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Abstract: This paper presents and explains the algorithm and the results of a novel, robust,
fast and accurate Bayesian update methodology that has been developed at Leibstadt Nuclear
Power Plant (KKL) for components failure rate calculation as typically required in the Prob-
abilistic Safety Assessment (PSA). In PSA, component failure rates are typically modelled
using probability density functions representing the uncertainty range of the failure rates.
International generic failure rates (prior information) need to be coupled with plant-specific
failure statistics (evidence) through a Bayesian update process to obtain a best estimate of
plant-specific reliability parameters (posterior information). It was noticed, that commonly
used numerical integration functions (e.g. MATLAB built-in function) often results in numeri-
cal instabilities when applied to the required integral for Bayesian updates. A more robust
algorithm was developed to resolve these instabilities. This algorithm covers all probability
density functions (pdfs) of interest in the nuclear industry. It uses a Simpsons 4th order
integration scheme to carry out the numerical integration needed in the Bayesian update, while
using an optimal discretization technique taking into account some useful characteristics of the
still unknown posterior distribution. In some cases, the Bayesian update is performed analyti-
cally either by algebraic derivations or using the property of conjugation. The novel method
is validated on practical industrial examples and benchmarked against the computational
software Mathematica to prove its correctness and robustness.

Keywords: Probabilistic Safety Assessment, Bayesian Update, Numerical Integration, Smart
Discretization.

1 INTRODUCTION

Bayesian updates are used extensively in machine learning, reliability analysis, and many
other research and industrial areas in order to update the probability of a hypothesis when
more evidence is available. In the nuclear industry, and specifically in PSA, the Bayesian
update is used to amend a priori generic reliability data (e.g. component failure rate) with the
plant-specific evidence [1]. This helps in achieving an optimal balance between international
performance and plant-specific performance of components. Consequently, one gets a more
accurate representation of plant-specific components’ failure rates by optimally aggregating all
the available information. The basic Bayes’ theorem is given by

f (λ | E) =
f (λ)L(E | λ)∫ ∞

0
f (λ

′
)L(E | λ′

)dλ
′

(1)

where E is the evidence or the observed data, i.e. the recorded number of failures; λ is
the component failure rate (per time unit or per demand); f(λ) is the prior’s probability
density function before observing E; L(E | λ) is the likelihood function, i.e. it is a probability
distribution of the number of failures; f(λ | E) is the posterior probability density function,
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i.e. it is the state of knowledge of λ after observing E.

Fig. 1 visually shows how a Bayesian update works: a prior distribution is aggregated with a
likelihood distribution leading to a posterior distribution.
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Figure 1: Illustrative Bayesian update example

It was observed that the evaluation of the denominator of Eq. 1 is challenging using traditional
integration methods. Remarkable numerical instabilities were observed in a few cases, even
with MATLAB, when evaluating the integral for commonly used distribution types. Examples
of these instabilities are presented in Section 3.

At the Leibstadt nuclear power plant (KKL), the Bayesian update is performed following
the requirements and the guidelines of the Swiss nuclear regulator ENSI. Guideline ENSI-
A05, Chap. 4.2 [2] on the “Quality and Scope of PSA” requires that the plant-specific
reliability parameters (in the following called posterior information) is obtained through a
Bayesian update process. The guideline also requires the uncertainty distribution of the
components failure probability, i.e. the mean value along with its associated percentiles.
Eventually, the resulting uncertainty distribution can be mapped (re-casting procedure) into
a definite continuous distribution type (e.g. Lognormal, Beta or Gamma distribution). As
international generic data sources (in the following called prior information), KKL uses
ZEDB, T-Book, NUREG/CR-6928, IAEA-TECDOC-478, EGG-SSRE-8875, WASH-1400.
Plant specific evidence data includes plant component failure records and the exposure data
(operating time or number of demands) as recorded by plant personnel. Plant specific data
follows either a Poisson distribution, in case the exposure is considered per unit time, or a
Binomial distribution, in case the exposure is considered per demand.

