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Abstract: Offshore wind operations are logistical challenges and require improved management of the 

installation and maintenance processes. For this reason, numerous models have been developed 

concerning different aspects of these operations. Most of these models assume constant durations for 

the installation or maintenance activities or employ probability distributions to describe the associated 

uncertainty. However, these two approaches do not take into account the dependence between the 

activities. This paper proposes a method to describe the dependence between the main installation 

activities of offshore wind turbines (WTGs) by the use of  a non-parametric Bayesian Network 

(NPBN). To achieve this, different tests were performed and the NPBN was quantified based on real 

data from a realized project. To illustrate the impact of neglecting the dependence between the 

activities, a hypothetical case regarding the installation of 150 WTGs was simulated for all three 

aforementioned approaches (non-dependent: deterministic and probabilistic vs. dependent). It was 

found that the proposed approach allows for a proper representation of the dependence between the 

installation activities. Moreover, it can lead to more accurate and reliable estimated installation 

duration. Hence, this NPBN model can effectively support decision makers in optimizing the work 

planning of offshore wind processes. 
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1.  INTRODUCTION 
 

During the last years, it became apparent that offshore wind energy can significantly contribute to the 

essential transition from conventional energy sources to renewables [1], [2]. Moreover, this transition 

can already be observed in the European offshore industry; offshore wind energy has recently become 

financially competitive, attracting more investments from major Oil and Gas (O&G) companies. 

However, certain aspects, related to the management of the construction process of offshore wind 

farms, should be improved in order to tackle the logistical challenges caused by the necessity to move 

farther offshore in coming years. 

 

Construction activities of offshore wind farms are complex and capital intensive. On top of that, these 

activities are subject to various uncertainties such as environmental conditions, supply disruptions and 

failures or crew mistakes which may occur during the installation process. However, most of these 

uncertainties are often neglected or described superficially, resulting in significant budget and 

schedule overruns. To avoid these undesirable outcomes, probabilistic risk analysis methods should be 

utilized in the planning phase to support optimal decision making under uncertainty. 

 

During the last years, various models have been developed concerning different aspects of the 

installation process of offshore wind farms [3]–[10]. However, the majority of the available models 

either assume constant values for the duration of the activities, neglecting the associated uncertainty, 

or make use of distributions (such as triangular or normal probability distributions many times 

                                                 
*
 corresponding author: G.Leontaris@tudelft.nl 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

quantified with informal procedures and not adequately validated) to describe the uncertainty of these 

variables. In both cases, the dependence between the durations of subsequent construction activities is 

ignored. The construction activities of offshore wind farms are operations that are usually performed 

sequentially, by the same set of installation vessels and crew. Hence, the assumption of independence 

could lead to miss-estimations of total cost and time, which may result in decisions which will prove 

to be far from optimal during the installation phase.   

 

Therefore, the purpose of this paper is to investigate the impact of neglecting the dependence between 

the duration of the offshore construction activities and propose a method to incorporate this 

dependence into the estimates of the cost and time of the project. For this purpose, in the proposed 

method, the durations of the offshore construction activities of the wind turbine generators (WTG) are 

calculated using a Bayesian network (BN). This represents the dependence relationship between the 

activities and was populated using historical data of a past project. To investigate the impact of this 

approach, a test case concerning the installation of 150 wind turbines in the North Sea is simulated for 

three different approaches. The first and second approach are those currently used in practice (i.e 

Approach 1: independent constant values for the activities duration and Approach 2: durations 

described by a triangular distributions) while the third scenario utilize the developed BN. The 

cumulative distributions of cost and time for project completion are compared and the impact of 

neglecting dependence is presented.   

 

 

2.  BAYESIAN NETWORK FOR ACTIVITY DURATION 

 

2.1 Theoretical background 

 
Bayesian networks (BNs) are graphical, probabilistic models which consist of nodes and directed 

arrows (or arcs). Each node represents a continuous or discrete random variable, while the arrows 

connect the nodes to describe the dependence between the random variables. Each arc connects a 

predecessor (or parent) node with a successor (or child) node and represents the dependence between 

these two. The arcs of the BN should connect the nodes in a way such that there are no directed cycles 

in the graph. Moreover, the graphical structure of BNs allows the visualization of conditional 

independencies as well as conditional dependencies. Summarizing, the BNs are directed acyclical 

graphs (DAGs) which represent the joint probability distribution of random variables in an intuitive 

way.  

