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Abstract: This paper is concerned with modeling the impact on systems of attacks that corrupt the 
flow of information in a system, especially control signals, with a view to taking steps to prevent the 
adverse impacts of such attacks. “Corrupting the flow of information” includes cyberattack, but is not 
limited to cyberattack. This scope also goes beyond hardware: it includes corrupting the information 
made available to operators, in order to induce them to contribute to undesirable plant outcomes. In 
order to clarify the method, we begin with a simple control-system problem first posed by Lapp and 
Powers. Even in this simple system, there are several ways to mislead the operators; one way is to 
induce them to take adverse control actions, and another is to conceal from them an adverse system 
evolution being induced by corruption of information flow. The paper describes (1) certain adaptations 
needed to appropriately refocus the application of logic modeling to this class of problems, (2) 
analysis and tests of attack scenarios, and (3) limitations that need to be addressed in future 
methodology development. We illustrate Top Event Prevention Analysis in the context of cyberattack; 
and finally, we discuss future work using a plant simulator.  
 
Keywords:  PRA, Cyberattack, Information Flow. 
 
1.  INTRODUCTION 
 
This paper is concerned with modeling the impact of cyberattack on systems through corruption of the 
flow of information, especially control signals. This scope also includes corrupting the information 
made available to operators in order to produce undesirable plant outcomes. 
 
Logic modeling is a tool for understanding how to satisfy certain complicated conditions. Fault-tree 
analysis is a special case of this: a fault tree is a picture of a set of logical relationships that relate a 
complex, system-level (“top”) event (such as “failure of system X”) to combinations of “basic” events 
(such as “Component P-1 fails AND component V-32 fails AND Tank-3 is empty”). Given the logical 
relationships in a fault tree, we can process the collection of relationships to obtain the “minimal cut 
sets” of the system: the list of combinations of basic events that are both necessary and sufficient to 
satisfy the condition “the top event occurs: the system fails.” A minimal cut set is “sufficient” in the 
sense that occurrence of all of the events in the cut set is sufficient to cause the top event; it is 
“necessary” in the sense that if one element of a minimal cut set is removed from the cut set, the 
remaining elements are NOT sufficient to cause the top event.  
 
Logic modeling was being used to understand satisfaction of complex logical conditions even before 
fault-tree analysis was invented. Nowadays, most of what is done in nuclear safety analysis is fault-
tree analysis (perhaps in support of event-tree analysis); but more general applications of logic 
modeling are of interest. Below, we will use logic modeling in several ways: (1) to understand the 
conditions under which functional failure occurs, (2) to understand the conditions under which system 
damage occurs, (3) to understand the conditions under which the system state is successfully masked 
from the operators, and (4) to understand the conditions under which the system is adequately 
protected from cyberattack. 
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2.  EXAMPLE BASED ON SIMPLE CONTROL SYSTEM 
 
For illustration, we begin with a simple problem first posed by Lapp and Powers [1], the execution of 
which allows us to clarify how to analyze cyberattack from a particular point of view. This simple 
system has functional failure modes that are distinct from “damage” failure modes, and even though 
the original problem did not explicitly involve operator action, we can analyze how to spoof operator-
observers in order to conceal what is being done to the system, by taking a few liberties with the 
original problem formulation. 
 
Figure 1 shows a markup of the Lapp-Powers example. The system is intended to regulate the 
temperature of HNO3 delivered to the reactor via the path shown in the upper portion of the figure. In 
normal operation, hot HNO3 enters at the top left and flows to the right through an isolation valve [1], 
a heat exchanger [2], and a sensor meant to read the temperature of the HNO3 as it exits from the heat 
exchanger. The sensed temperature is fed to the controller [4], which compares it with an internal 
setpoint. If the temperature is high, the controller responds by causing valve [5] to admit more cooling 
water into the jacket of the heat exchanger; if the temperature is too low, then of course the reverse is 
meant to occur (cooling flow should be reduced). In order for this process to work, pump [6] must 
actually be working; so signal 11 is provided in order to confirm to valve [1] that [6] is working. If [6] 
is not working, signal 11 will tell [1] to close, since, otherwise, hot HNO3 will be fed to the reactor, 
and the damage state will occur. 
 

Figure 1: Markup of the system in the original Lapp-Powers example 
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In Figure 1, bold dotted lines correspond to information flowpaths addressed in the modeling. The 
“setpoint” line was only implicit in the original example. Each information flowpath is labelled 
“PITM-n” for “person in the middle-n,” corresponding to a hypothetical intervention. 
 