Gebraeel et al. [3] developed a Bayesian update approach for normally distributed priors and
likelihoods. Zwirglmaier and Straub [4] derived a static discretization procedure using the First-
Order Reliability Method. Kozlov and Koller [5] introduced the idea of dynamic discretization
that searches for the most efficient discretization technique iteratively using the Junction
Tree approach [6]. Besides, Neil et al. [7] added to the dynamic discretization technique a
propagation algorithm on junction trees. Cobb and Shenoy [8] and Moral et al [9] resorted to
the mixtures of truncated exponentials approach as an alternative to discretization. Murphy
[10] introduced a variational approximation to perform the Bayesian inference. Furthermore,



Shachter and Peot [11] and Carlin and Gelfand [12] used Monte Carlo sampling techniques to
perform an approximate Bayesian inference.

The KKL PSA team previously developed a Bayesian update software based on an adaptive
quadrature integration scheme using predefined logarithmic uniform discretization intervals,
solely based on prior information. In some cases, it was observed that the likelihood distribution
was shifted with respect to the prior, leading to suboptimal integration. Curtailments of poste-
rior distribution were observed in specific cases, leading to underestimation or overestimation
of the component failure rate. Furthermore, the algorithm did not distinguish between different
prior distributions and their possible conjugability, performing always a numerical Bayesian
update and therefore introducing a source of error due to numerical approximations. Finally,
in the PSA documentation, as a result of those inaccuracies, the graphical representation of
the Bayesian process was not always satisfactory.

In order to investigate those issues in more detail, a benchmark analysis was performed using
the numerical integration function of MATLAB on Lognormal distributions. The aim was
to compare the obtained values from the existing software with a reference software. It was
noticed, that even using a reference code like MATLAB, the numerical integration function
applied to the denominator of Eq. 1 often resulted in numerical instabilities, forcing the
PSA team to develop a more robust and stable Bayesian update software. The numerical
instabilities of MATLAB is presented in Section 3 along with the results of a stability check of
the developed code.

In order to resolve some of the aforementioned issues and to improve the stability, a new
algorithm was developed at KKL. The developed tool covers all probability density functions
(pdfs) of interest in the nuclear industry. It covers prior data having a Lognormal, Normal,
Gamma, Beta, Uniform, or Discrete1 distribution, and likelihood data following a Binomial or
a Poisson distribution. The Discrete distribution can be seen as a generalization of any other
distribution type. The new tool performs analytic Bayesian updates when the distributions
are conjugate2, and resorts to a numerical approach that is stable, robust, fast, and efficient
when an analytic solution does not exist.

The numerical integration uses a fourth order Simpsons [14] scheme with an adaptive dis-
cretization based on foreseen characteristics of the posterior distribution. At the heart of
the novel approach, an innovative and optimal method to detect the characteristics of the
posterior distribution before carrying out any integration step was developed and called the
“Modal Method”. The mode of the – still unknown – posterior is determined by setting
the derivative of the distribution function f (λ | E) to zero (Section 2). These improvements
drastically simplify the required number of discretization points and allow an accurate capture
of the posterior parameters (presented in Section 3). The tool performs a so called re-casting
procedure in which the resulting discretely-defined posterior distribution is mapped to a known
continuous parametric distribution. A criterion for the consistency of plant specific data and
prior is introduced in the process of the evaluation of the posterior probability density function,
following the recommendation of NUREG-CR/6823 [15]. The code is implemented in both
Ruby script language and MATLAB.

1 The Discrete distribution definition is adopted from RiskSpectrum: it is a piecewise constant (uniform)
distribution.

2 A prior distribution type is said to be conjugate for a likelihood function if the resulting distribution from
a Bayesian update process is of the same type as the prior distribution. A rigorous mathematical definition of
the concept of conjugability can be found in [13].



The software Mathematica is used to verify the results and prove their correctness. Moreover,
Bayesian updates using Discrete prior distribution and the Modal Method are compared to
prove their consistency. To the best of our knowledge, our new Bayesian update tool is faster
and more robust compared to other techniques found in the literature, mainly due to its
optimal discretization-scheme using the mode finding technique.

2 METHODOLOGY

The main aspects of the tool are described in this section. In what follows, the resolved cases,
the general approach and the re-casting procedure are presented.

