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Abstract: In risk-informed decision making process, mean values of the risk metrics are used to be
compared to the acceptance criteria; when the risk metrics are highly uncertain, the quantiles are often
used to characterize the dispersion of the risk metrics. A formal uncertainty propagation process is
often necessary to obtain reliable estimate of these quantities. This paper discusses the sample size
issue during sampling. The mathematical basis and illustrative examples are given in the paper. It can
be concluded that if a small deviation is desired, several tens of thousands of samples may be
necessary, and more samples are needed for quantile estimation than for mean estimation.
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1. INTRODUCTION

In risk-informed applications, the existence of uncertainty is natural and unavoidable. During decision
making, the impact of uncertainty must be taken into account. RG 1.174[1] states that “the appropriate
numerical measures to use in the initial comparison of the PRA results to the acceptance guidelines are
mean values”, and specially highlights the importance of state-of-knowledge correlation (SOKC).
NUREG-1855[2], EPRI report 1016737[3] and 1026511[4] give practical guidance to deal with
uncertainty. In these references, uncertainties are categorized into parameter uncertainties, model
uncertainties and completeness uncertainties. When dealing with parameter uncertainties, a formal
uncertainty propagation process may be needed. The most popular method to propagate uncertainty is
the simple Monte Carlo sampling due to its simplicity and good sample properties (e.g. independent
and identically distributed). It is often confusing how many samples are necessary. This paper
discusses the sampling size issue. The mathematical basis is given and illustrative examples are
provided.

The specific problems discussed are: 1) Relationship between point estimate and the sample mean; 2)
Sample size for mean value estimate; 3) Sample size for quantile estimate. Section 2 describes the
math behind these problems. Section 3 gives some examples. Section 4 is a simple conclusion. The
parameterization of distributions mentioned is given in the appendix.

2. MATHEMATICAL BASIS FOR SAMPLING

2.1. Assumptions

The focus in this paper is level 1 PRA, assuming that the core damage frequency (CDF) can be
obtained through applying rare event approximation, i.e., �ul ≈ �th

� �ul�� , where �ul is the total
CDF, and �ul� is the CDF for minimal cut set i, N is the number of minimal cut sets.

The common cause model used in this paper is the alpha factor model, assuming that the alpha factors
are independent except αh(αh t h ᣇ �th ��� ), where α�s are alpha factors.

2.2. Relationship between Point Estimate and the Sample Mean

It is not uncommon to see that when doing sampling in PRA, if the inputs are means of uncertain
parameters, the point estimate of CDF is almost the same with sample mean without SOKC accounted
(e.g. sampling use the event sampling option rather than the parameter sampling in RiskSpectrum).
EPRI report 1016737[3] says “If all the events in the cutest were statistically independent, (i.e., based
on independent data that is not pooled or correlated in any way), the output point estimates would
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themselves be mean values”. In mathematical language, we can present the fact as follows. A minimal
cut set can be expressed as ���� , where �� s are basic events constituting the cut set. If �� s are
independent between each other, then according the property of mathematical expectation, E ���� t

����� . That is the mean value of the cut set E ���� equals to the point estimate with mean value
inputs. The total CDF is a linear combination of CDFs of all the minimal cut sets, so the same
phenomenon presents.

In fact, independent variables are parameters rather than basic events. Point estimate of a basic event
with mean values of parameters inputs is not strictly equals to the mean value of the basic event]. That
is, if a basic event X is a function of parameter λ , then E[f λ ] ≠ f(E λ ) for most cases. Jensen
inequality says that, for a convex function g in R (R denotes the real domain), that is for arbitrary
0 � � � h,

g px + h ᣇ p y ≤ pg x + hᣇ p g(y) (1)
the following is valid

g(EX) ≤ Eg(X) (2)
The equality relationship holds if and only if X is constant or g is a linear function.

For popular case in PRA, the probability of a basic event can be approximated to a linear function of
input parameters. This illustrate why the sample mean approximately equals to point estimate.

For cases in which SOKC has to be considered, the deviation between point estimate and the mean
value can be large. Consider a cut set contains basic events with SOKC, then E ���� t ����� never
holds. Take a cut set with 2 totally correlated events as an example, the mean value of the cut set is
E(X2). According to probability theory,

E X2 t E X 2 +Var(X) (3)

A variance item appears in equation (3). The standard deviation is usually several times larger than the
mean, so the variance item cannot be neglected. So the impact of SOKC may be important. When
SOKC is dominant, we cannot use point estimates to substitute mean values. Examples in subsection
3.1 show the impact of SOKC.

