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Abstract: This paper proposes techniques for constructing computational models describing the
distribution of a continuous output variable given input-output data. These models are called Random
Predictor Models (RPMs) because the predicted output corresponding to any given input is a random
variable. We focus on RPMs having a linear parameter dependency, a bounded support set and
prescribed functions for the first four moments. These constraints are realized by describing the
model parameters as staircase random variables. The high versatility of such variables, and their
low computational cost enable the efficient generation of possibly skewed and/or multimodal RPMs
over an input-dependent interval. Optimization-based strategies for calculating RPMs using several
optimality criteria are developed in this an a companion paper. These criteria include optimal moment-
matching, presented herein, as well as minimal-dispersion and maximum-likelihood formulations. The
computational demands of the first two approaches, which separate distribution-free and distribution-
fixed steps, are kept low by not requiring the simulation of solution candidates during the search for
the optimal RPMs. As an example we consider the estimation of the load being applied to a cantilever
beam from deflection measurements.
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1. INTRODUCTION

Metamodeling [1] is the process of creating a mathematical representation of a phenomenon based on
input-output data. Metamodeling techniques can be parametric or non-parametric. In the parametric
case, the functional form by which the output depends on the input is first prescribed using a model M,
and then the parameters of such a model are characterized. This step is commonly referred to as to
model calibration. The approach proposed below falls into this category.

Bayesian inference [2] is often used for model calibration. In Bayesian calibration, the objective is
to describe the parameters of a model as a vector of possibly dependent random variables by using
Bayes’ rule. The resulting vector, called the posterior, depends on an assumed prior random vector
and the likelihood function, which in turn depends on the observations, and on the structure M. This
approach does not make any limiting assumptions on the manner in which M depends on p, nor on
the structure of the resulting posterior. Making the prediction match the observations by adjusting
the hyper-parameters of a distribution is a long standing approach used in reliability-based design
optimization, moment matching algorithms, and backward propagation of variance [3, 4, 5, 6]. In
spite of its high computational demands, which entail simulating the predictor for each candidate
combination of the calibrating variables, and of the potentially high sensitivity of the posterior to the
assumed prior, this method is regarded as a benchmark in model calibration.

2. PROBLEM STATEMENT

A Data Generating Mechanism (DGM) is postulated to act on a vector of input variables, x, to produce
an output, y. In this article, the focus will be on the single-output (ny = 1) multi-input (nx ≥ 1) case.
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The dependency of the output on the input is arbitrary. Assume that N Independent and Identically
Distributed (IID) input-output pairs are obtained from a stationary DGM, and denote by D= {x(i),y(i)},
i = 1, . . .N, the corresponding data sequence. The main objective of this article is to generate a model
of the DGM based on D. In a parametric model the output depends on both the input and the parameter
through an equation. Denote by y = M(x, p) such an equation, where p ∈ Rnp are the model parameters.
Instead of the standard practice of trying to match all the data as closely as possible with M evaluated
at a single point p, the thrust in this work is to characterize p by either a bounded set P or by the joint
PDF fp(p) supported in P. In both cases, the prescription of P must ensure that each data point in D
can be fit exactly by the model evaluated at least one element of p in such a set. For a fixed value of the
input x, and as long as P is a connected set and M(x, p) is a continuous function (the only cases we will
consider), the propagation of P through M yields an interval of output values. Thus, these models are
called Interval Predictor Models (IPM). The desired IPM is a narrow interval of output values where
unobserved data will likely fall. Conversely, for a fixed value of the input x, the propagation of fp(p)
through M yields a random variable. Thus, these models are called RPMs. The desired RPM accurately
describes the probability distribution governing the DGM.

Optimization-based strategies for calculating RPMs having a linear parameter dependency were
developed. These optimality criteria include a moment-matching formulation, presented below, as well
as a minimal-dispersion and maximum-likelihood formulations, presented in the companion paper [7].
The background supporting these developments is introduced next.