2.1. Resolved Cases

Table 1 lists all investigated combinations of prior and likelihood distribution along with their
respective Bayesian update method.

Table 1: Considered Combinations

Category Case Prior Likelihood Update Method

Non-Conjugate

1 Lognormal Binomial Numerical Integration (Modal Method)
2 Lognormal Poisson Numerical Integration (Modal Method)
3 Normal Binomial Numerical Integration (Modal Method)
4 Normal Poisson Numerical Integration (Modal Method)
5 Uniform Binomial Analytical Derivation
6 Uniform Poisson Analytical Derivation

Conjugate

7 Gamma Binomial Transformation + Conjugation
8 Gamma Poisson Conjugation
9 Beta Binomial Conjugation
10 Beta Poisson Transformation + Conjugation

Discrete
11 Discrete Binomial Analytical Derivation
12 Discrete Poisson Analytical Derivation

2.2. General Approach

The combinations listed in Table 1 can be classified into three categories: non-conjugate,
conjugate, and Discrete. The non-conjugate distributions require solving Eq. (1) either
numerically (cases 1-4) or analytically (cases 5-6). The conjugate distributions have known
Bayesian update results that are obtained analytically. The Discrete is a special case that can
be used to mimic any combination of other distributions. For the latter case, the developed
tool performs a full analytical Bayesian update.

2.2.1. Non-Conjugate Distributions (cases 1-6)

In general, the prior and likelihood distributions do not belong to the same family and the
posterior distribution has a mathematically different density function than the prior [13]. In
this case, the prior and likelihood distributions are called “non-conjugate”.

Numerical Bayesian Update using the Modal Method (cases 1-4)

A numerical based Bayesian Update is required in the cases of Normal and Lognormal prior
distributions to be updated with either a Binomial or a Poisson likelihood distribution. The
integration scheme used is the fourth order Simpsons [14], which carries out an integral on every
three-point parabolic segments, and sums these partial integrals to obtain the total integral.



The developed discretization method (Modal Method) insures an optimal discretization of the
high information region, i.e. the region around the peak (mode) of the posterior distribution.
The method foresees the exact location where the mode of the posterior distribution resides
(step 1) and, prior to any numerical integration step, defines smart discretization intervals
(step 2).

Step 1: Determination of the mode of the posterior To determine the mode of the posterior
distribution, the derivative of the (yet unknown) posterior probability density function is set
to zero. Eq. (2) below is called “Modal Characteristic Equation”.

d

dλ
(f (λ | k)) = 0

d

dλ

 f (λ)L(k | λ)∫ ∞

0

f (λ
′
)L(k | λ

′
)dλ

′

 = 0

d

dλ
(f (λ)L(k | λ)) = 0

L(k | λ)df (λ)
dλ

+ f (λ)
dL(k | λ)

dλ
= 0 (2)

As an example, for a Lognormal prior distribution with a Binomial likelihood function, the
“modal characteristic equation” results in:

(λ− 1) ln (λ) + λ
(
(1− n) σ2 − µ

)
+ (k − 1) σ2 + µ = 0 (3)

A numerical solution of Eq. (2) allows us to know in advance (i.e. before the numerical
integration is started) the precise location of the mode of the posterior.

Step 2: Pseudo posterior and smart discretization The aim of this step is to generate a pre-
liminary posterior distribution (called “pseudo posterior”) mimicking to the closest possible
the posterior distribution to be obtained through the Bayesian update (Eq. (1)). The pseudo
posterior distribution will then be used to generate a smart discretization pattern, leading to
an accurate integration in the denominator of Eq. (1). Two parameters are used to characterize
the pseudo posterior distribution: the mode of the posterior (as calculated by Eq. (2) in Step 1)
and the variance. It is assumed that the posterior distribution has the shape of the prior, i.e.
the same distribution type.

It was observed that the variance of the posterior distribution is always smaller than the
variance of the prior3. This is an intuitive result, since the uncertainty distribution is reduced
as more information is available. To guarantee the coverage of the entire domain needed
in the Bayesian update calculations, the variance of the pseudo posterior distribution was
conservatively defined equal to the variance of the prior. Note that the generated pseudo
posterior – characterized by the mode and the variance – is only used for discretization.