2.3. Sample Size for Mean Value Estimate

For simple random sampling, the problem of mean value estimate of the CDF is one of the most
popular problem in statistical inference. Here, we use X denote random variable, μ and σ2 denote the
mean and variance of X. X� and S2 denote the unbiased estimators for the population mean and variance,
and the lower case notations denote specific values of a sample.

Central limiting theorem says that, for independent and identically distributed random variables
Xh,X2,⋯ with limited variance, n(X�n ᣇ μ)/σ asymptotically follows standard normal distribution, e.g.
the limitation of cumulated distribution function of which is

lim
n→∞

Gn x t ᣇ∞
x h

2π
eᣇ y2/2dy� (4)

For a moderate sample size (e.g. several tens), the normal approximation can be accepted. We can use
central limiting theorem to construct interval estimation for the mean value.

With population variance known, an interval estimate of mean with h ᣇ α confidence level is
μ:x� ᣇ zα/2

�
n
≤ μ ≤ x� + zα/2

σ
n

(5)

Where, za t Φᣇh(h ᣇ a), Φ is the cumulated distribution function of the standard normal distribution.

With population variance unknown, according to Slutsky theorem (see [5] for details), the following
holds
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n(X�nᣇμ)
Sn

→ n(0,h) (6)

Where→ denote approaching.

So for large samples, we can use sample variance to substitute population variance in equation (5), the
h ᣇ α confidence interval for mean value is then

μ:x� ᣇ zα/2
s
n
≤ μ ≤ x� + zα/2

s
n

(7)
The length of the interval is

2zα/2
s
n

(8)

If we use a relative deviation to the true value of mean to measure the accuracy of the estimate, and
further we require the acceptable interval length is small portion q of the mean, that is

2zα/2
s
n
≤ qμ (9)

With μ unknown, use x� instead. We can obtain

n ≥
4zα/2
2 s2

q2x�2
(10)

We can see that the required sample size is proportion to the square of the ratio of standard deviation
and mean.

Subsection 3.2 gives practical examples, and illustrate the variation of the required size when
multiple cut sets are added.

2.4. Sample Size for Quantile Estimate

Quantiles are important parameters to characterize the dispersion of a random variable. In PRA, the
sample quantiles are naturally used as estimators of the population quantiles. Interval estimate for the
quantiles is complex, and more advanced statistical knowledge such as order statistics and
approximation theory has to be used. Reference [6] gives a h ᣇ α confidence interval as follows.

khn
n
t p ᣇ zα/2 p(h ᣇ p)/n (11)

k2n
n
t p + zα/2 p(h ᣇ p)/n (12)

Where p is the cumulative probability at the quantile. The interval between the khnth and the k2nth
sample when ascending ordered is the required confidence interval.

The length of the interval is

C X t 2zα/2 p(hᣇp)
�(ξp) n

(13)

Where �(�) is the density function of X, ξp is the pth quantile.

If a similar relative deviation is used for assessing the quantile estimate as for the mean estimate, then
for a deviation portion q, there exists,

2zα/2 p(hᣇp)
�(ξp) n

≤ qξp (14)

We can obtain



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA

n ≥
4zα/2
2

q2
p(hᣇp)
ξp2f2(ξp)

(15)

The required sample size depends on the quantile and the density at the quantile, we can approximate
to use sample values for substitution.

Compared with the case for mean estimate, we can find that the sample size required for quantile
estimate depends on local property of the distribution. The sample size may be larger than that for
mean estimate intuitively.

Subsection 3.3 gives examples about quantile estimate.

3. EXAMPLES

3.1. Relationship between Point Estimate and the Sample Mean

Firstly, the deviation between point estimate and the mean of a basic event is examined. Take the basic
event a motor-driven pump fail to run as an example. In the mission time Tmission, the failure
probability is h ᣇ eᣇλTmission, where λ is the failure rate which follows a gamma distribution with
parameters α and β. Now we see if the following equation holds.

E(h ᣇ eᣇλTmission) ≈ h ᣇ eᣇE(λ)Tmission (16)

It is easy to obtain the exact value of the left side of equation (16) is
E h ᣇ eᣇλTmission t h ᣇ β

β+Tmission

α
(17)

Using the data from NUREG/CR-6928 [7] and Tmission t 24h , the mean (calculated with (17)) and
the point estimate (the right hand side of equation (16)) are calculated and shown in the column 4 and
5 row 1 of table 1. It can be found, the deviation between the two is quite small.