 

There are different classes of BNs depending on the type of random variables that constitute the 

network. Namely discrete BNs which consist of discrete random variables and hybrid BNs (HBNs) 

which can involve both discrete and/or continuous variables. For the formalization of discrete BNs the 

reader is referred to [11]. In this study, since the variables of interest (i.e. duration of installation 

activities) are continuous, a class of HBNs, the so called non-parametric BNs (NPBNs) were used. The 

main characteristic of NPBNs is that the dependence is described by copulas. Copulas are multivariate 

distribution functions whose one-dimensional margins are uniform on the [0,1] interval [12]. Hence, 

for NPBNs it is only required to specify the empirical marginal distribution for each variable and a 

(conditional) rank correlation for each arc [13]. A complete description of NPBNs is out of the scope 

of this paper. For a complete overview, the reader is referred to [14] and [13]. 

 

There are different families of copulas. A detailed description of these can be found in [15]. For the 

purpose of this study, we limit the analysis to one-parameter copula families for which the dependence 

structure can be written as function of the rank correlation coefficient between pairs of random 

variables. The Spearman’s rank correlation for the ranks of two random variables 𝑋 and 𝑌 is given by 

eq. 1, where FX(x) is the rank of variable 𝑋. 

 

 
𝑟(𝑋, 𝑌) =

𝐸(𝐹𝑋(𝑥)𝐹𝑌(𝑦)) − 𝐸(𝐹𝑋(𝑥)) 𝐸(𝐹𝑋(𝑥))

𝜎𝐹𝑋(𝑥)𝜎𝐹𝑌(𝑦)
 (1) 
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2.2. BN model for duration of installation activities 
 

2.2.1. Historical data 

 

As it was mentioned before, the purpose of this study is to investigate the impact of including the 

dependence between sequential installation activities of offshore WTGs. Figure 1.a. presents the 

different parts of a typical WTG. In general, the installation of offshore WTGs consists of multiple 

activities, including activities for positioning of the vessel, preparation for the construction activities 

and testing the mechanical systems after the completion of the installation. Since our goal is to 

investigate whether the dependence between these activities is important or not, it was chosen to focus 

on the “main” activities of the installation. Therefore, in our case, the installation of the WTGs 

concerns the installation of tower, nacelle and rotor (i.e. 3 blades). These are sequential activities 

which are usually performed from the installation vessel that has all the required components on 

board. In Figure 1.b., a hypothetical simple Gantt chart illustrates the order of the installation activities 

for one WTG.  

 

Historical data from an installation project performed by the Dutch marine contractor Van Oord were 

used. This project concerns the installation of 150 WTGs in an OWF located in the North Sea. The 

provided database concerns a detailed register of the durations of all the operations which were 

performed by two installation vessels (vessel V1 and vessel V2), as well as the delays that occurred for 

different reasons. The database was divided per vessel and the durations of the installation activities 

were analyzed. From the analysis of the database, it was found that the duration of the installation 

activities under investigation presents noticeable fluctuations. More precisely, the average duration of  

the rotor installation was 255 min and 367 min, while the standard deviation was 78 min and 95.4 min, 

for vessel V1 and V2 respectively (see also Figure 4.a. and 4.b.). In the calculation of these durations 

the delays due to weather conditions were not included.       
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(a) Parts of WTG (b) Order of installation activities of WTGs 

Figure 1: Details of offshore WTGs installation 

 

2.2.2. Identifying the appropriate copula 

 

Two different tests were performed to identify the appropriate bivariate copula that describes the 

dependence between pairs of installation activities. Three of the most popular one-parameter copulas 

which represent different tail dependencies were investigated. Namely, the Gaussian copula, the 

Gumbel copula and the Clayton copula. The different characteristics of these copulas are summarized 

in Table 1, where 𝚽 denotes the standard normal cumulative distribution and 𝚽ρ denotes the standard 

bivariate normal distribution with Pearson correlation 𝜌. 
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Table 1: Characteristics of investigated copulas 