3 being V ar(θ) = E[V ar(θ | y)] + V ar(E[θ | y]) [16]



Finally, the smart discretization pattern is obtained with the help of the inverse cumulative
density function (cdf), as visually described in Fig. 2. A set of uniform spaced points between
0 and 1 (y-axis) is evaluated with the inverse cdf to obtain a set of optimally spaced integration
points on the λ axis.

At this point, the integral in Eq. 1 can be numerically evaluated.

Figure 2: Discretization using the inverse cdf method

Table 2 lists the modal characteristic equations and the results of the Bayesian update for
priors following a Lognormal or a Normal distribution.

Analytical Bayesian Update for Uniform Distributions (cases 5-6)

For the cases of a Uniform prior distribution to be updated with either a Binomial or a
Poisson likelihood distribution, no discretization or numerical integration is needed, and a full
analytical Bayesian update is done after analogizing a Poisson with a Gamma and a Binomial
with a Beta distribution. The Uniform distribution is usually used if no information is known
about the failure rate, in this case the prior distribution is called a non-informative prior
distribution [17]. Table 3 summarizes the results of the Bayesian update for priors having a
Uniform distribution.

2.2.2. Conjugate Distributions (cases 7-10)

Four combinations of prior and likelihood distributions were identified as conjugate, hence
the resulting posterior distribution and its parameters can be calculated analytically4. Table
4 summarizes the results of the Bayesian update for priors following a Gamma or a Beta
distribution.

2.2.3. Discrete Distributions (cases 11-12)

The Discrete case is a special case in which the prior distribution is defined as a piecewise
constant function. This definition allows any distribution to be given in a discrete way in which

4 The combination “Gamma with Binomial” and “Beta with Poisson” needed a transformation of variable
followed by the application of the Poisson Limit Theorem [18] before applying the properties of conjugate
distribution.



a number of piecewise constant segments can describe the shape and preserve the characteristics
of that distribution. For a Discrete prior updated with either a Binomial or a Poisson likelihood
distribution, a full analytical Bayesian update is performed and no discretization or numerical
integration is needed. Table 5 summarizes the results of the Bayesian update for priors having
a Discrete distribution.

2.3. Re-casting

The Bayesian update results in a posterior distribution having a non-defined distribution type
(except for the special cases of conjugate distributions [13]). It is therefore often convenient to
re-cast (fit) the posterior distribution into a known distribution type so that it becomes easy to
handle in applications, rather than having to deal with a cumbersome discretized distribution
(array of points). A re-casting procedure is therefore introduced and the posterior distribution
is fit into a known distribution while preserving its main parameters (mean and median
values). In some cases, the obtained p95 percentiles are found to be slightly optimistic (i.e.
p95 < p95, exact). To avoid this optimistic assignment, a refined re-casting procedure based on
matching the mean (x̄) and the 95th percentile (p95, exact) is preferred and implemented.

Specifically for the case of a Discrete prior distribution, the resulting posterior equation has
the exact shape of the likelihood function in each interval, as shown in Table 5. The re-casting
procedure is performed by optimally trying to preserve the mean and as many percentiles as
possible, hence the re-casting problem is solved as a constrained optimization problem.

2.4. Prior to posterior consistency test

A criterion for the consistency of plant specific data and prior is introduced in the process of
the evaluation of the posterior probability density function, following the recommendation of
NUREG-CR/6823 [15], which states “If the observed data show x/t (number of failures over
exposed time) very different from the prior mean, the analyst might wonder if the data and
the prior are consistent, or if, instead, the prior distribution was misinformed”. If the exact
posterior mean exceeds the p95 or is below the p05 percentile of the prior distribution, a flag is
raised and the user is informed about a potential inconsistency between prior and evidence
information.

3 RESULTS

The developed algorithm was implemented in Ruby script language and showed remarkable
efficiency and stability. Some representative examples were investigated and are discussed
below.

