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Abstract: In this paper, a methodology is presented that processes data from the U.S. Nuclear 
Regulatory Commission (NRC) Scenario Authoring, Characterization, and Debriefing Application 
(SACADA) into conditional probabilities for calculating a human error probability (HEP). The 
approach restructures the data based on SACADA Situational Factors (SFs). These SFs represent the 
working conditions and performance challenges (i.e., Context) presented to an operating crew. Once 
the data is restructured a Bayesian network approach is performed that provides the necessary 
relationships of the Context to specific error modes of each macrocognitive function contained in the 
SACADA method. A separate Bayesian network model is used for each macrocognitive function that 
produces the conditional probabilities of a human error based on a specific Contextual situation. The 
results from a case study indicate that the approach provided in this paper is a reasonable and 
repeatable method for calculating HEPs from SACADA data. The paper also provides insights and 
recommendations for further improvements in SACADA relative to accuracy of data input and in the 
Bayesian modeling approach. Also, uncertainty and other sources of inaccuracy are discussed relative 
to their impacts on the HEP results.  
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1.  INTRODUCTION 
 
For many years there has been a lack of human performance data from nuclear power plants both in 
terms of data quality and appropriateness. Human actions in Control Room environments are of keen 
interest since they directly affect safety and generation risks, as well as being included in plant specific 
PRAs. Control Room human actions are also highly varied across many plant systems and components 
and thus require different actions, skills, and knowledge. Estimating human error probabilities (HEPs), 
under control room conditions is an area where realistic experience and data are necessary for 
improved HEP estimates to be obtained. In recent years significant progress has been made in 
developing a process and method for obtaining human performance data from station simulators. This 
process has been documented in the U.S. Nuclear Regulatory Commission (NRC) Scenario Authoring, 
Characterization, and Debriefing Application (SACADA) methodology [1]. The data collected in this 
process is based on actual simulator drills and scenarios performed by licensed operator crews. The 
scenarios performed by the operating crews are developed by licensed simulator instructors and 
represent both normal and off-normal plant transients and events. The simulator scenarios can also be 
structured to cover severe accidents and, in so doing, represent empirical data for human operator 
actions that are credited in plant specific PRAs.  
 
In the SACADA process, each simulator drill or exercise is divided into basic human actions referred 
to as Training Objective Elements (TOEs). These TOEs are those human action elements associated 
with a specific Control Room simulator scenario. Since the SACADA program provides the method 
for characterizing a scenario into TOEs, the further decomposition of the TOEs into human error 
macrocognitive functions allows the SACADA program to encode operator actions into the specific 
human actions necessary to accomplish the TOE’s intent. The macrocognitive functions currently 
included in SACADA are Detection and Monitoring, Diagnosis and Response Planning, Manipulation, 
and Communication. Once the TOEs are classified into their proper macrocognitive function group, 
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SACADA then allows simulator instructors to assign a set of situational factors (SFs). These SFs 
characterize the equipment, environment, and working conditions by which Control Room operators 
must perform their human actions. The set of SFs that constitutes a given environment and working 
condition by which the Control Room operators perform their tasks is referred to as the “Context” 
(i.e., the set of SFs under which a TOE is performed). The inclusion of the SFs or Context provides 
much valuable information; however, the characterization of the human error elements with data 
taxonomy, as provided by the SACADA, does not in and of itself produce an HEP. 
 