In the original Lapp-Powers example, some of the dotted lines were not necessarily electronic, and 
were certainly not wireless. They may have been things like air pressure, to control downstream air-
operated valves. For present purposes, all dotted lines are treated analogously as carrying 
“information” and as being subject to intervention. 
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Here, “intervention” means some corruption of information flow somewhere on a dotted line, by a 
“person in the middle.” The person in the middle can do either or both of two things (and perhaps 
others as well):  
 
1. interfere with the information conveyed to the downstream component(s),  
2. interfere with the information conveyed to indications available to operators. 
 
These possibilities are suggested in Figure 2. 
 

Figure 2. Corruption of Information Flowpaths  
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This diagram assumes that there are two classes of applications of the information: use by a 
downstream component or control system, and use in a control room indication.  

 
Following are suggested steps for identifying conditions under which the “Person in the Middle” can 
cause damage AND conceal that fact from the indications available to the operator. 
 

1. Identify all of the “Dotted Lines” 
Identify all the places on the system diagram where process control information is transmitted 
from one component to another. 

Each of these can either be in a “normal” state, or in a state where a person in the 
middle intervenes to tell the downstream component something other than what is 
correct. 

Identify places where information is transmitted to some kind of “indication” where 
information, correctly displayed, could cue the operators that their information is inconsistent, 
leading to thwarting of our sabotage. Some of these will be local indications, some will be 
control room indications, some will be indication of what signal is being sent from one 
component to another. 

Each of these can either be in a normal state, or in a state where a person in the middle 
intervenes to lie to the indication. 

2. Model a “damage” state.  
In the Lapp-Powers example, the damage state is “flow is on AND T> Tmax.” 
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3. Substitute in all the basic events, reduce the resulting expression, and condition on whatever 
events are to be presumed. 

4. Model the conditions under which all of the indications will look “normal.” 
This is an AND of OR expressions:  
(Indication 1 looks normal either because the sensed variable value actually is normal, 
OR because we are spoofing it) AND 
(Indication 2 looks normal, either because the sensed variable value actually is 
normal, OR because we are spoofing it) AND … 

5. Form “damage state AND normal indications.” Reduce. Get rid of complemented 
events. 

 
Table 1 shows cut sets for the modified Lapp-Powers problem corresponding to “Flow at Temperature 
> Max Allowed Temperature,” including at least some of what is needed in order to spoof the 
operator.  
 

Table 1. Cut Sets Giving “Flow at Temperature > Max Allowed Temperature” 

Failure or Causal 
Spoof 

Indication Spoof Indication Spoof Indication Spoof 

V5-INT PM6-IND-T3-
NORM 

  

(Failure) Coolant 
control valve just 
fails 

PM indicates outlet 
temperature is normal 

  

PM7-V5-CL PM6-IND-T3-
NORM 

PM7-IND-P7-
NORM 

 

(Spoof) PM tells 
coolant control 
valve to close 

PM indicates outlet 
temperature is normal 

PM tells the observer 
that the control valve 
is getting a “normal” 
signal 

 

TC4-V5-CL PM6-IND-T3-
NORM 

PM7-IND-P7-
NORM 

 

(Failure) 
Temperature 
controller just tells 
control valve to 
close 

PM indicates outlet 
temperature is normal 

PM tells the observer 
that the control valve 
is getting a “normal” 
signal 

 

PM6-TC4-LO-T3 PM6-IND-T3-
NORM 

PM7-IND-P7-
NORM 

 

(Spoof) PM tells the 
controller that outlet 
temperature is 
LOW 

PM indicates outlet 
temperature is normal 

PM tells the observer 
that the control valve 
is getting a “normal” 
signal 

 

SENS-3-LOW-T3 PM6-IND-T3-
NORM 

PM7-IND-P7-
NORM 

 

(Failure) The 
Sensor reads a low 
outlet temperature 

PM indicates outlet 
temperature is normal 

PM tells the observer 
that the control valve 
is getting a “normal” 
signal 

 

PM4-TC4-STPT-
HI 

PM4-IND-TC4-
NORM 

PM6-IND-T3-
NORM 

PM7-IND-P7-NORM 

(Spoof) PM feeds 
the temperature 
controller a high 
setpoint 

PM indication to the 
observer is a normal 
setpoint 

PM indicates outlet 
temperature is normal 

PM tells the observer 
that the control valve 
is getting a “normal” 
signal 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

 
Notes:  