Fig. 3 shows the plots and the table of properties of the prior, the exact posterior, and the
re-cast posterior distributions obtained using the new Bayesian update tool applied on a prior
distribution. The prior Lognormal distribution has a mean value of 1.37·10=7 1/h with an
error factor of 4.1. The chosen parameters of the Poisson likelihood function are 9 failures over
an exposure time of 4.34·106 h, delivering an “expected mean” of 2.1·10=6 1/h. Those rather
extreme values were chosen such that the expected mean is heavily shifted towards higher
failure rates, in order to test the code against the issues described in Section 1. The developed
software tool, using the smart discretization algorithm, is able to calculate the mean value and
the characteristic parameters of the posterior distribution correctly up to several significant
digits. The results were cross-checked with software Mathematica.

A set of Bayesian updates were performed for the Lognormal distribution with a Poisson
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The prior, posterior exact and posterior distributions are characterized by the following parameters:

Prior Posterior exact Posterior

Mean 1.37E-07 1.28E-06 1.28E-06

Error Factor 4.10E+00 1.78E+00

5%-percentile 2.31E-08 6.05E-07 6.74E-07

50%-percentile 9.47E-08 1.21E-06 1.20E-06

95%-percentile 3.88E-07 2.15E-06 2.15E-06

Figure 3: Bayesian update of a Lognormal prior distribution with a Poisson Like-
lihood function (9 failures over an exposure time of 4.34·106 h)

likelihood function using the MATLAB built-in integral function. The prior mean varied
between 10=6 and 10=4 1/h) while the error factor (EF = 10), the number of failures (k = 22)
and the exposure time (T = 106 h, T = 107 h) were held constant. The same analysis was
performed with the developed tool. The results from both methods are plotted in the form
of Posterior mean as function of the Prior mean and are presented in Fig. 4. Remarkable
discontinuities appear when using the MATLAB integral function, leading to wrong Bayesian
update results. On the other side, the developed method resulted in a very robust and stable
Bayesian update, thanks to the smart adaptive discretization algorithm based on the “Modal
Method”.

Figure 4: MATLAB (left) and “Modal Method” (right) stability check for a
Lognormal prior distribution with a Poission likelihood function.

Fig. 5 shows the plots and the table of properties of the prior and the exact posterior
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The prior and posterior distributions are characterized by the following parameters:

Prior Posterior

Mean 3.10E-06 5.35E-06

Alpha 1.75E+00 1.18E+01

Beta 5.65E+05 2.19E+06

5%-percentile 4.60E-07 3.07E-06

50%-percentile 2.53E-06 5.20E-06

95%-percentile 7.67E-06 8.16E-06

Figure 5: Bayesian update of a Gamma prior distribution with a Poisson Likeli-
hood function (10 failures over an exposure time of 1.63·106 h)

distributions for the case of a Gamma prior distribution. The prior Gamma distribution has a
mean value of 3.1·10=6 and a shape parameter α = 1.75. The plant experience chosen for this
example is 10 failures over an exposure time of 1.63·106 h.

A Bayesian update of a Lognormal & Binomial case was performed to compare the results
of the Discrete method and the Modal Method. The corresponding plot in Fig. 6 shows the
nice matching between the re-cast Discrete posterior and both the exact and re-cast posterior
distributions obtained with the Modal Method.
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Figure 6: Discrete and “Modal Method” Bayesian update comparison
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4 CONCLUSION

Bayesian update technique is highly-utilized in reliability analysis in general, and in PSA
applications in specific. A fast and robust Bayesian update technique was developed and
implemented at the Leibstadt nuclear power plant KKL. The developed tool succeeded to
solve very ill-conditioned problems, where other tools usually fail.

Furthermore, based on the international generic data distribution type (prior distribution) and
plant-specific evidence (likelihood distribution), the tool performs an exact analytical Bayesian
update where possible. In cases where an analytical solution does not exists, it resorts to
a very robust numerical technique, the Modal Method, which predicts the behavior of the
posterior distribution, smartly discretizes, and integrates accordingly.

The tool proved to have better numerical integration abilities than the MATLAB built-in
integral function, which experiences some numerical instabilities when calculating the posterior
parameters (i.e. mean value, variance and percentiles).
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