3. PRELIMINARIES

Consider the continuous random variable z with support set ∆z = [zL, zU ], Probability Density Function
(PDF) fz : ∆z ⊂ R→ R+, and Cumulative Distribution Function (CDF) Fz : ∆z→ [0,1]. Denote by mr

the r-th central moment of z, which is defined as

mr =
∫

∆z

(z− µ)r fz(z)dz, r = 0,1,2, . . . (1)

where µ is the expected value of z. Note that m0 = 1, m1 = 0, m2 is the variance, m3 is the third-order
central moment, and m4 is the fourth-order central moment. Where reference is made to the r-th
moment of a random variable, we assume that the corresponding integral in (1) converges for that
distribution.

The random variables of interest will be constrained to have a bounded support set and given values for
µ , m2, m3, and m4. The bounded support constraint is ∆z ⊆ Ωz where Ωz = [z, z], with z≥ z, whereas
the moment constraints are given by (1). The parameters of these constraints will be grouped into the
variable θz ∈ R6 given by

θz = [z, z,µ ,m2,m3,m4] . (2)

Any random variable z having a support set contained by [z, z] with moments µ , m2, m3, and m4 must



[8] satisfy the feasibility conditions g(θz)≤ 0, where1

g1 = z− z, (3)

g2 = z− µ , (4)

g3 = µ− z, (5)

g4 =−m2, (6)

g5 = m2− v (7)

g6 = m2
2−m2(µ− z)2−m3(µ− z), (8)

g7 = m3(z− µ)−m2(z− µ)2 +m2
2, (9)

g8 = 4m3
2 +m2

3−m2
2(z− z)2, (10)

g9 = 6
√

3m3− (z− z)3, (11)

g10 =−6
√

3m3− (z− z)3, (12)

g11 =−m4, (13)

g12 = 12m4− (z− z)4, (14)

g13 = (m4− vm2−um3)(v−m2)+ (m3−um2)
2, (15)

g14 = m2
3 +m3

2−m4m2, (16)

for u = z+ z−2µ and v = (µ− z)(z− µ). The realizations of θ satisfying the constraints in Equations
(3-16) constitute the θ -feasible domain, Θ, defined as

Θ = {θ : g(θ )≤ 0} . (17)

A member of Θ will be called θ -feasible. Determining membership in Θ is a distribution-free assess-
ment applicable to possibly infinitely many random variables satisfying the desired constraints.

A particular class of random variables that can realize most of Θ is proposed in [8]. This class is called
staircase because the PDF of its members is piecewise constant over bins of equal width. Staircase
variables, are calculated by solving the convex optimization program

min
`≥0
{J(θ ,nb) : A(θ ,nb)`= b(θ ),θ ∈ Θ} , (18)

where J is the cost function used for optimization, nb is the number of bins partitioning Ωz, ` are the
PDF values at the bin centers, and A`= b are moment matching constraints. Staircase variables will be
denoted as

z∼ Sz(θz,nb,J). (19)

One of several cost functions J, each corresponding to different optimality criteria, can be chosen. The
points θ ∈ Θ for which a staircase variable with nb bins exists constitutes the staircase feasible domain,
S(nb). As expected, S(nb)⊂ Θ. Additional details on staircase variables are available in [8].

4. INTERVAL PREDICTOR MODELS

This section presents the means to generate the support set of an RPM. This will be carried out
by finding a baseline IPM using the same data sequence D that will be used to construct the RPM.

1 Throughout this paper vector inequalities hold component-wise.



Additional details on IPMs are available in [9]. An IPM assigns to each instance vector x ∈ X ⊆ Rnx a
corresponding outcome interval in Y ⊆R. That is, an IPM is a set-valued map, Iy : x→ Iy(x)⊆Y , where
Iy(x) is the predicted interval. Depending on context, the term IPM will refer to either the function Iy or
its graph {(x,y) : x ∈ X ,y ∈ Iy(x)} in X ×Y . A non-parametric IPM is given by

Iy(x) =
{[

y(x), y(x)
]
, y(x)≥ y(x)