1. The above is a tabulation of “conditions under which there is flow with T> Tmax, AND the 
indications available to operators are spoofed so as to conceal that fact.” 
2. In this simplified version of the model, Cooling Water Pump P11 is always on. If P11 is off, 
the system should shut down, and if there is no flow, then there is no flow at T>Tmax. We could 
wait for P11 to fail, and spoof the signal that is supposed to tell the shutoff valve to close, and 
spoof signals needed to hide the hot outlet temperature and the fact that the rest of the system is 
struggling to deal with it; or we could CAUSE P11 to fail, and spoof the other signals. 
3. PM is always “person in the middle.” The numbers on PM’s in the cut sets indicate which 
dotted line is being interfered with by the PM. Note that there are two classes of PM’s: Sometimes 
the PM’s are lying to the downstream hardware, and sometimes they are providing false 
INDication to the operators. The latter PM events are all of the form “PMn-IND-… .” The former 
are of the form “PMn-[hardware]-… .” 
4. There are four dotted lines to work with. In this simple model, one of them is always 
functioning normally. That leaves 3. There are 6 cut sets, 2 per dotted line, corresponding to 2 
ways of messing with the 3 dotted lines: either a component failure, or a PM intervention, 
accompanied by “indication” spoofs needed to hide the intervention from the operators. 

 
The steps are meant to search for ways in which a Saboteur could attack a particular system by 
interfering with signals (as opposed to directly (physically) tampering with system hardware 
component states). This is done for purposes of method refinement; the extension to consider a 
broader scope of Saboteur activity (also physically tinkering with components) and/or a broader scope 
of component failures occurring stochastically (as opposed to being due to physical or cyberattack) 
seems (at this point) straightforward in principle, and is discussed below. 
 
3.  TOP EVENT PREVENTION ANALYSIS 
 
Top Event Prevention Analysis (here called “Prevention Analysis” for short) was formulated in the 
late 1980’s [2, 3], based on prior work involving Boolean Optimization [4]. The original point of 
Prevention Analysis was to help choose a subset of all systems, structures, and components (SSCs) at 
a given facility, such that special treatment of just those SSCs would suffice as the backbone of the 
safety case for that facility.* More generally, given a cut set expression for a particular undesirable 
outcome (such as “system failure”), Prevention Analysis can be used to select a subset of basic events 
whose prevention most efficiently accomplishes prevention of the undesirable outcome. In many cases 
of practical interest, it is possible to choose a relatively small fraction of the overall population of 
basic events for special treatment, and still achieve a very high level of system reliability, even if the 
rest of the basic events are assumed to have high probability. Blanchard and co-workers [5, 6] have 
carried out many applications of Prevention Analysis, including application to vital area analysis, 
which is somewhat related to the present application. 
 
Although the Lapp-Powers example discussed above has a control loop, it is actually too simple to be 
used to illustrate Prevention Analysis. A “flow loop” model that is slightly more complicated than the 
Lapp-Powers example has also been executed consistently with the above steps; that model will be 
presented separately. Here, we take the cut sets of the flow loop as given, and illustrate the process of 
preventing the top event.  
 
As it turns out, each one of the 96 cut sets† in the flow-loop example contains 3 elements: 
 

                                                
* In traditional (“deterministic”) reactor licensing, this is done simply by identifying SSCs credited in the Safety 
Analysis, including the SSCs in the safety trains that are incapacitated by the postulated limiting failure. But 
Prevention Analysis was originally formulated for non-reactor facilities, for which a comparable Safety Analysis 
analog was then lacking, and it could be of significant benefit in future reactor licensing work. 
† The reason some of them are highlighted in green is discussed below. 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

FLOW-LOOP-EX = 
 
 1        3      XX-5-A * XX-8-A * XX-11-A + 
 2        3      XX-5-A * XX-8-A * XX-10-A + 
 3        3      XX-5-A * XX-8-A * XX-9-A + 
 4        3      XX-1-A * XX-5-A * XX-8-A + 
 5        3      XX-5-A * XX-7-A * XX-11-A + 
 6        3      XX-5-A * XX-7-A * XX-10-A + 
 7        3      XX-5-A * XX-7-A * XX-9-A + 
 8        3      XX-1-A * XX-5-A * XX-7-A + 
 9        3      XX-5-A * XX-6-A * XX-11-A + 
10       3      XX-5-A * XX-6-A * XX-10-A +… 

