outcome is downtime and delays in the operation, with 
potential economic losses. Collision with the fish net, as mentioned earlier, is much more critical. Hence, 
the control policy of the UV should be able to take this issue into account, i.e., precise localization and 
navigation becomes more important the closer the UV is to the fish net. One solution supporting a human 
supervisor of a UV may be to implement operational envelopes surrounding the UV, providing decision 
strategies based on COLREG and TCAS rules, cf. [43].  
 
[43] propose to use the Octree method for developing a static safety envelope for autonomous ROVs in 
subsea oil and gas operations. A safety envelope is defined as “a 3D spatial area around the underwater 
vehicle forming a virtual protective barrier (in space and time) against collision with known and 
unknown obstacles in the subsea environment (…)”.  [43] presents a static safety envelope, which means 
that the size of the envelope is constant and does not change during operations. This approach may be 
feasible when a UV is operating close to the fish net, but when moving around in the fish cage, a dynamic 
envelope would provide improved risk information.  
 
[44] propose a dynamic safety envelope, which enables the UV to decrease or increase the obstacle 
detection area. A fuzzy inference system (FIS) is utilized to vary the size of the safety envelope, 
depending on three fuzzy input variables; i.e., vehicle velocity, probability of acoustic sensor failure and 
time to collision. Risk based operational envelopes would be desirable in aquaculture, which means that 
it should be linked to a risk model, e.g., a dynamic BBN, cf. Figure 3, which would be an expansion of 
the three input variables used by [44]. 
 
The approach of [44] may be useful in aquaculture, but there may be different RIFs and safety 
requirements compared to subsea oil and gas intervention, for example with respect to safe distance to 
obstacle. A moving fish net may require more conservative constraints to distance than a fixed subsea 
production system (SPS) on the sea bed. The former may also be more vulnerable than a SPS. On the 
other hand, a thorough inspection means that the UV needs to get relatively close to the fish net to 
provide sufficient condition data.  
 
6.3. Risk based localization 
 
Figure 3 shows (risk) factors influencing the likelihood of position loss at two different time instances. 
When the nodes are quantified with probabilities, the risk model may become a dynamic BBN. 
Sensitivity analysis can be performed to identify the most important nodes or RIFs in the BBN, and then 
uncertainties related to these nodes can be assessed. If uncertainties are found to be high, this can be 
reflected in terms of weighting of the nodes, which impact their effect on the end node (position loss). 
Figure 1 and Figure 3 combined may represent the accident scenario of loss of position for an UV, 
including RIFs and causal relationships (Figure 3) and potential consequences (Figure 1). It is rather 
obvious that the risk perspective (cf. Eq. 1) is not considerably catered for in current SLAM for UV 
operation in aquaculture. 
 
When using estimation filters for control, several underlying assumptions are made. Firstly, for Gaussian 
filters, the assumption about the feasibility of using the Gaussian distribution to express the uncertainty 
of the state of the underwater vehicle is made. Referring to the above discussion, uncertainties are only 
to a limited extent possible to express by a probability distribution. The limitations related to the sensor 
quality and the measurements may be known, and these may vary for different environmental conditions. 
In addition, as mentioned above, such limitations may be more severe under some circumstances than 
other.  
 
Implementation of the risk perspective in Eq. (1) into the control policy of the UV could start in terms 
of using a strength of knowledge scale, as shown in Table 1. In addition to assessing the basis for the 
assumptions made related to the development and choice of control policy, algorithms, parameters, 



Probabilistic Safety Assessment and Management PSAM 14, Sept. 2018, Los Angeles, U.S.A. 

operating context, the quality of sensor measurements and data models, (left column in Table 1), the 
level(s) of autonomy in the operation also impact the background knowledge. Complexity, for example, 
in terms of previous experience with the operation, influences the ability for sufficient planning of the 
operation and successful performance during operation with the different LoA. Complexity could be 
explicitly incorporated into Table 1.  
 