In this paper, a methodology is presented that processes the raw SACADA data into conditional 
probabilities for calculating an HEP. The approach used restructures the data based on the SFs. These 
SFs represent the performance challenges (i.e., the Context) presented to an operating crew for a 
specific simulator scenario. In other words, this represents the environment they must perform a 
human activity to succeed for a given TOE. This paper’s fundamental premise is that the crew activity 
and the associated Context define the specific human actions and thus, are the basis for establishing 
the constituents of human error probabilities. This fundamental premise resolves many issues 
associated with other HRA methods where the context is considered separately from the action. Those 
approaches inherently contain uncertainty in attempting to account for variation in context or other 
performance shaping factors (PSFs). With the SACADA approach this is resolved since the contextual 
information is now a part of the human action/error. In SACADA, any variations in SFs or PSFs are 
now specifically part of the human action and the human error probability. Once the SACADA data is 
restructured, a Bayesian network approach is performed that provides the necessary relationships of 
the Context to specific error modes for each macrocognitive function contained in the SACADA 
method. A separate Bayesian network model is used for each macrocognitive function that produces 
the conditional probabilities of a human error based on a specific Contextual situation.  
 
This paper also examines the various challenges in developing the Bayesian network models from 
SACADA data and provides recommended solutions to overcome these challenges. The results 
indicate that the approach provided in this paper is a reasonable and repeatable method for calculating 
HEPs from SACADA data. The paper also provides insights and recommendations for further 
improvements in SACADA relative to accuracy of data input and in the Bayesian modeling approach. 
The performance results shown using this paper’s methodology are considered reasonable for HRA 
purposes and are expected to further improve once additional operating experience with SACADA 
processes and data occurs. In the future, the addition of new data from other participating utilities 
would greatly enhance familiarity with SACADA and its processes and data structure. Also, in this 
paper, data uncertainty and other sources of inaccuracy are also discussed relative to their impacts on 
the HEP results.  
 
The benefits of the methodology presented in this paper include the ability to calculate an HEP and to 
determine the most probable causes of the human error, given a particular Context. In terms of 
SACADA, a Context is defined by a set of SFs. These SFs are described in SACADA reference 
documents but include items such as workload, extent of communication, time criticality, etc. In most 
cases, the SFs can have several states to choose from. For example, in the case of time criticality, the 
states expansive, nominal or barely adequate are SFs that simulator instructors can select for operator 
performance to be measured against. Some of the SFs can have multiple states that can co-exist and so 
this must be considered in the model. This is handled by having separate nodes for the SF in the 
Bayesian model, with the yes/no states assigned to it. The model enables the Context (set of SFs) to be 
chosen for an HFE that the HRA analyst needs to quantify. The model then calculates the HEP based 
on the SACADA data initially provided by the simulator instructors developing the simulator exercise 
scenarios. The model can also be used to determine the most likely causes of human error given a 
specific Context. This is valuable information for the simulator instructors to improve training. 
 
2.  SACADA DATA PROCESSING 
 
This section of the paper contains a discussion of the processing of SACADA data into a form suitable 
for further facilitating this paper’s technical approach. A spreadsheet was provided to the research 
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team as the source for all data analysis. It contains two worksheets – CharSATSummaryReport with 
2012 rows and 45 columns of data; DebriefSATSumaryReport with 456 rows and 34 columns.  
 
CharSATSummaryReport (“CHAR”) contains the training objective elements (TOEs) and related 
details, including test scenario, year, cycle, malfunction, and malfunction order, as well as the 
macrocognitive type, Context (SFs), total number of trials, and the number that were performed 
beyond satisfactorily (SAT+), satisfactorily (SAT), less than satisfactorily (SAT Δ), and 
unsatisfactorily (UNSAT). 
 
DebriefSATSumaryReport (“DEBRIEF”) has a row of data for each test crew that was rated as 
performing the TOE unsatisfactorily or less than satisfactorily (UNSAT or SAT Δ). It also contains the 
TOE and related details, allowing the Context information of CHAR to be associated with each row of 
DEBRIEF. In addition, the worksheet identifies the crew, the operational fundamental weakness, error 
mode (EM), error cause (EC) data (reflecting the Performance influencing factors (PIFs), and crew 
comments. 
 
In both worksheets, color-coding of the TOE column provides additional task significance detail, 
which corresponds to the numerical column titled “Importance.” The numerical values and their 
corresponding description and color are: 1 (Other, white), 2 (Significant, yellow), 3 (Safety 
Significant, orange), and 4 (Critical, red). 
 