 
In order to prevent the top event, we need to prevent every cut set. This can be accomplished by 
formulating the negation of the cut set expression to obtain the success paths; if every element of some 
success path succeeds, then that path succeeds, and the top event is prevented. However, for reasons 
discussed elsewhere, since “prevention” is not absolute, we may wish to prevent more than just one 
element in every cut set. In the present exercise, we wish to prevent at least two elements in every cut 
set, which is notionally analogous to applying a “single-failure” criterion.  When the machinations 
needed to formulate Level 2 prevention are carried out for this example, we get a handful of 
prevention sets. The first is  
 

Prevention Set 1: 
XX-2-A, XX-3-A, X-4-A, XX-5-A, XX-6-A, XX-7-A, XX-8-A, XX-13-A, 
XX-14-A, XX-15-A, XX-16-A,  XX-17-A,  XX-18-A,  XX-19-A. 

 
The events highlighted in green appear in the first 10 of the FLOW-LOOP-EX cut sets. In fact, 
whatever prevention set we choose, there are always at least two elements of that prevention set in 
every cut set, which was the goal in this example (“Level 2 Prevention”). In fact, we can completely 
neglect every event in the top event expression that is not part of the chosen prevention set – we can 
even assume that they all occur – and we will still be protected against the top event by two events. In 
Prevention Set 1, we are protecting XX-5-A and XX-8-A, but not XX-9-A, X-10-A, or X-11-A; if we 
assume that the unprotected events (yellow in the markup of the cut set expression above) all occur, 
the first four cut sets in FLOW-LOOP-EX all collapse to XX-5-A*XX-8-A, with both of these events 
prevented. 
 
The above discussion is written as if there were exactly one way to corrupt information flow to or 
from a given component (say, “C”), and that in a given prevention strategy, one either prevents that 
one corruption mode, or not. Suppose that in fact there are two ways: information flow to or from C 
can be compromised either remotely (via cyber) or locally (by an insider).  Then, in order to achieve a 
given level of prevention, if we wish to protect C, we have to protect it both from cyberattack and 
from local sabotage. Algebraically, suppose we start with a cut set A*B*C, but identify a need to 
enhance it by considering both “remote” and “local” corruption. The cut set then becomes A*B*(C-
R+C-L), where C-R is read as “C-Remote” and C-L is read as “C-Local.” Table 1 below shows how 
this affects the Prevention Analysis.  
 
In effect, the calculation is a bit like taking the complement of event C=C-R+C-L; we have   
 

C=C-R+C-L 
/C= /(C-R+C-L)=/C-R * /C-L. 

 
That is, “Prevent-C” has become “Prevent-C-R AND Prevent-C-L.”  
 
Why bother with this elaboration? Suppose that each of A, B, C has hypothetical “local” and “remote” 
corruption possibilities. Then the cut set A*B*C maps into 23 cut sets, comprising all unique 
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combinations of remote and local corruption modes for each of A, B, C.  Suppose further that the 
difficulties of “local” and “remote” corruption vary widely, but differently, for each of A, B, C. We 
may find that there is a fairly easy path to corruption of all three elements, involving a mixture of local 
and remote attacks, and steps should be taken to make those specific attacks harder. It is 
straightforward to generalize the above analysis to address this point by ranking prevention sets 
according to the effort needed to implement them. If all acts of prevention required the same effort, 
then the prevention sets could be ranked according to effort required, just by counting the number of 
prevention acts in each prevention set. In prevention analysis for pure internal events scenarios, this 
can work surprisingly well, for reasons discussed elsewhere; but if certain corruption events are 
essentially infeasible, this is valuable information. If certain local modes are essentially infeasible for 
the attackers, then their appearance in the prevention set is moot: yes, we need to be sure they are 
prevented, but they are inherently prevented, and we don’t have to do anything. 
 

Table 2: Prevention of both local and remote corruption events 
 

Level 2 Prevention 
 * = AND 
 + = OR 

… of A*B*C … of A*B*(C-L+C-R)=A*B*C-L+A*B*C-R 
 

Requires: 
 

Note that one cut set has become two, as the result of 
substituting C-L+C-R for C; so we need to prevent each 

of the two cut sets. This requires: 
 

(Prevent-A*Prevent-B+ Prevent-A* Prevent-C-L+ 
Prevent-B* Prevent-C-L) 

* 
(Prevent-A* Prevent-B+ Prevent-A* Prevent-C-R+ 

Prevent-B* Prevent-C-R) 

 
 

Prevent-A * Prevent-B + 
Prevent-A * Prevent-C + 
Prevent-B * Prevent-C. 

