
Minimal-Dispersion and Maximum-Likelihood Predictors with a
Linear Staircase Structure

Luis G. Crespoa*, Sean P. Kennyb, and Daniel P. Giesyc

a,b,cDynamic Systems and Controls Branch,
NASA Langley Research Center, Hampton, VA, 23681, USA

Abstract: This paper proposes techniques for constructing computational models describing the
distribution of a continuous output variable given input-output data. These models are called Random
Predictor Models (RPMs) because the predicted output corresponding to any given input is a random
variable. We focus on RPMs having a linear parameter dependency, a bounded support set and
prescribed functions for the mean, and the second-, third-, and fourth-order central moments. These
constraints are realized by describing the model parameters as staircase random variables. The high
versatility of such variables, and their low computational cost enable the efficient generation of
possibly skewed and/or multimodal RPMs over an input-dependent interval. Optimization-based
strategies for calculating RPMs using several optimality criteria are developed. These criteria include
a moment-matching formulation, presented in a companion paper, and a minimal-dispersion and a
maximum-likelihood formulations presented herein. The computational demands of the first two
approaches, which separate distribution-free and distribution-fixed steps, are kept low by not requiring
the simulation of solution candidates during the search for the optimal RPMs.
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1. INTRODUCTION

Metamodeling [1] is the process of creating a mathematical representation of a phenomenon based on
input-output data. Metamodeling techniques can be parametric or non-parametric. In the parametric
case, the functional form by which the output depends on the input is first prescribed using a model M,
and then the parameters of such a model are characterized. This step is commonly referred to as to
model calibration. The approach proposed below falls into this category.

Bayesian inference [2] is often used for model calibration. In Bayesian calibration, the objective is
to describe the parameters of a model as a vector of possibly dependent random variables by using
Bayes’ rule. The resulting vector, called the posterior, depends on an assumed prior random vector
and the likelihood function, which in turn depends on the observations, and on the structure M. This
approach does not make any limiting assumptions on the manner in which M depends on p, nor on
the structure of the resulting posterior. Making the prediction match the observations by adjusting
the hyper-parameters of a distribution is a long standing approach used in reliability-based design
optimization, moment matching algorithms, and backward propagation of variance [3, 4, 5, 6]. In
spite of its high computational demands, which entail simulating the predictor for each candidate
combination of the calibrating variables, and of the potentially high sensitivity of the posterior to the
assumed prior, this method is regarded as a benchmark in model calibration.

2. PROBLEM STATEMENT

A Data Generating Mechanism (DGM) is postulated to act on a vector of input variables, x, to produce
an output, y. In this article, the focus will be on the single-output (ny = 1) multi-input (nx ≥ 1) case.
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The dependency of the output on the input is arbitrary. Assume that N Independent and Identically
Distributed (IID) input-output pairs are obtained from a stationary DGM, and denote by D= {x(i),y(i)},
i = 1, . . .N, the corresponding data sequence. The main objective of this article is to generate a model
of the DGM based on D. In a parametric model the output depends on both the input and the parameter
through an equation. Denote by y = M(x, p) such an equation, where p ∈ Rnp are the model parameters.
Instead of the standard practice of trying to match all the data as closely as possible with M evaluated
at a single point p, the thrust in this work is to characterize p by either a bounded set P or by the joint
PDF fp(p) supported in P. In both cases, the prescription of P must ensure that each data point in D
can be fit exactly by the model evaluated at least one element of p in such a set. For a fixed value of the
input x, and as long as P is a connected set and M(x, p) is a continuous function (the only cases we will
consider), the propagation of P through M yields an interval of output values. Thus, these models are
called Interval Predictor Models (IPM). The desired IPM is a narrow interval of output values where
unobserved data will likely fall. Conversely, for a fixed value of the input x, the propagation of fp(p)
through M yields a random variable. Thus, these models are called RPMs. The desired RPM accurately
describes the probability distribution governing the DGM.

Optimization-based strategies for calculating RPMs having a linear parameter dependency were devel-
oped. These optimality criteria include a moment-matching formulation, presented in the companion
paper [7], as well as a minimal-dispersion and maximum-likelihood formulations, presented below.
The background supporting the developments that follow is available in [7].