The first step of the analysis was summarizing the data that had been provided. Of the 2012 rows in 
CHAR, less than half (990) had been assigned a cognitive type (Table 1, Cognitive Type = Null). 
These entries without a cognitive type (i.e., Null) were not included in subsequent analyses, except 
where noted.  
 

Table 1. Cognitive Types 
Cognitive	
Type	

Number	
Cognitive	Type	Description	

	 0	 Null	
	 1	 Monitoring	/	Detection	
	 2	 Diagnosis	&	Response	Planning	
	 3	 Manipulation	
	 4	 External	Communication	

	
The number of each cognitive type, UNSAT, and SAT Δ is presented in Table 2. For a given cognitive 
type, the “ROWs with UNSAT” plus the “ROWs with SAT Δ” is less than the “Total UNSAT and 
SAT Δ”. This is because each row of this summary worksheet reports the total for all crews (trials) 
that performed the TOE. For a given TOE, the value of UNSAT or SAT Δ may be greater than 1 if 
more than one crew performed unsatisfactorily or less than satisfactorily.  That is, each row is a TOE 
that is performed by multiple crews.  The crews performance on the TOE are different.   
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Table 2. Summary of data in spreadsheet "DATA Set 1 Simulator training data.xlsx" worksheet 
"CharSATSummaryReport" 

Cognitive	
Type	

Number	
of	Rows	

Rows	
with	
UNSAT	

Rows	
with	
SAT	Δ 	

Rows	
with	
UNSAT	
and	
SAT	Δ 	

Rows	
with	
UNSAT	
or	

SAT	Δ 	

Total	
UNSAT	

Total	
SAT	Δ 	

Total	
UNSAT	
and	
SAT	Δ 	

	 0	 	 1022	 	 53	 	 100	 	 12	 	 141	 	 70	 	 122	 	 192	
	 1	 	 213	 	 12	 	 21	 	 3	 	 30	 	 16	 	 22	 	 38	
	 2	 	 420	 	 27	 	 57	 	 6	 	 78	 	 39	 	 70	 	 109	
	 3	 	 274	 	 33	 	 29	 	 5	 	 57	 	 47	 	 35	 	 82	
	 4	 	 83	 	 9	 	 7	 	 1	 	 15	 	 15	 	 7	 	 22	
TOTAL	 	 2012	 	 134	 	 214	 	 27	 	 321	 	 187	 	 256	 	 443	

	
 
A new worksheet was made called Debrief-Extended that was “expanded” to include a row for each 
success, in addition to the existing rows for each UNSAT and SAT Δ. The Context (SF columns) was 
copied from CHAR, but the error cause and error mode values were set to 0 for the successes. The 
resulting worksheet has 4358 rows, 187 corresponding to UNSAT, 256 to SAT Δ, and 3915 to 
successful trials. 
 
This “extended” and “expanded” data, sorted by cognitive type, was used as the source data for 
Bayesian analysis using the software program “HUGIN”. [2] A separate HUGIN model was made for 
each of the macrocognitive functions.  
 
2.1 Associate Context with Human Error 
 
The extended version of Debrief, Debrief-Extended mentioned above, was created by appending each 
row’s corresponding context data from Char. This was done using the TOE description, scenario, and 
malfunction columns to identify unique matches. Starting with this Debrief-Extended worksheet, 
separate worksheets were created for each cognitive type, and analysis focused on these subsets of the 
data. 
 
Prior to each simulation, the specific test case (combination of TOE, scenario, and malfunction) is 
assigned a cognitive type (Table 1), and the pertinent situational factors (SFs) are identified from the 
collection of SFs associated with the cognitive type. 
 
For each cognitive type, the data was sorted by context. Because of the large number of test scenarios 
and limited number of SFs, there are many cases where distinct TOEs share the same context. 
Furthermore each scenario was performed by multiple crews, typically 12-15. Each case where one 
crew performed one scenario is considered a “trial.” 
 