… which reduces to  
 

Prevent-A* Prevent-B+ 
Prevent-A*Prevent-C-L*Prevent-C-R + 
Prevent-B*Prevent-C-L*Prevent-C-R. 

 
4.  ACCOUNTING FOR THE OPERATORS 
 
In the simple examples discussed above, the operators were treated at a high level of abstraction, and 
we did not try to cause the operator to take actions having adverse results. In the Lapp-Powers 
example, operators were presumed capable of realizing that the hypothetical indications were mutually 
inconsistent, unless the Saboteur went to some trouble to mask the intervention by spoofing the 
indications, but we did not explicitly consider cases where we spoofed enough indications to cause 
operators to cause problems.  
 
A next step is to focus on operator response in the overall analysis. This will include cases where the 
attacks are meant to have adverse consequences, and we challenge the operators to recognize and 
thwart the attacks given valid indications, as well as cases in which the indications are also spoofed.  
We will develop a series of scenarios that progressively increase the level of process knowledge and 
sophistication of the Saboteur, and study the capability of the human operator to detect and mitigate 
cyber manipulation. Systematically varying the sophistication with which information is manipulated 
will help the researchers to pinpoint when and if an operator is no longer able to utilize redundant 
indications and additional information to identify discrepancies between individual indicators and 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

system behavior. With this information, we can start to characterize how the operator contributes or 
mitigates risk due to cyber manipulation.  
 
This will be done using the generic pressurized water reactor (gPWR) from GSE systems. Once the 
system has been modeled using the methodology described above, the system response and behavior 
will be verified by implementing the scenarios in a dynamic simulation.  
 
5.  CONCLUSION 
 
5.1   Essential Characteristics of the Method 
 

1. Model Information Flow 
 
The example involved a control loop. For present purposes, control loops are of general interest, 
because even if a system does not have physical controllers (as ESTEC does not), a controller may 
exist virtually, if Operators are expected to respond to indications of system state. We have not yet 
illustrated the potential to trick the Operator into causing damage, but the potential appears to be there. 
We have illustrated a process by which a disturbance injected by the Saboteur at one point propagates 
through the control loop to accomplish the Saboteur’s intent. 
 
To put it in slightly different words, the example performed above is a search for conditions under 
which Saboteur intent could be accomplished through the corruption of “signals,” understood in a 
general sense. By “signal,” we mean the transmission of information about the system state to be used 
for some sort of control purpose. This could be information sent to valves, telling them to open or 
close; it could be information about setpoints; it could be information about sensed conditions, like 
temperature. It could be information meant to directly cause changes in hardware state, or it could be 
information meant to trick the Operator either into doing something that ought not to be done, or 
leaving undone something that ought to be done.  
 
Essential Characteristic #1 is therefore that we should be exhaustively picking up, and reflecting, 
information paths. 
 

2. Model Control Functions 
 
Not all modern analyses are simple tank-to-vessel, flow-or-no-flow models; some involve more 
complicated modeling of control. But modeling of control is Essential Characteristic #2. This includes 
not only the physical control systems, but also the Operator. 
 

3. Think More Broadly than “Failure” 
 
Classical risk analysis methods are about “failure,” an important simplification. In the example, we 
analyzed ways of causing “failure,” ways of causing “damage,” and ways of masking the ongoing 
perpetration of failure or damage. “Failure”-centric analyses will not necessarily pick up “damage” 
scenarios, or vice versa. 
 
5.2   Limitations 
 
As in many instances of classical PRA, the logic structure depends on assumptions made about plant 
behavior, assumptions that need to be based on quality simulation or on actual plant performance. This 
comment applies at multiple levels: in principle, we need simulation in order to understand the real 
effect of a given spoof on the physical plant: How long does it take the system to respond, given a 
spoof? How long does it take the indications to respond, given a spoof? How long does it take for 
“damage” to occur in reality? We also need simulation to understand how the plant’s physical state 
manifests itself in the indications available to the operators. In this kind of application, doing a really 
good job of tricking the operator arguably requires knowing what indications should result from 
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particular system states. In the example above, we postulated the indications, and told the logic how to 
treat them; in a more sophisticated application, we would derive this information from considered 
simulation studies.  
 
Corrupting information flow is not the only way to cyberattack. We have in hand an example of 
“damage” caused by corruption of the power supplied to large rotating machinery. If we could 
similarly cause degraded, but not absent, voltage to systems that rely on particular voltages at 
particular frequencies, we might be able to cause “damage” and/or “failure.” Some instances of this 
may be causable by mechanisms appearing in the example, but others may not. 
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