}
. (20)

where the functions y(x) and y(x) are the lower and upper boundaries of the IPM respectively. A
parametric IPM is obtained by associating to each x ∈ X the set of outputs y that result from evaluating
the function y = M(x, p) at all values of p in the set P. Attention will be limited to the case in which
the output depends linearly on p and arbitrarily on x, i.e.,

y = p>ϕ(x), (21)

where ϕ(x) is an arbitrary basis, and to uncertainty sets P having a hyper-rectangular shape, i.e.,

P = {p : p ≤ p ≤ p}. (22)

The parameter points p and p are called the defining vertices of P. In this setting, a parametric IPM is
given by

Iy(x,P) =
[

y(x, p, p), y(x, p, p)
]
, (23)

where

y(x, p, p) = p>
(

ϕ(x)−|ϕ(x)|
2

)
+ p>

(
ϕ(x)+ |ϕ(x)|

2

)
, (24)

y(x, p, p) = p>
(

ϕ(x)+ |ϕ(x)|
2

)
+ p>

(
ϕ(x)−|ϕ(x)|

2

)
. (25)

Each member of the family of infinitely many predictions that results from evaluating the model M
at each realization p ∈ P lies between the IPM boundaries y(x, p, p) and y(x, p, p), and no tighter
containing functions exist. The spread of Iy(x,P), which is the distance between its upper and lower
boundaries, is

δy(x, p, p) = (p− p)>|ϕ(x)|. (26)

The narrower δy the more informative the IPM. Several IPM types can be calculated within this
framework. In this paper we seek IPMs given by (23), where the defining vertices of P are given
by{

p̂(c), p̂(c)
}
= argmin

u, v: u≤v

{
Ex[δy(x,v,u)] : y

(
x(i),v,u

)
≤ y(i) ≤ y

(
x(i),v,u

)
, c(u,v)≤ 0, i = 1, . . .N

}
,

(27)

where Ex[·] is the expected value operator with respect to x, and c(u,v) ≤ 0 are a set of additional
constraints that will be used to enforce additional attributes. This program is convex as long as
c(u,v)≤ 0 is a convex set. The uncertainty box corresponding to this IPM is

P̂(c) = {p : p̂(c) ≤ p ≤ p̂(c)}. (28)

Scenario optimization [10, 9] theory enables making a formal, distribution-free assessment on the
probability of unobserved data falling outside the predicted interval.



5. RANDOM PREDICTOR MODELS

An RPM is a mapping that assigns to each input vector x ∈ X a corresponding random variable Ry(x).
A non-parametric RPM is the random variable-valued map given by

Ry(x) = { fy(x)(y), y(x) ∈ ∆y(x)}, (29)

where fy(x) is the PDF of y at x ∈ X having the support set ∆y(x) = [y(x),y(x)] ⊆ Y . By contrast, a
parametric RPM is obtained by associating to each x ∈ X the set of outputs y corresponding to all values
of p described by a random vector with joint PDF fp(p) supported in ∆p, each weighted according to
its corresponding likelihood. Hence,

Ry (x, fp) = {y = M(x, p), p∼ fp(p), p ∈ ∆p}. (30)

The RPMs developed hereafter assume the form in (21). This structure enables the analytical description
of the moments of the output in terms of the moments of the parameters via

µy(x) = Ep[p]>ϕ(x), (31)

Ey
[
y2]= ϕ

>(x)Ep

[
pp>

]
ϕ(x), (32)

Ey
[
y3]= ϕ

>(x)Ep

[
pp>ϕ(x)p>

]
ϕ(x), (33)

Ey
[
y4]= ϕ

>(x)Ep

[
pp>ϕ(x)ϕ(x)>pp>

]
ϕ(x). (34)

The central moments of the output are given by

m2,y(x) = Ey
[
y2]− µ

2
y(x), (35)

m3,y(x) = 2µ
3
y(x)−3µy(x)Ey

[
y2]+Ey

[
y3] , (36)

m4,y(x) = Ey
[
y4]−3µ

4
y(x)+6µ

2
y(x)Ey

[
y2]−4µy(x)Ey

[
y3] . (37)