Copula Definition 
Tail 

dependence 

Gaussian 𝐶(𝑢, 𝑣) = Φ𝜌(Φ−1(𝑢), Φ−1(𝑣)) none 

Gumbel 𝐶(𝑢, 𝑣; 𝜃) = exp {−[(−ln (𝑢))𝜃 + (−ln (𝑣))𝜃]
1/𝜃

} upper 

Clayton 𝐶(𝑢, 𝑣; 𝛽) = (𝑢−β + 𝑣−β − 1)−1/β lower 

 

The performed tests concern: i) the computation of semi-correlations introduced in [15] and ii) the 

Cramér-von Mises statistic presented in the “blanket test” described in [16], for every pair of 

installation activities for each vessel. These tests have also been used to identify the best fitting 

copulas in a variety of applications such as [10], [17], [18]. 

 

The first test concerns the semi-correlations which are the Pearson correlation coefficients for each 

quadrant (i.e. NE, SE, SW and NW) computed on the standard normal transforms of the original data. 

If the values of semi-correlations are larger than the overall Pearson correlation coefficient 𝜌, then 

there is indication of tail dependence. The calculated semi-correlations for vessel V1 are presented in 

Table 2 and the results are visualized together with the normal transforms in Figure 2. For vessel V1, 

the semi-correlations of different pairs of activities indicate that there might be asymmetry, however 

the semi-correlations of the quadrants are not significantly different than the overall Pearson 

correlation. Regarding vessel V2, the calculated semi-correlations are presented in Table 3 and the 

normal transforms are presented in Figure 3. For vessel V2, the semi-correlations regarding the 

installation activity pairs of Tower – Rotor and Nacelle - Rotor have a larger value compared to the 

overall correlations. Therefore, the second diagnostic test (i.e. “blanket test”) was used. 

 

The second test is based on the Cramér-von Mises statistic and describes the sum of square differences 

between the empirical copula 𝐶𝑛(𝒖) (given by: 𝐶𝑛(𝒖) =
1

𝑛
∑ 𝟏(𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2), 𝒖 = (𝑢1, 𝑢2) ∈𝑛

𝑖=1

[0,1]2) and the parametric copula 𝐶𝜃𝑛
(𝒖), as presented in eq. 2. This shows which copula family fits 

better the empirical copula of each pair of activities. In Table 2 and Table 3 the results of the Cramér – 

von Mises statistic for every pair of activities are presented for vessel V1 and V2 respectively. The 

best fitting copulas for every pair can be seen in bold. However, the values of the statistic for every 

copula are low and the differences between the different copulas are not significant. Hence, the 

parametric bootstrap procedure described in [16] was also performed, with a sample size equal 1000 

and grid space equal to 300, resulting in the p-values presented in Table 4.  

 

 𝑆𝑛 = ∑{𝐶𝑛(𝒖) − 𝐶𝜃𝑛
(𝒖)}2 (2) 

 

Based on the computed p-values, it is not possible to reject any of the investigated copulas.  Based on 

the analysis described above, it was decided to use the Gaussian copula as a fair representation for all 

bivariate pairs of installation activities. This copula family will be used in the BN to represent the 

dependence structure of each pair of activity durations. 

 

   
(a) Tower – Nacelle installation duration (b) Nacelle – Rotor  installation duration (c) Tower – Rotor  installation duration 

Figure 2: Semi-correlations and normal transforms for pairs of activities performed by V1 
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(a) Tower – Nacelle installation 

duration 

(b) Nacelle – Rotor  installation 

duration 

(c) Tower – Rotor  installation 

duration 

Figure 3: Semi-correlations and normal transforms for pairs of activities performed by V2 

 

 

Table 2: Summary of performed tests for vessel V1 

 ρ ρNE ρSE ρSW ρNW Sgauss Sgumbel Sclayton 

Twr - Nac 0,40 0,2261 -0,0668 -0,2331 -0,5756 0,453161 0,396868 0,674134 

Twr - Rot 0,28 0,3691 0,0186 -0,2914 -0,0679 0,642832 0,586493 0,864018 

Nac - Rot 0,53 0,6927 -0,3659 0,0320 0,4946 0,297208 0,336712 0,357019 

 

 