The total number of trials for each context was calculated, along with the corresponding number of 
unsatisfactory (UNSAT) and less than satisfactory (SAT Δ) trials. These totals, calculated including 
the Overarching (OA) SFs and excluding them, are presented in Table 3.  
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Table 3: Count of Unique Contexts by Cognitive Type. 

 
 
For cognitive type 1, two contexts had three UNSATs. Both of those contexts applied to only one 
simulation scenario. One had 13 trials (crews), and the other had 14. The case with 13 trials also had 
two SAT Δs. The context with 157 trials had 1 UNSAT and 1 SAT Δ. When the OA SFs were 
excluded, as expected, there were fewer unique contexts and a correspondingly larger number of trials 
for most contexts. The context with 460 trials had 2 UNSATs and 6 SAT Δs. The maximum number 
of UNSATs associated with one context was 4; the context had only 26 trials (2 simulation scenarios). 
 
The results are similar for cognitive type 2. When OA SFs are included, one context, with 31 trials (2 
simulation scenarios) had 8 UNSATs. The next-highest number of UNSATs associated with a single 
context was 3, for two different contexts. One had 84 trials, and the other had 315. When OA SFs are 
excluded, the context with 31 trials still has the maximum number of UNSATs, 8. A context with 1590 
trials had 7 UNSATs and 12 SAT Δs. 
 
For cognitive type 3, including OA SFs, two single-simulation scenarios had 5 UNSATs. One had 16 
trials. The other, which had only 14 trials, also had 2 SAT Δs. Excluding OA SFs produced decidedly 
different results. A context with 764 trials had the maximum number of UNSATs, 9, along with 3 SAT 
Δs. Contexts with 195 and 221 trials had 6 UNSATs, and trials with 359 and 685 trials had 5 
UNSATs. 
 
For cognitive type 4, including OA SFs, a context with 26 trials (2 simulation scenarios) had 4 
UNSATs. When OA SFs were excluded, over half of the UNSATs (9 of 15 for cognitive type 4) were 
associated with a single context. This context, which also had 4 SAT Δs, was associated with over half 
of the trials (599 of 1072). These results are presented in Table 4. 
 
Table 4. Number of trials, UNSAT, and SATΔ, and UNSAT probability (%) by cognitive type. 

 
 

Cognitive	
Type	

Total	
Number	of	

Trials	

Number	of	
Unique	
Contexts	
(including	
Overarching	

SFs)	

Maximum	
Number	of	
Trials	for	
One	

Context	

Number	of	
Unique	
Contexts	
(excluding	
Overarching	

SFs)	

Maximum	
Number	of	
Trials	for	
One	

Context	

	 1	 	 2771	 	 139	 	 157	 	 50	 	 460	
	 2	 	 5485	 	 222	 	 315	 	 78	 	 1590	
	 3	 	 3463	 	 144	 	 108	 	 34	 	 764	
	 4	 	 1072	 	 43	 	 177	 	 10	 	 599	

	

Cognitive	
Type	

Number	
of	Trials	

Total	
UNSAT	

Total	
SAT	Δ 	

Total	
UNSAT	
and	
SAT	Δ 	

UNSAT	
Probability	

(%)	

	 0	 	12993	 	 70	 	 122	 	 192	 	 0.54	
	 1	 	 2771	 	 16	 	 22	 	 38	 	 0.58	
	 2	 	 5485	 	 39	 	 70	 	 109	 	 0.71	
	 3	 	 3463	 	 47	 	 35	 	 82	 	 1.36	
	 4	 	 1072	 	 15	 	 7	 	 22	 	 1.40	
TOTAL	 	25784	 	 187	 	 256	 	 443	 	 0.73	
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The results show that increasing trials results in a decrease in the rate of UNSATs. This may 
indicate or imply that increased training repetition on similar contexts with simulator crews 
produces reduced failure rates. In other words this may represent a quantitative measure of the 
effectiveness of training.  
. 
3.  MACROCOGNITIVE FUNCTION MODELS 
 
The development of Human Error Probabilities using the data produced through the SACADA 
program was done for each macrocognitive function. A Bayesian network approach is used that 
accounts for the various SFs and their influence on Control Room human errors and their associated 
contributing error modes.  
 