Hence, the moments of the output depend on ϕ(x) and µ = Ep [p], m2 = Ep
[
(p− µ)2

]
, m3 =

Ep
[
(p− µ)3

]
and m4 = Ep

[
(p− µ)4

]
. To simplify the notation, rewrite Equations (31), (35), (36) and

(37) as

µy(x) = hµ(µ ,x), (38)

m2,y(x) = hm2(µ ,m2,x), (39)

m3,y(x) = hm3(µ ,m2,m3,x), (40)

m4,y(x) = hm4(µ ,m2,m3,m4,x). (41)

In contrast to non-parametric RPMs, assuming a particular functional dependency between the inputs
and the output often renders RPMs with a suboptimal performance. The degradation in performance
stems from the fact that the likelihood of the parameter realization p ∈ ∆p via fp(p) corresponds to
the likelihood of the function y = p>ϕ(x) in the input-output space X ×Y . Hence, any assignment of
probability via fp(p) will affect the probability distribution within the RPM throughout X . In fact, the
set of parameter points in the intersection of P with a hyper-volume bounded by any pair of parallel
hyper-planes both perpendicular to the vector ϕ(x) ∈ Rnp is mapped by y = p>ϕ(x) onto a subinterval
of ∆y(x) = Iy(x,P). This dependency on the input x precludes shaping the probability distribution of the
RPM at a given input value x without affecting the probability distribution elsewhere.

Means to characterize fp(p) in (30) such that the resulting RPM accurately represents the data are
presented next.



6. MOMENT-MATCHING RPMS

This formulation aims at minimizing the offset between the target moments estimated from the data, to
be denoted as m̃, and those to be predicted by the RPM, to be denoted as m. Because these variables
are functions of the input x, they will be denoted as m̃y(x) and my(x) respectively. The algorithmic
implementation of this approach requires solving a sequence of optimization programs. Each program
entails searching for the combination of moments of p of a given order that minimizes the offset
between the target and the prediction. Note that these searches for the optimum are carried out in a
distribution-free setting. Once the optimal moments of all np parameters are solved for, we calculate a
moment-matching staircase variable for each parameter in p. A target-matching RPM is obtained by
using the resulting fp(p) in (30).

Means to prescribe the target functions given D are provided next. Denote by

m̃y(x) =
[
µ̃y(x), m̃2,y(x), m̃3,y(x), m̃4,y(x)

]
, (42)

for x ∈ X , the target functions containing the mean µ̃y(x), the variance m̃2,y(x), the third-order central
moment m̃3,y(x), and the fourth-order central moment m̃4,y(x). Because not enough data (if any) is
available to characterize the DGM at a fixed value of the input x, we will adopt the “sliding window”
approach based on the weighted sample moments proposed in [11]. The approach proposed therein
yields the target functions m̃y(x) in (42).

The predicted moments my(x) to be solved for are given by

my(x) =
[
µy(x),m2,y(x),m3,y(x),m4,y(x)

]
. (43)

When µy(x) = µ̃y(x), m2,y(x) = m̃2,y(x), m3,y(x) = m̃3,y(x), and m4,y(x) = m̃4,y(x) for all x ∈ X , a “perfect
match” between the prediction and the target is attained. The nonparametric RPMs in [11] achieve a
perfect match. This is often not the case when the RPM is parametric, which is the case considered
herein. The predicted moments my(x) depend on the support of p given in (22), and on the moments of
p via Equations (38-41). The full set of parameters of independent variables will be grouped into the
matrix θp ∈ Rnp×6 given by

θp =
[

p, p,µ ,m2,m3,m4
]
, (44)

where p and p are the defining vertices of P, to be determined, and the moments µ , m2, m3 and m4 are
elements of Rnp . In this setting, we aim at shaping my(x) in (43) by manipulating θp in (44) such that
the offset between the predicted moment functions in my(x) and the target moment functions in m̃y(x) is
minimized. For θp to be a feasible parameter set for a random vector p, the constraints g(θp)≤ 0 must
be satisfied. By g(θp), we mean all g(θpi) where θpi is row i of matrix θp for all i = 1, . . . ,np.