Table 3: Summary of performed tests for vessel V2 

 ρ ρNE ρSE ρSW ρNW Sgauss Sgumbel Sclayton 

Twr -Nac 0,37 0,2023 0,2708 -0,0226 0,0027 0,43700 0,363020 0,75536 

Twr - Rot 0,05 -0,1975 0,0747 0,2908 -0,3102 0,36516 0,358885 0,381857 

Nac - Rot 0,01 0,2224 0,4258 0,2194 -0,1615 0,53070 0,522695 0,480592 

 

 

Table 4: P-values from bootstrap 

 Vessel V1 Vessel V2 

 Gauss Gumbel Clayton Gauss Gumbel Clayton 

Twr - Nac 0,758 0,841 0,484 0,768 0,859 0,417 

Twr - Rot 0,503 0,603 0,33 0,847 0,889 0,838 

Nac - Rot 0,949 0,889 0,869 0,639 0,653 0,709 

 

2.2.3. Building the BN model(s) 

 

In order to build the BN model that describes the dependence between the WTG installation activities, 

the Uninet software for non-parametric BNs was used [19]. Different configurations were tested to 

build the model for each vessel. To decide which configuration describes better the dependence of the 

WTG installation activities the empirical rank correlation matrices were compared to those of the 

developed BN models using the normal copula. The rank correlation matrices were constructed by 

calculating the rank correlation between every possible pair of the installation activities. 

 

For both vessels, models with serial connection were chosen (Figure 4.a. and 4.b. for vessel V1 and 

V2 respectively). The nodes are represented as histograms of the duration of every activity and the 

average and standard deviation of those samples are also shown. The comparison of the BN rank 

correlation matrices to the empirical ones are presented in Tables 5 and 6. As it can be seen, these do 

not present significant differences. The chosen configuration (i.e. serial connection) is also an intuitive 

representation of the dependence between the sequential installation activities of the WTG. 
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(a) BN model for V1  
(b) BN model for V2 

Figure 4: Developed BN models for WTG installation activities 

 

 

Table 5: Empirical and BN rank correlation matrices regarding vessel V1 

 Empirical rank correlation BN rank correlation 

 Tower_V1 Nacelle_V1 Rotor_V1 Tower_V1 Nacelle_V1 Rotor_V1 

Tower_V1 1 0.403 0.285 1 0.386 0.203 

Nacelle_V1 0.403 1 0.517 0.386 1 0.51 

Rotor_V1 0.285 0.517 1 0.203 0.51 1 

 

Table 6: Empirical and BN rank correlation matrices regarding vessel V2 

 Empirical rank correlation BN rank correlation matrix 

 Tower_V2 Nacelle_V2 Rotor_V2 Tower_V2 Nacelle_V2 Rotor_V2 

Tower_V2 1 0.342 0.0379 1 0.353 0.00394 

Nacelle_V2 0.342 1 -0.00981 0.353 1 0.0107 

Rotor_V2 0.0379 -0.00981 1 0.00394 0.0107 1 

 

As it was mentioned in section 2.2.2, the Gaussian copula was assumed to describe the bivariate 

dependence between the installation activities. In order to verify this assumption, the determinants of 

the rank correlation matrices were used as described in [13]. The determinant takes values between 

zero (if there is linear dependence between the normal transforms of the variables) and one (if all 

variables are independent). Three different determinants of rank correlation matrices were calculated 

using Uninet. Namely, the determinant of the empirical rank correlation (DER), the determinant of the 

empirical normal rank correlation (DNR) and the determinant of the rank correlation matrix of the 

developed BN using the Gaussian copula (DBN). To clarify, DER and DBN of vessel V1 are the 

determinants of the correlation matrices presented in Table 7 while DNR is the determinant of the rank 

correlation matrix that is obtained by transforming the marginals to standard normals.    

 

Table 7: Values of determinants for models validation. 

 Model for 

V1 

Model for 

V2 

DER 0.60777 0.88103 

DNR 0.62483 0.87358 

DBN 0.62964 0.87514 

 

The calculated determinants are expected to differ since the empirical copula would be different than 

the Gaussian copula. Hence, for each model it was tested: i) whether the DER is within the 90% 

confidence bound of the DNR and ii) whether the DNR is within the 90% confidence bound of the 

DBN. For both models, it was found that DER was within 90% bound of DNR and DNR was within 

90% bound of DBN, for 150000 samples. This means that the Gaussian copula is a valid assumption 

for both models and these can be used to represent the dependence of the offshore WTG installation 

activities.  
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3.  CASE STUDY 
 

3.1. Simulation algorithm  

 

To investigate the  impact of the developed BN models into the estimated duration of the OWF 

installation process, a simulation model was developed in MATLAB, regarding the installation of 

offshore WTGs. A flowchart of the developed simulation algorithm is presented in Figure 5. First the 

details of a particular installation scenario (i.e. details of OWF and vessels, available environmental 

time series, environmental limits etc.) are loaded.  