In fact, if λTmission is very small (e.g. <0.01), the following approximation exists.
h ᣇ eᣇλTmission ≈ λTmission (18)

The probability is approximately a linear function of the parameter λ.

The probability of another popular failure mode in PRA fail on demand is also linear function of the
parameter (either expressed in the form of failure probability p or in the form of h

2
λ�orm�O��ot�o where

λ�orm�O� is the standby failure rate and �ot�o is the test interval). According to Jensen inequality
(equation (2)), the point estimate and the mean are very close.

Secondly, for cases with SOKC, still using the motor-driven pump as example. Here, double
redundancy is assumed. What to be examined is if the following equation is valid.

E h ᣇ eᣇλTmission 2
≈ hᣇ eᣇE(λ)Tmission 2

(19)

Similarly, the mean can be calculated exactly or approximated using equation (18). Column 7 and 8
row 2 of table 1 give the value of left and right side of equation (19). It can be found the deviation
between the two is large. It is easy to calculate that the difference between the two is Var h ᣇ
eᣇλTmission which is shown in column 9 row 1 of table 1.

The results for another component with higher failure rate EDG (emergency diesel generator) are also
shown in table 1. The similar conclusion is obtained. So when SOKC is not important, the point
estimate can substitute the mean; and when SOKC is important, we cannot do that, a formal
uncertainty propagation is necessary.



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA

Table 1: Mean and point estimate with and without SOKC

Failure rate λ with a gamma
distribution with parameters α and β

Mean
failure

probability
of 1

component

Point
estimate of
the failure
probability

of 1
component

Mean failure
probability

of 2
components

Point
estimate of
the failure

probability of
2 components

Difference
between the
mean and point
estimate of the
failure
probability of 2
components

λ α β E(1-e-λT) 1-e-E(λ)T E(1-e-λT)2 (1-e-E(λ)T)2 Var(1-e-λT)

MDP fail to run 5.80E-6/h 0.5 8.62E+04 1.39E-04 1.39E-04 5.81E-08 1.94E-08 3.88E-08

EDG fail to run 8E-4/h 2 2.50E+03 1.89E-02 1.90E-02 5.32E-04 3.62E-04 1.84E-04

3.2. Sample Size for Mean Value Estimate

Samples from a lognormal distribution with mean 1E-5 and EF (error factor) 10 is used to illustrate the
mean estimate issue. According to equation (10), at 90% confidence level, if the required relative
deviation is 2%, then the necessary sample size is about 170,000. Figure 1 which is produced with the
statistical package R gives the accuracy varied with sample size.

Figure 1: Accuracy vs sample size

Reference [3] recommends a sample size 25000. For our relative disperse distribution, sample size
25000 can ensure a deviation within 5% (see figure 1) at a confidence level 90%.

For comparison, the process above is repeated with lognormal distribution with mean 1E-5 and EF 3
and lognormal distribution with mean 1E-6 and EF 3. For the same confidence level and accuracy, the
necessary sample sizes are both 16,500. It can be seen that if the EF keeps constant, the required
sample size keeps constant too.

For actual reactor case, the question is that if the advanced reactor with smaller CDF requires more
samples than the former design with larger CDF. Table 2 examines the case in which failure
probability is reduced through increasing redundancy. Again, the MDP is used, and for CCF,
NUREG/CR-5497 data are used.

Table 2: �/� for different cases
Mean μ Variance σ2 σ/μ

Single E(h ᣇ eᣇλt) Var(h ᣇ eᣇλt) 1.41
1.39E-4 3.88E-8

Double redundancy E2(h ᣇ eᣇλt) Note 1 2.0
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1.94E-8 1.50E-15
Double redundancy (with SOKC) E h ᣇ eᣇλt 2 Var h ᣇ eᣇλt 2 3.27

5.81E-8 3.61E-14
Double redundancy (CCF) Note 2 Note 2 1.60

9.28E-6 2.21E-10
Triple redundancy E3(h ᣇ eᣇλt) Note 1 5.10

2.70E-12 1.89E-22
Triple redundancy (with SOKC) E h ᣇ eᣇλt 3

Var h ᣇ eᣇλt 3 6.72

4.05E-11 7.41E-20
Triple redundancy (CCF) Note 2 Note 2 1.52

1.65E-5 6.26E-10
Note 1: The equation Var XhX2 t Var Xh Var X2 + E2 Xh Var X2 + E2 X2 Var(Xh) for independent random
variable Xh and X2 is used.
Note 2: For CCF group size 2, 2α2

αh+2α2
(h ᣇ eᣇλt); For CCF group size 3, 3α2+3α3

αh+2α2+3α3
(h ᣇ eᣇλt)

It can be seen from table 2: for the probability of cut sets with CCF, the required sample size is no
more than the independent cases; SOKC increases the sample size moderately (e.g. for double
redundancy case, 2.67 times larger than the independent case); redundancy decrease the mean value,
but increases the sample size greatly (e.g. for triple redundancy case, 6.5 times larger than the double
redundancy case).