3. RANDOM PREDICTOR MODELS

An RPM is a mapping that assigns to each input vector x ∈ X a corresponding random variable Ry(x).
A non-parametric RPM is the random variable-valued map given by

Ry(x) = { fy(x)(y), y(x) ∈ ∆y(x)}, (1)

where fy(x) is the PDF of y at x ∈ X having the support set ∆y(x) = [y(x),y(x)] ⊆ Y . By contrast, a
parametric RPM is obtained by associating to each x ∈ X the set of outputs y corresponding to all values
of p described by a random vector with joint PDF fp(p) supported in ∆p, so

Ry (x, fp) = {y = M(x, p), p∼ fp(p), p ∈ ∆p}. (2)

Attention will be limited to the case in which the output depends linearly on p and arbitrarily on x,
i.e.,

y = p>ϕ(x), (3)

where ϕ(x) is an arbitrary basis. This structure enables the analytical description of the moments of the
output in terms of the moments of the parameter. These expressions, fully prescribed in [7], can be
written as

µy(x) = hµ(µ ,x), (4)

m2,y(x) = hm2(µ ,m2,x), (5)

m3,y(x) = hm3(µ ,m2,m3,x), (6)

m4,y(x) = hm4(µ ,m2,m3,m4,x). (7)

Means to characterize fp(p) in (2) such that the resulting RPM accurately describes the distribution of
the data are presented next.



3.1. Minimal-Dispersion RPMs

This section presents a strategy for generating RPMs having minimal dispersion from the data. As in the
moment-matching RPMs, we will first perform a search for the optimal moments of the parameters in a
distribution-free setting, and then prescribe a staircase random variable for each parameter that matches
such moments. In contrast to the moment-matching approach, however, the minimal dispersion RPMs
do not require setting target moment functions. The formulation for calculating minimal dispersion
RPM is presented next.

Assume that the np parameters in (3) are independent random variables realizing the support bounds and
moments given by θp1 , . . . θpnp

respectively. A minimal dispersion RPM is constrained to satisfy〈
θ̂p1 , . . . θ̂pnp

〉
= argmin

θp1 ,...,θpnp

{
‖c‖
N

: g(θpi)≤ 0, y( j) ∈ Iα

(
x( j)
)
, i = 1, . . .np, j = 1, . . .N

}
, (8)

where c ∈ RN is given by

c j =
∫ y(x( j))

y(x( j))

(
y( j)− y

)2
fy(x( j))(y) dy =

(
y( j)− µy(x( j))

)2
+m2, y(x( j)), (9)

fy(x)(y) is the PDF of the RPM at x, Iα(x) = [yα(x),y1−α(x)] is an approximation1 to the prediction
interval bounded by the α and 1−α quantiles, and µy(x) and m2, y(x) are given by (4) and (5).

Hence, we seek an RPM that minimizes the average dispersion of the prediction from the data, measured
by c, while enclosing the data within the high-probability region Iα(x). Note that the less dispersed
fy(x)(y) is about the observed output y j, the smaller c j. An ideal prediction will have a dual effect: it
will place the mean at the observed output while minimizing the variance. The first set of inequality
constraints ensures feasibility, whereas the second set enforces data containment by Iα(x). Hence, the
minimization of the cost reduces the dispersion of the process from the data, whereas the second set of
constraints ensure that such a dispersion is sufficiently large.

Multiple approximations to Iα(x) can be used. In this paper we use approximations to the α and 1−α

quantiles of each parameter to prescribe its corresponding prediction interval. The cartesian product of
such intervals yields the hyper-rectangle Pα ,1−α ⊂ P̂, where P̂ is the optimal parameter box resulting
from calculating an IPM [7]. In particular, the limits of any of such intervals are

pα = µ−n1
√

m2−n2
3
√

m3, (10)

p1−α = µ +n1
√

m2−n2
3
√

m3, (11)

where n1 and n2 are fixed constants. Ideally, [pα , p1−α ] should be a tight inner approximation to all the
prediction intervals of all the random variables constrained by θ . The high probability region Iα(x) in
input-output space is given by the IPM corresponding to Pα ,1−α [7]. If n2 = 0, only the support bound,
the mean and the variance of each parameter will be solved for. If n2 > 0, we will also be solving for
the third-order moment. In the most general case pα and p1−α depend on all the components of θ .
Being able to accurately describe the high-probability region Iα(x) in terms of only the components
of θ is instrumental in making Equation (8) distribution-free. Note that Equation (9) indicates that a
minimal dispersion RPM implicitly assumes the targets µ̃y(x(i)) = y(i) and m̃2, y(x(i)) = 0.