 

This scenario is simulated 𝑵_𝒕𝒔 times for every available environmental time series to introduce the 

weather risk and 𝑵_𝒔𝒊𝒎𝒔 times for every available time series to introduce the uncertainty of the 

activities duration. The activities for the installation of every WTG are treated as uninterruptable, thus 

each activity starts only if there is enough time remaining in the weather window. If this condition is 

satisfied, then the time of completion of this particular activity is saved and the next activity is 

examined, otherwise the subsequent weather window is examined. This procedure is repeated until all 

the required 𝑵_𝑾𝑻𝑮  are installed. Ultimately, the cumulative distribution of the duration of the 

WTGs installation is computed and plotted.    

 

Start ENDIf t <= N_ts

Calculate 

weather 

windows

Calculate CDF of 

duration of WTG 

installation

Scenario 

details

& Test Case 

inputs

If i <= N_WTG

If j <=  
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activity and 

update control 
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If s <= N_sims
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Figure 5: Flowchart of developed simulation algorithm 
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3.2. Inputs of test case 

 

The developed simulation model was used to simulate a hypothetical case concerning the installation 

of 150 WTGs in the North Sea. Time series consisting of ten years of measurements concerning 

significant wave height ( 𝐻𝑠 ) and wind speed 𝑈𝑊  in the North Sea were used, to incorporate 

environmental uncertainty similarly to [10], [20]. The environmental limits, above which the activities 

cannot be performed were set equal to 1.5 m for significant wave height and 8 m/s wind velocity 

according to [8]. For this test case, the analyzed 2 vessels (V1 and V2) were used to install 75 WTG 

each. It should be mentioned that one of the main assumptions of this simulation model is that the 

support structures and the TPs are already installed when the vessel is positioned and ready to start the 

installation of the WTGs.  

 

Three different approaches were used to calculate the duration of the activities in order to investigate 

the impact on the cumulative distribution of the total duration of the installation. Approach 1 made use 

of the mode (i.e. most frequent value) of the registered durations for every activity performed by each 

vessel. Approach 2 employed a triangular distribution for every activity using as parameters the 

minimum, mode and maximum of the registered durations. Finally, Approach 3 made use of the 

developed BN models to incorporate the dependence between the installation activities. The reasoning 

for choosing to compare these three approaches is that Approach 1 is a logical and simple approach 

that could often be used in current practice, Approach 2 is commonly used for introducing uncertainty 

regarding the durations of project activities and Approach 3 is the proposed way to introduce the 

dependence of activities duration in a stochastic simulation framework. A summary of the details of 

the simulated scenario can be found in Table 8. 

 

Table 8: Details of simulated scenario. 

Details Value 

Number of WTGs 150 

Number of vessels 2 (vessel V1 and V2) 

Location North Sea 

Environmental time series 10 years of measurements for 𝐻𝑠 and 𝑈𝑊 

Environmental limits 𝐻𝑠 = 1.5 𝑚 and 𝑈𝑊 = 8 𝑚/𝑠 [8] 

Approach 1 (independent 

deterministic durations) 

Tower_V1 = 115 min 

Nacelle_V1 = 105 min 

Rotor_V1 = 230 min 

Tower_V2 = 125 min 

Nacelle_V2 = 125 min 

Rotor_V2 = 305 min 

Approach 2 (independent 

stochastic durations) 

Triangular distribution 

for V1 with parameters 

Triangular distribution 

for V2 with parameters 

 a b c  a b c 

Twr 45 115 226 Twr 65 125 310 

Nac 55 105 170 Nac 85 125 255 

Rot 165 230 653 Rot 245 305 795 

Approach 3 (dependent 

stochastic durations) 

Developed BN model 

for V1 (Figure 4.a. ) 

Developed BN model 

for V2 (Figure 4.b. ) 

 

 