Big Data and Artificial Intelligence alone cannot produce models that are suitable for calculating 
HEPs, this is due to the fact that the effect of SFs on human activity is a fundamentally causal 
question, and even the most sophisticated predictive models cannot correctly compute the causal effect 
of SFs. However, the fact that SACADA data is from a simulator environment, where causal effects 
on SFs can be directly observed and recorded, acts to reduce uncertainty in the resulting HEP 
calculations; however, uncertainty still exists since the simulator environment is not exactly the same 
as an actual control room environment. This adds uncertainty; however, it can be argued that 
uncertainty may be more or less in an actual control room environment as the impact to a real asset 
(the nuclear power plant) may result in either better or worse performance.  
 
While models based on Bayesian networks do not automatically overcome this issue, they do allow us 
to directly encode causal assumptions from expert knowledge [3]. With that, we can correctly estimate 
the causal effect of SF effects from historical data, and we assert that over time, and with improved 
SACADA processes, this will provide a significantly improved human error probability basis, and 
ultimately produce adequate human error probabilities. Factor Analysis as well as expert knowledge 
can be used to discover latent factors that drive errors about operator behavior to improve the accuracy 
of the models. But even without this addition and with the limited data sets, the potential to develop 
the HEPs directly from the data provides an undeniable improvement to the HRA process. 
 
As described above, the SACADA data was provided in Excel spreadsheets. Each row contains the 
information for each TOE for each crew, that is, all Situational Factors, including OA factors. OA 
factors are situational factors that are common to all the macrocognitive functions and appear to be 
driven by a latent factor that we will call ‘crew dynamics’ for now. The OA factors are workload, time 
criticality, communication within the control room and to other onsite operators and a grouping of 
miscellaneous factors, such as noisy background, coordination with onsite personnel, task demand on 
memory, and others. Thus, if a TOE is included in a scenario that is carried out by 12 crews, there will 
be 12 rows of information. If one crew had an UNSAT, that row will also contain information about 
error modes and error causes, that can be used for human performance improvement, as described in 
Section 3.3. The input is an Excel file that contains a column for each node in the model (not 
necessarily the same columns as the original data file because of the fact that some of the states can 
occur simultaneously. For these cases, the states should be divided out into separate nodes) and a row 
for each crew for each TOE, as explained above. As more data is included, it can be added to this 
sheet. With the data available now from data set 1, there are 2771 rows, for Cognitive Type 1 (COG 
1), 5485 for COG 2, etc. Once the input file is ready, we can run the various models, compare to the 
results the data provides to results calculated from previous empirical studies as well as conduct 
queries. 
 
As described by HSE [4] the basics of a qualitative assessment are required to demonstrate a good 
understanding of the tasks, and this is what the SACADA provides; that is, the process reflects both 
the instructor’s knowledge about the SFs that will affect the operators’ performance (in the coding of 
the TOEs) as well as a process to record dialogue among operators and instructor (in the debrief 
section) that provides invaluable information about the problems and issues encountered during 
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scenarios, expressed as PIFs. Despite the fact that this is a simulation, it represents the best estimate of 
operator behavior during real accidents. As was the case for thermal hydraulic codes in the sixties the 
capabilities of the codes were strongly limited by lack of experimental data, details of modeling and 
the capacity of the computers, which is about where we find ourselves for human error analysis 
presently. SACADA provides a source of data to develop data driven methodologies and update the 
HRA process to incorporate real data into the HEPs.  
 