Means to solve this problem are provided next. To this end we will use gv, with v being the subset of
the index list {1 . . . ,14}, as a short-hand notation for the corresponding components of the feasibility
constraint functions g(θ ) in (3-16). Furthermore, we define the uncertainty set

Ωp(γ ,c) = {p : p(c,γ)≤ p≤ p(c,γ)}, (45)

whose defining vertices are

p(γ ,c) = p̂(c)− γ( p̂(c)− p̂(c)), (46)

p(γ ,c) = p̂(c)+ γ( p̂(c)− p̂(c)), (47)

for p̂(c) and p̂(c) given by (27). Note that both Iy(x,Ωp(γ ,c)) for γ > 0 and Iy(x,Ωp(0, /0)) enclose the
data, but the spread of the latter is likely smaller. For a given set of target functions m̃y(x), θp is found
by solving the following sequence of optimization programs.



Solving for µ̂:

µ̂ =argmin
µ

{
N

∑
i=1

(
µ̃y(x(i))−hµ

(
µ ,x(i)

))2
}
. (48)

Solving for m̂2: Let p and p be the defining vertices of Ωp(γ0,c1), where γ0 ≥ 0 and c1 = ga|µ=µ̂
for

a= {2,3}. The notation ga|µ=µ̂
means that the variable µ in the functions ga is held fixed at µ̂ . µ̂ is a

feasible mean for p with support set Ωp(γ0,c1). The optimal variance is

m̂2 =argmin
m2

{
N

∑
i=1

(
m̃2,y(x(i))−hm2

(
µ̂ ,m2,,x(i)

))2
: c2(m2)≤ 0

}
. (49)

where c2 = gb|z=p, z=p, µ=µ̂
and b= {4,5}.

Solving for m̂3: Let p and p be the defining vertices of Ωp(γ1,c3) for c3 = ga∪b|µ=µ̂ ,m2=m̂2
. The

optimal third moment is

m̂3 =argmin
m3

{
N

∑
i=1

(
m̃3,y(x(i))−hm3

(
µ̂ , m̂2,m3,x(i)

))2
: c4(m3)≤ 0

}
, (50)

where c4 = gc|z=p, z=p, µ=µ̂ ,m2=m̂2
and c= {6,7,8,9,10}.

Solving for m̂4: Finally, let p and p be the defining vertices of Ωp(γ2,c5) for c5 =
ga∪b∪c|µ=µ̂ ,m2=m̂2,m3=m̂3

. The optimal fourth moment is

m̂4 =argmin
m4

{
N

∑
i=1

(
m̃4,y(x(i))−hm4

(
µ̂ , m̂3,m4,x(i)

))2
: c6(m4)≤ 0

}
. (51)

where c6 = gd|z=p, z=p, µ=µ̂ ,m2=m̂2,m3=m̂3
and d= {11,12,13,14}.

Hence, at each program in the sequence we search for the moments of p of a given order that minimizes
the offset between the predicted and the target moment functions of such an order. The solution of any
program in the sequence becomes a parameter of the programs that follow. Furthermore, the values of
p and p at any step of the sequence require calculating an IPM subject to constraints ci ≤ 0 that make
the previously found optimal moments feasible. Note that these optimization programs are carried out
in a distribution-free setting. By choosing values of the γs greater than zero the feasibility constraints
depending on p and p are relaxed, and a better matching is attained.