3.2.  Results  

 

The results of the simulated scenario concerning the CDFs of the total installation duration are 

presented in Figure 6. When the samples from the triangular distributions (Approach 2) and the 

developed BNs (Approach 3) are obtained beforehand, the simulation algorithm needs less than 2 min 

to produce and plot the results. From the obtained distributions one can notice significant differences 

in the estimates of the total duration of the WTGs installation. When Approach 1 is used the estimated 

duration ranges from ≈1950 hours to ≈2700 hours due to the uncertainty of the environmental 

conditions. The estimated total duration for Approach 2 ranges from ≈2450 hours to ≈3350 hours 

while for Approach 3 ranges from ≈2150 hours to ≈2900 hours. These results indicate that when the 
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uncertainty regarding the duration of the activities is introduced without taking into account the 

dependence between these (Approach 2), then the overall uncertainty of the estimated duration 

increases. In other words, it is shown that the proposed BN models allow a more a realistic 

representation of the installation process that leads to reduction of the uncertainty of the estimated 

installation’s duration.  

 

In practice, similar computations are used in the planning process of OWF installation projects and 

constant values such as the mode (Approach 1) or the mean of the registered activities are used. By 

comparing the 80
th
 percentile (P80) of the CDF of Approach 1 with that of the CDF of Approach 3 a 

difference equal to ≈200 hours (≈ 9 days) is observed. Considering the fact that the day rates of the 

installation vessels approximate hundreds of thousands of Euros, an underestimation of  that level can 

lead to a miss-estimation of millions of Euros. Hence, the appropriate representation of the 

dependence between the installation activities can assist the decision makers to more accurate 

estimates which can be profitable for all the involved parties.    

 

 
Figure 6: Obtained distribution of the simulated test case for the different approaches. 

 

 

4.  CONCLUSION 

 

One way to further reduce the costs and improve the competitiveness of offshore wind energy is by 

improving the management of the logistics of the installation process. To achieve this, simulation 

models that take into account the predominant uncertainties can prove useful. In this paper, a method 

utilizing the theory of Bayesian Networks was used to build models that represent the dependence 

between the installation activities of offshore wind turbines.  

 

It was shown that a NPBN with serial connection can be used to represent the sequential nature of the 

installation activities performed by a vessel. To illustrate the impact of incorporating the dependence 

of the installation activities, a simulation algorithm was developed and a hypothetical case was 

simulated for three approaches concerning the duration of the activities. It was found that the proposed 

approach (i.e. dependent, stochastic activity durations) results in estimates with reduced uncertainty 

compared to the approach where independent stochastic activity durations were considered. 

Furthermore, it provides more realistic and accurate representation of the installation process that can 

lead to more reliable estimates of the total duration compared to a simple approach that is used in 

practice. More precisely, the simplest approach (independent, constant activity duration) resulted in an 

underestimation of the total duration up to 9 day for the P80 value, compared to the proposed 

approach. 

    

Concluding, the proposed approach allow proper representation of the dependence between the 

installation activities that can assist decision makers in the planning of the installation process. This 
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approach can lead to reduction of the uncertainty of the estimated installation duration and 

subsequently its cost. However, it must be mentioned that for this study, it was decided to focus only 

on the “main” activities of the installation of WTGs based on data from one past project. In order to 

obtain a widely applicable general representation of the dependence between the installation activities 

further research is required. Furthermore, there are many more activities that are required for the 

installation of OWFs and their dependence should  be investigated and described appropriately. These 

will result in a more complex model and acquiring sufficient data to quantify the BN model might be 

very challenging or impossible. A potential solution would be to quantify the BN based on formal 

expert judgment methods.  

 

Acknowledgements 

 

This research is part of the EUROS programme, which is supported by NWO domain Applied and 

Engineering Sciences and partly funded by the Dutch Ministry of Economic Affairs. The authors 

would like to particularly thank the internationally operating marine contractor Van Oord for 

providing the historical data to quantify the developed BN model. 

 

References 

[1] World Energy Council, “World Energy Resources 2016,” World Energy Resour. 2016, pp. 1–

33, 2016. 

[2] EIA, “International Energy Outlook 2017 Overview,” U.S. Energy Inf. Adm., vol. IEO2017, no. 

2017, p. 143, 2017. 