3.1. Bayesian Network for Macrocognitive Functions 
 
A preliminary model was developed for each of the macrocognitive functions. In the case of 
monitoring/detection, it consists of three error modes, Alarm issue, Indicator issue, and Other error 
mode, which are the error modes defined in SACADA for this macrocognitive function.  
 
Figure 1 reflects the simple preliminary HUGIN model developed for the Monitor/Detection 
macrocognitive function, and includes the SFs (i.e., Context) impacting the error modes). For the 
objective of this paper, that of determining the human error probability, the model will consist of the 
Context (the set of situational factors) impact on the Error Modes, which in turn lead to the error 
probability of the human activity involved in the macrocognitive type being analyzed. Thus, the model 
consists of the SFs leading to the EMs and thus error probability, as shown below.  
 

 
Figure 1. Model for Macrocognitive Function: Monitoring/Detection 

 
The models for the other macrocognitive functions have been developed as well; the SFs included in 
the models are presented in Table 5. The way the models are used together is discussed in Section 5. 
 

Table 5. Situational Factors for each Macrocognitive Function 
 Detection/Monitoring OA 
SFs for 
Detection/ 
Monitoring 

Alarm 
detection 
mode 

Alarm 
board 
status 

Expectation Indicator 
detection 
mode 

Change Mimics Workload 
 
Time- 
criticality 
 
Commun-
ication 
 
Other  

 Diagnosis 
SFs for 
Diagnosis 

Diagnosis 
basis 

Familiarity Integration Information 
specificity 

Infor- 
mation 
quality 

Diagnosis 
outcome 

 Response Planning 
SFs for 
Response 
Planning 

Decision 
basis 

Uncertainty Familiarity Outcome   

Error	
Modes	

Situa.onal	
Factors	
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 Manipulation 
SFs for 
Manipulation 

Type of 
action 

Location Guidance Recover-
ability 

Miscel-
laneous 

 

 
 
3.2 Models for Human Performance Improvement 
 
The Context also impacts the error causes and the model shown in Figure 2 can provide the 
probabilities of error causes, given a specific Context. This model goes beyond the purpose of the data 
collection use in HRA for PRA purposes. That is, this model provides information that can be 
extremely valuable to the training center at a nuclear power plant to improve training and thus human 
performance. What can be observed in this figure is the use of the “debrief” section of the SACADA 
process. This data is the result of the operating crew and simulator instructor’s debrief meeting after 
the scenarios have been run on the simulator. The SACADA system leads them through the questions 
about error modes and causes for any TOEs that they have identified as UNSAT or ΔSAT. The causes 
are defined by the performance influencing factors (PIFs) included in the SACADA system. The OA 
causes include scenario specific causes and person specific causes, such as knowledge gap, slow, lack 
of questioning attitude, failing to stop, think, act, and review, rushing, and distracted. Additionally, 
there are error causes specific to the macrocognitive function of detection / monitoring, which include 
identifying of the error was caused by multiple or unexpected alarms, label, mimic or display issues, 
among others. Due to the debriefing process, the operators should be encouraged to openly express the 
causes, and the instructor is present to support the evaluation. The instructor also reviews the final 
inputs and makes changes where considered necessary.  

 
Figure 2. Detection / Monitoring Model for Queries 

 
4. QUANTIFICATION APPROACH 
 
The parameters necessary to know before any data is loaded are the SF state probabilities and the prior 
probability of each Context. The probabilities of the SF states are based on plant operating experience 
or expert judgment, these are known as the probability mass function (PMF) of each variable. For 
example, it is fairly easy to estimate that 60% of the time the alarm board is normal, 35% loaded and 
5% overloaded from plant experience. On the other hand, the prior probabilities for each context input 
can be based on expert judgment, some other HRA method (e.g., SPAR-H as suggested by Groth [5]), 
or even another approach (e.g., weight factors developed from SACADA data [6]). While this may 
seem like a significant burdensome effort to calculate these priors, there are two reasons that this is not 
the biggest obstacle to overcome: 1) this prior only is a problem for the Contexts without trials (which 
can be solved by including these Contexts in the simulator scenarios); and 2) the fact that over time, 
these prior probabilities will come directly from SACADA data.  
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For the Contexts with trials, the updated probability for each Context is calculated by the HUGIN 
software using a counting-learning algorithm to update the prior from the SACADA input file, shown 
in Eq. 1. 
  