A data-enclosing IPM of minimal spread consistent with the optimal moments is obtained by solving
(27) subject to the full probabilistic constraint c≤ 0 where c = g|

µ=µ̂ ,m2=m̂2,m3=m̂3,m4=m̂4
. The defining

vertices of the parameter box of this IPM will be denoted as p̂ and p̂ hereafter. Equation (44) evaluated
at this set of optimal moments yields

θ̂p =
[

p̂, p̂, µ̂ , m̂2, m̂3, m̂4
]
. (52)

Equations (48-51) evaluated at the optimal moments yields the predicted moment functions

µ̂y(x) = hµ(µ̂ ,x), (53)

m̂2,y(x) = hm2(µ̂ , m̂2,x), (54)

m̂3,y(x) = hm3(µ̂ , m̂2, m̂3,x), (55)

m̂4,y(x) = hm4(µ̂ , m̂2, m̂3, m̂4,x). (56)



Figure 1: Top: Data ensemble of beam deflections (solid lines), IPM without probabilistic constraints
(red dashed line) and IPM with probabilistic constraints (black dashed-dotted line). Bottom: Two-
percentiles of the moment-matching RPM.

Any RPM for which fp(p) in (30) realizes µ̂ , m̂2, m̂3, m̂4 yields these predicted moment functions.
Such moments along with p̂ and p̂ define a probability-box possibly comprised of infinitely many
random variables. Each member of this family realizes the optimal moments for the given bound on the
support set. In the developments that follow we seek a particular member of this family. For the sake
of simplicity we will further assume that the components of p are independent. The more general case
of the parameters in p being dependent can be addressed using copulas. In particular, we will pursue a
moment-matching RPM having the staircase structure given in (19), such that

pi ∼ Spi

(
θ̂pi ,nb,J

)
for i = 1, . . .np, (57)

where θ̂pi is the i-th row of θ̂p. This form enables the efficient calculation of fp(p). The resulting
PDFs, which depend on the selected cost J, can take on arbitrary shapes including highly skewed and
multimodal distributions. This flexibility can be reduced by either restricting the feasible space in
(48-51) or by choosing a suitable J.

Example: Next we consider the problem of characterizing the unknown loading applied to a cantilever
beam from displacement measurements. N = 500 measurements, each consisting of a vector of



locations on the beam where the sensors are placed, x, and the corresponding deflection vector y, are
available. Therefore, an input-output pair {x(i),y(i)} ∈D for some i = 1, . . . ,500 is given by two vectors
of equal length. The top of Figure (1) shows the data ensemble. Note that the displacement at x = 0,
where the beam is clamped, is zero for all cases.

Euler beam theory justifies the selection of the parametric model in (21), where p represents the applied
load. This is a consequence of the principle of superposition which states that on a linear elastic
structure, the combined effect of several loads acting simultaneously is equal to the algebraic sum
of the effects of each load acting individually. The basis of the model ϕ(x) is chosen to be the beam
deflection corresponding to standard loading conditions of magnitude one. Such conditions include
point forces and moment forces at fixed input values, as well as distributed loading conditions having a
uniform or triangular form over the full extension of the beam. The basis terms corresponding to such
loading conditions are

ϕforce(x) =

{
x2

6EI (3a− x) if 0≤ x ≤ a,
a2

6EI (3x−a) if x ≥ a
(58)

ϕmoment(x) =

{
x2

2EI if 0≤ x ≤ a,
a

2EI (2x−a) if x ≥ a
(59)

ϕ(x)uniform =
x2

24EI
(x2 +6L2−4Lx), (60)

ϕ(x)triangular increasing =
x3

120EIL
(20L3−10L2x+ x3), (61)

ϕ(x)triangular decreasing =
x2

120EIL
(10L3−10L2x+5Lx2− x3), (62)

where E is the Young modulus, I is the area moment of inertia, L is the length of the beam, and a≤ L
is the x value at which the load is applied. Note that the selection of this parametric model is supported
by physics-based arguments governing the DGM.

Six loading conditions were used to assemble ϕ(x) for given values of E , I, L and a’s. With ϕ(x) in
hand we then solved for the minimum-spread IPM in (27) with c = /0 (no probabilistic constraints). In
this setting, the uncertainty box P̂ resulting from the IPM calculation prescribes each force and moment
as a bounded interval. Figure (1) shows the boundaries of the resulting IPM as red dashed lines. This
IPM tightly encloses the data as desired.