[3] E. Barlow, D. Tezcaner Öztürk, M. Revie, K. Akartunali, A. H. Day, and E. Boulougouris, “A 

mixed-method optimisation and simulation framework for supporting logistical decisions 

during offshore wind farm installations,” European Journal of Operational Research, vol. 0, 

Elsevier B.V., pp. 1–13, 2015. 

[4] I. F. A. Vis and E. Ursavas, “Assessment approaches to logistics for offshore wind energy 

installation,” Sustain. Energy Technol. Assessments, vol. 14, pp. 80–91, 2016. 

[5] A. Dewan, M. Asgarpour, and R. Savenije, “Commercial Proof of Innovative Offshore Wind 

Installation Concepts using ECN Install Tool,” 2015. 

[6] M. J. Kaiser and B. F. Snyder, “Modeling offshore wind installation costs on the U . S . Outer 

Continental Shelf,” Renew. Energy, vol. 50, pp. 676–691, 2013. 

[7] B. R. Sarker and T. I. Faiz, “Minimizing transportation and installation costs for turbines in 

offshore wind farms,” Renew. Energy, vol. 101, pp. 667–679, 2017. 

[8] J. Paterson, F. D’Amico, P. R. Thies, R. E. Kurt, and G. Harrison, “Offshore wind installation 

vessels – A comparative assessment for UK offshore rounds 1 and 2,” Ocean Eng., vol. 148, 

no. July, pp. 637–649, 2018. 

[9] C. A. Irawan, D. Jones, and D. Ouelhadj, “Bi-objective optimisation model for installation 

scheduling in offshore wind farms,” Comput. Oper. Res., vol. 78, pp. 393–407, 2017. 

[10] G. Leontaris, O. Morales-Nápoles, and A. R. M. (Rogier. Wolfert, “Probabilistic scheduling of 

offshore operations using copula based environmental time series – An application for cable 

installation management for offshore wind farms,” Ocean Eng., vol. 125, pp. 328–341, 2016. 

[11] J. Pearl, Probabilistic reasoning in intelligent systems:  Networks of plausible inference. San 

Mateo,  CA,  US: Morgan Kaufmann, 1988. 

[12] R. B. Nelsen, An Introduction to Copulas, 2nd ed. Springer Series in Statistics, 2006. 

[13] A. Hanea, O. Morales Napoles, and D. Ababei, “Non-parametric Bayesian networks: 

Improving theory and reviewing applications,” Reliab. Eng. Syst. Saf., vol. 144, pp. 265–284, 

2015. 

[14] A. M. Hanea, D. Kurowicka, and R. M. Cooke, “Hybrid Method for Quantifying and 

Analyzing Bayesian Belief Nets,” Qual. Reliab. Eng. Int., vol. 22, no. 6, pp. 709–729, 2006. 

[15] H. Joe, “Dependence Modeling with Copulas,” CRC Press, p. 479, 2015. 

[16] C. Genest, B. Rémillard, and D. Beaudoin, “Goodness-of-fit tests for copulas: A review and a 

power study,” Insur. Math. Econ., vol. 44, no. 2, pp. 199–213, 2009. 

[17] D. Paprotny and O. Morales-Nápoles, “Estimating extreme river discharges in Europe through 

a Bayesian network,” Hydrol. Earth Syst. Sci., vol. 21, no. 6, pp. 2615–2636, 2017. 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

[18] W. S. Jäger and O. Morales Nápoles, “A Vine-Copula Model for Time Series of Significant 

Wave Heights and Mean Zero-Crossing Periods in the North Sea,” ASCE-ASME J. Risk 

Uncertain. Eng. Syst., Part A Civ. Eng., vol. 3, no. 4, pp. 1–13, 2017. 

[19] S. M. Nápoles, O Morales, D. Worm, P. van den Haak, A. Hanea, W. Courage, “Reader for 

course: Introduction to Bayesian Networks,” 2013. 

[20] G. Leontaris, O. Morales-Nápoles, and A. R. M. Wolfert, “Planning cable installation activities 

for offshore wind farms including risk of supply delays,” in Risk, Reliability and Safety: 

Innovating Theory and Practice: Proceedings of ESREL 2016 (Glasgow, Scotland, 25-29 

September 2016), 2017, pp. 978–1. 

 

 