  ((Prior probability * prior experience) + failures)/(prior experience + no. of trials)           Eq. 1 
 
For example, if we have 12 trials with the context shown in Fig. 3 (6,3,3,3,0,0,0,3,3,3,6), and the prior 
was assigned 0.0057 (corresponding to the average UNSAT ratio for cognitive type 1from SACADA 
data), and prior experience of .001, the software adds the 12 trials to the experience, resulting in 
12.001 for the updated experience and learning algorithm calculates the updated probability of the 
Context from Eq. 1, yielding 0.083.  
 
When the HEP of the alarm detection aspect of an HFE is required and the human activity involves 
this specific context; the evidence is set by selecting those applicable states of the SFs and the HEP is 
shown in the resulting Alarm_issue node. This is discussed further in the case study presented in 
Section 5. 
 

 
 

Figure 3. Data input for a Specific Context 
 
 
5.  CASE STUDY 
 
At the beginning of this simulator scenario the plant was operating at 100% power. In a situation of 
total LOFW, the reactor core is cooled by the remaining water in the SGs. If feedwater cannot be re-
established, the SGs will eventually become empty and unable to cool the core. It is important to 
establish another means of core cooling before the SGs are empty. This is done by initiating Bleed & 
Feed (i.e., starting SI and opening the Pressurizer PORVs). The criteria for starting Bleed & Feed 
(B&F) in the FR-H.1 procedure are that the WR level should be less than 12% in two out of three SGs, 

6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,0,0,0	
6,3,3,3,0,0,0,3,3,3,6,1,0,0	

Extract	from	data	input	

1	unsat,	12	trials:	1/12=0.08333…=	8.33%	
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or that the reactor pressure should be high due to loss of secondary heat sink. To be able to start B&F 
in time, the crews need to monitor the SG levels. According to procedure FR-H.1, Bleed and Feed 
(B&F) shall be established when the WR level on any two SGs are less than 50%. The HFE is defined 
as: Failure to establish feed, given that the crews do not manually trip the reactor before an automatic 
reactor trip occurs.  
 
The human actions considered are found in the following TOEs: COG1:Monitoring Critical Safety 
Functions Commences actual crew monitoring of Critical Safety Functions. COG1 Recognizes and 
informs Unit Supervisor of red path on Heat Sink., COG2 Transitions to 0POP05-EO-FRH1, 
Response to Loss Of Secondary Heat Sink when Addendum 5 is complete.  COG3 Trip RCPs per 
FRH1 CIP or Step 2 due to inadequate WR S/G level. (<50% on 2 or more SG) and COG3 Initiate 
RCS bleed and feed so that the RCS depressurizes sufficiently for HHSI pump injection to occur. 
Embedded in these steps is the action to open PORVs, but should be separated and considered as 
another human action. Figure 4 shows the SFs identified for this last human action. 
 

                              
Figure 4. SF States for one COG3 Human Action in Feed and Bleed HFE 

 
The SF states are determined from those identified in the data, as shown in Fig. 4 for one human 
action, for each of the macrocognitive functions and entered as evidence to the Bayesian models. In 
this way the HEP for the Context is retrieved and shown in the HEP monitor. This is shown in Fig. 5 
for the calculation of the second manipulation HEP.  
 

 
Figure 5. HEP for Manipulation Failure in Feed and Bleed 

 
The total HEP for Feed and Bleed is the sum of each of the HEPs for the various macrocognitive 
functions of the HFE, as shown in Table 7. In this case, the result is 0.0613. This result falls in the 
uncertainty range calculated in the International HRA Empirical Study [7]. 
 