In the example proposed in Table 1, the lowest “score” in any of the two columns determines the final 
“score”. For example, achieving “good” in column 1 (data and information quality) and “low” in column 
2 (LoA) result in a final “score” of “low”. This judgement will be qualitative and is obviously dependent 
on the assessor. LoA is included as it is assumed that a human operator or supervisor will influence the 
background knowledge, k. 
 
Table 1. Strength of knowledge scale, including LoA. Adapted and developed from [3], [45]. 
Data and information quality Level of autonomy (LoA) 

Good: All of the following conditions are met: Good and reasonable 
assumptions. Reliable and relevant data/information from 
measurements are available. Agreement among expertise in area. 
Models used are known to give predictions with sufficient accuracy. 

Low: Human operator in 
charge or human supervisor 
may easily take over control 
and intervene efficiently. 

Medium: Aspects that are in between high and low. Medium: It is uncertain 
whether the human supervisor 
have sufficient time and ability 
to take over control and 
intervene. 

Weak: One or more of the following conditions are met: Strong 
simplifications in assumptions. Very little reliable data or 
information available. Disagreement among expertise in area. 
Relevant and accurate prediction models do not exist. 

High: Human supervisor will 
not be able to take over control 
and intervene in a timely and 
efficient manner. 

 
A risk matrix, as shown in Figure 4 visualizes how the assessment of background knowledge, k, can be 
combined with probability.  In Figure 4, red is unacceptable, yellow is ALARP, and green is acceptable, 
corresponding to the as low as reasonable principle (ALARP). For more on ALARP, see, e.g., [46].  The 
hazardous event a considered in this example is position loss. A score corresponding to medium for k 
in Table 1 and using probability (medium) as a measure for q (without defining the scale here), means 
that the hazardous event ends up in the ALARP region.  
 

 
Figure 4. Risk matrix for k and q. 
 
When assessing the potential consequence (collision with fish net, aborted operation, entanglement), we 
end up with a risk in the high category, shown in Figure 5, meaning that we get an unacceptable risk 
related to that type of event.  

 
Figure 5. Risk matrices combining q and c. 
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The matrices in Figure 4 and 5 have been developed based on [47], but are further adjusted and adapted 
to UV for aquaculture. The outcome of implementing considerations into SLAM, as addressed in Table 
1 and Figures 4 and 5 is that the UV should be able to determine when the localization is influenced by 
so much uncertainties that loss of position is likely, in particular when the consequence may be collision 
with the fish net. In short, the UV should be able to know when the risk is too high, and mission should 
be aborted. 
 
 
7.  CONCLUSION 
 
This paper addresses challenges related to improved autonomy in underwater operations in aquaculture, 
which is particularly relevant when fish farms move further offshore. Enhanced autonomy is relevant 
for current fish farming operations, but with larger fish farms offshore, increased monitoring, remote 
control, supervision, and intelligent decision support systems are even more needed. Autonomous 
systems have different levels of self-governance and may therefore decrease the direct physical human 
operator interaction operations with the fish cages and tools, potentially reducing risk and improving 
cost efficiency.  
 
This paper focuses on improved risk management and simultaneous localization and mapping (SLAM) 
for aquaculture, which are two research areas of particular importance to realize improved autonomy in 
exposed aquaculture operations. The paper outlines three different work areas for closer integration and 
implementation of a risk perspective in SLAM, namely; (i) Risk based path planning, (ii) operational 
envelopes as decision support tool, and (iii) risk based localization. The concept of operational safety 
envelopes from subsea oil and gas linked with dynamic risk modelling may be relevant for underwater 
operations in aquaculture. Uncertainty regarding risk influencing factors (RIF) is affecting the 
performance of an underwater vehicle (UV), which is necessary to take better into account in path 
planning and positioning and control of the UV in aquaculture. 
 
Further research work will focus on implementation to evaluate effects on algorithm precision, and 
different filters will be investigated. It may also be necessary to consider trade-offs regarding the 
potential for “higher costs” related to improved precision in calculations and algorithms, and reduced 
risk in underwater operations. 
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