For each single cut set, we can obtain the required sample size. The next concern is for the summation
of all the cut sets how the sample size varies.

For summation of independent random variables, Xh,X2,⋯, the following equations are valid.
σ2 t ith

N σi
2� (20)

μ t ith
N μi� (21)

For a simple 2 cut set case, assuming that σh
μh
t σ2

μ2
, then for the summation,

σ2

μ2
t

σh
2+σ2

2

μh+μ2 2 �
σh
2+σ2

2

μh
2+μ2

2 t
σh
2

μh
2

h+
σ2
2

σh
2

h+
μ2
2

μh
2

�
σh
2

μh
2 (22)

Equation (22) shows that for the summation of cut sets, σ2/μ2 is smaller than the maximum σi
2/μi

2.
That is, for the summation, the required sample size is no more than the required sample size for each
single cut set.

Additional, for the 2 cut set case, assuming that μh ≫ μ2, then

σh
2+σ2

2

μh+μ2 2 t

σh
2

μh
2+

σ2
2

μh
2

(μ2μh
+h)2

≈
σh
2

μh
2 +

σ2
2

μh
2 t

σ2
2

μ2
2
μ2
2

μh
2 +

σh
2

μh
2 ≈

σh
2

μh
2 (23)

That is the sample size is mainly determined by the dominant cut sets (e.g. Cut sets with larger means)
which is consistent with intuition.

For multiple cut sets summation,
σh
2+σ2

2

μh+μ2 2 may much smaller than σi
2/μi

2 (check the case that all the σi
2

and μi are equal). The CDF consists of many dominant cut sets, so the sample size for mean CDF
estimate is smaller than single dominant cut set, which reflect the fact that when the accuracy of the
CDF is ensured, the accuracy of cut sets mean estimate may not attain the same accuracy with the
same sample size on the other side.
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3.3. Sample Size for Quantile Estimate

For quantile estimate, the required sample size can be easily obtained using equation (15). Using the
same lognormal distribution cases as in subsection 3.2 as example, the required sample sizes are listed
in table 3, and for comparison, the required sample sizes for mean estimate are also listed in table 3.

Table 3: Required sample size for mean and quantile estimate
Lognormal distribution parameters Sample size for mean estimate Sample size for 95% quantile estimate
mean t hE ᣇ 5, EF t h0 170,000 236,900
mean t hE ᣇ 5, EF t 3 16,500 54,232
mean t hE ᣇ 6, EF t 3 16,500 54,232

It can be seen from table 3 if the same accuracy is desired, larger sample size is required for quantile
estimate than for mean estimate.

Note that, the required sample size for quantile estimate depends on probability density function for
which an accurate estimate is difficult.

4. CONCLUSIONS

The paper studies the sample size issue when doing sampling in uncertainty propagation process. The
intent is to show the mathematical basis behind sampling, which is often confusing. We can draw
several conclusions through the study: 1) SOKC can significantly impact the mean, a formal
uncertainty propagation is recommended when available; 2) The required sample size for mean value
estimate may be several tens of thousands, more samples are needed for quantile estimation than for
mean estimation; 3) The dominant cutsets also dominate the sample size.
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Appendix

The parameterizations of distributions used in the paper are list as follows.

Normal distribution: f x t h
σ 2π

exp ᣇ h
2

xᣇμ
σ

2
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Lognormal distribution: f y t h
σy 2π

exp ᣇ h
2

lnyᣇμ
σ

2

Gamma distribution: f t t βα

Γ(α)
tαᣇhexp ( ᣇ tβ)

Beta distribution: f y t Γ α+β
Γ α Γ β

yαᣇh h ᣇ y βᣇh


	Abstract: In risk-informed decision making process
	Keywords:  PRA, Uncertainty, Sample size
	1.  INTRODUCTION
	2.  MATHEMATICAL BASIS FOR SAMPLING
	4.  CONCLUSIONS 