The empirical moment functions, shown in Figure (2) as solid lines, were estimated from the data
ensemble. These functions were then used to characterize the moments of p by solving (48-51), which
in turn, yield the predicted moments for the RPM. These moments, which closely approximate the
empirical moments throughout X , are also shown in Figure (2). With the bound to the support set
and the optimal moments of p in hand, we can then use (57) to calculate the distribution of the loads.
Figure (3) shows the resulting staircase variables for a cost function J that minimizes the degree of
non-unimodality in the distributions. Note that the shape of the PDFs, which include multimodal and
highly skewed forms, fall outside the spectrum of PDFs described by standard random variables.

Finally, the bottom of Figure (1) shows the two-percentiles of the RPM. This figure was obtained by
simulating the RPM and post-processing the predicted responses. Note that the predictor captures
well not only the range of deflections but also the input-dependent skewness of the distribution. The
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Figure 2: Empirical (solid) and predicted moment functions associated with the RPM (dashed).

boundaries of an IPM constrained by the optimal moments are superimposed at the top. Note that the
tightness of the IPM is slightly degraded by the inclusion of such constraints.

This example demonstrates how to infer the randomness in the loading conditions from measurements.
Even though Euler beam theory justifies the selection of (21), the analyst must choose which terms
to include in ϕ(x). Whereas the exclusion of important terms will yield to model-form uncertainty,
thus mischaracterizations of the loads, the inclusion of unnecessary terms will rapidly increase the
computational expense of the approach. Such an expense is proportional to order of the moment being
matched. Note that an RPM that closely matches the empirical moments does not necessarily match
the empirical percentiles. This is particularly valid when there is significant model-form uncertainty.

7. DISCUSSION

IPMs provide the means to describe the support set of a DGM, whereas RPMs provide the means
to approximate the manner in which the data is distributed within such a set. Scenario optimization
theory enables making a formal, distribution-free assessment on the probability of unobserved data
falling outside the predicted interval [9]. By contrast, RPMs enable making a subjective assessment
on the manner in which the data are distributed inside their range. Both IPMs and RPMs admit a
functional interpretation: they describe an ensemble of infinitely many input-output functions. Only
RPMs however, weight each member function according to its likelihood.

IPMs are driven by the extreme, outer-most data points of the data ensemble, which often are low-
probability events occurring in the long tails of a distribution. As such, the bulk of the data is
inconsequential to the IPM. RPMs mend this deficiency by describing probabilistic features of the
DGM within this interval. This higher fidelity description comes with a price: IPMs require solving a
single convex optimization program, whereas parametric staircase RPMs require solving one or several
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Figure 3: Identified loads.

polynomial optimization programs. Moment-matching RPMs are designed to match functions extracted
from the data.

In the examples above, the superset of the support, Ωy(x), was kept fixed during the calculation of the
moments. The prescription of this set has substantive implications on the resulting distribution. Overly
tight sets along with extreme moments often yield PDFs with sharp spikes. This is a consequence of
over-restricting Θ by using exceedingly small values for z− z. Larger values of z− z increase the size of
the available set of feasible moments, thus the potential for better probabilistic predictions. Hence, the
analyst should choose between making either the tightness of the support of the RPM or its probability
allocation a priority. These conflicting objectives should be traded-off until the desired balanced is
attained.

Note that the selection of the parameters of ϕ(x) affect both the tightness of the support and the
predicted distribution. Choosing parameter values that suit one of them might incidentally degrade the
performance of the other one. This prescription should be made in accordance with the data in hand
and the intended use of the model. Furthermore, RPMs in which a single term in ϕ(x) dominates an
input-output region cannot closely track target moments varying therein.

The versatility of a predictor is intrinsically linked to that of the assumed distribution structure for
its parameters. As such, staircase variables are particularly suitable for describing complex DGMs.
However, all this freedom might render predictors having undesirable spikes and spurious multimodal
distributions. This can be avoided by further restricting the feasible space Θ or by relaxing some of the
staircase constraints [8].
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