TOE	COG3

Initiate	RCS	bleed	and	feed	so	that	
the	RCS	depressurizes	sufficiently	
for	HHSI	pump	injection	to	occur Initiate	RCS	bleed	and	feed	so	that	the	RCS	depressurizes	sufficiently	for	HHSI	pump	injection	to	occurRST	216.02Red	path	on	Heat	Sink

CO
G	
ty
pe

3

Ty
pe

	o
f	A

ct
io
n

Lo
ca
tio

n

Gu
id
an
ce

Re
co
ve
ra
bi
lit
y

M
isc

el
la
ne

ou
s

2 1 1 2 3

W
or
kl
oa
d

Ti
m
e	
Cr
iti
ca
lit
y

Co
m
m
.

O
th
er

2 2 3 0



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

Table 7. Feed & Bleed Case Study Results 
MCog 1 MCog2a MCog2b MCog3 HFE HEP Total 
0.0033 0.0 0.0530 0.0011 + 0.0039 0.0613 
 
5.1. SACADA Process Going Forward 
 
It is seen from the above technical approach and case study that SACADA offers a transformative 
opportunity in the field of HRA. SACADA is still in its infancy and requires further refinement both in 
practice and in process. To further support SACADA development, a conceptualized SACADA-HRA 
process includes identifying the appropriate TOEs for the HFE of interest and the SFs are located for 
each of the macrocognitive functions, which can be more than one of each type. In this way the 
Contexts are defined, and the evidence is set accordingly. The HEP is obtained from the corresponding 
Bayesian model and can be registered in a library as generic data. The plant specific data is used to 
update the generic values. Important next steps would be to develop a library of human actions plus 
associated Context that would form the basis for HRA to be used in plant Specific PRAs, but that 
could also be used for improving training and human performance. As more plant simulators 
contribute to the SACADA database, the increased data will reduce overall uncertainties and also 
allow new methods to improve Operation’s training and enhance Operator understanding of human 
reliability and performance.  
 
Although the authors of this study consider uncertainties to be reduced using the SACADA method 
presented, there remain uncertainties that will need to be addressed. Some sources of uncertainty are 
associated with the SACADA data collection process and the assignment of SFs for simulator drill 
scenarios. Some uncertainties in these areas will be reduced with improved documentation and 
training on SACADA processes. This training should be targeted to simulator instructors. Items such 
as the following have been noted by the authors to be areas where uncertainties exist in the current 
process: 

• TOE definition and degree of granularity in TOE definition, 
• Improved clarity and more specific criteria for SF selection, 
• Improved criteria for specific SF options and, 
• Improved refinements in SACADA procedural processes (e.g., recording action times and 

specific procedure steps). 
 
Also, the debriefing task where control room crews and simulator instructors meet to discuss simulator 
scenario performance could be improved so that there is improved criteria for SAT, UNSAT, and SAT 
Δs. It should be noted that some traditional sources of HRA uncertainty are better addressed through 
the SACADA method. Indeed, the actual actions of crews are captured with a robust basis (actual 
operational procedural actions). 
 
6. CONCLUSIONS  
 
This paper demonstrates that SACADA data and processes can be a proper foundational basis for 
developing HEPs/HFEs using simulator data. As more data is collected over time, this foundational 
basis will continue to strengthen. Improvements in data processing and in SACADA procedural 
processes will continue to facilitate reduced uncertainties in HEP estimates. In fact, it is plausible that 
SACADA methods could be extended to other crew types such as maintenance crews, fire brigades, 
emergency preparedness, and others. This paper has shown that quantified methods for HEPs 
supporting the development of HFEs in PRAs are well founded and should be continued. Although 
uncertainties in the estimates remain, the improvement in HRA through SACADA more than offsets 
these uncertainties and also allows some of the uncertainties to be better defined and therefore more 
addressable with future efforts.  
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