1 This interval-valued function must only depend on the components of θ for the formulation to be distribution-free.
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Figure 1: Data points, 95% prediction interval of the DGM, and corresponding IPM.

The likelihood of the data corresponding to a minimal-dispersion RPM might not be maximal. For
instance, consider the degenerated case in which there is no input dependency, and the RPM is a
random variable based on the output data y(1), . . . y(N). In this case the PDF will peak at the sample
mean, where no data might be present. As such, this technique is well suited for cases in which most
of the probability associated with the DGM concentrates about its mean function. In such a case, the
formulation in (8) will render predictors similar to those found via Maximum Likelihood Estimation
(MLE). The notable difference between both approaches however, will be not having to simulate the
process during the search for a minimal dispersion RPM. With the solution to (8) at hand, staircase
variables that realize the resulting values for θ̂p1 , . . . θ̂pnp

can be readily calculated. Note that (8) is a
distribution-free step whereas the latter step is not.

Example 1: Next we consider a single-input single-output Gaussian DGM having input-dependent
mean and variance functions in X = [0,1]. Figure 1 shows the mean function as well as the prediction
interval corresponding to the 95% quantiles. Notice that the variance reduces to zero at x = 0.32 and
x = 0.87. An IPM based on N = 250 data points, shown as red ×’s, was derived first. The IPM uses the
basis ϕi(x) = e−(x−ui)

2/vi , i = 1, . . . ,np, where ui ∈ R is a center and vi ∈ R is a length-scale parameter.
We choose uniformly distributed centers over X , and length scale parameters equal to 1/15. Note
that the IPM boundaries, shown as black solid lines, are driven by the outer-most data points of the
ensemble, and whereas some regions within the IPM have low/zero-probability, e.g., the prediction at
x = 0.87, some regions outside the IPM are likely to occur, e.g., the prediction at x = 0.

The cost in (8) corresponding to an RPM having a uniformly distributed p over the parameter box P̂ is
1.4586. This RPM however, violates the data containment constraint.

A minimal-dispersion RPM was derived using the same data sequence and basis used for the IPM.



Figure 2: Minimal-dispersion RPM.

Furthermore, we fixed the bound of the support set Ωp to

Ωp(γ) =
{

p :−γ( p̂− p̂)≤ 2p− p̂− p̂ ≤ γ( p̂− p̂)
}
, (12)

where p̂ and p̂ are the defining vertices of the uncertainty box P̂ of a data-enclosing IPM [7]. Data
containment is achieved as long as γ ≥ 1. Therefore, we will be searching for the optimal moments of
the parameters given an outer bound on their support set. The high-probability region Iα(x) was built
using Equations (10) and (11) for n1 = 2, which corresponds to the prediction interval of a Gaussian
random variable for α = 0.025, and n2 = −1. With the solution to (8) at hand, we then assume the
staircase structure Sp(θp,500,E) for all np = 10 parameters and γ = 2. Figure 2 shows the PDFs of
the resulting RPM. The limits of Ωy(x) (white lines) and the data (red ×’s) are also shown. Note that
the PDF peaks in the areas of high concentration of data (regions in yellow), while exhibiting enough
probability dispersion to cover the entire data ensemble. This dispersion captures well the strong
input-dependency of the data. This figure shows that even though the predictor is not Gaussian, the
RPM accurately represents the Gaussian DGM. The cost of the minimal dispersion RPM is 1.6304,
which is about 13% greater than that for the uniform RPM referred to above. This increase in the cost
is needed to satisfy the data enclosing constraint.

Figure 3 shows the staircase variables corresponding to Ωp = ∆p. The assumed form for Iα(x) makes
Equation (8) independent of the fourth-order moments. Therefore, these moments are prescribed
indirectly by choosing the entropy E as the cost J.

Values of γ in (12) near one yield RPMs that not only attain a greater dispersion/cost but might also
have a multimodal distribution. This is a consequence of using an overly tight and suboptimal Ωp in
Equation (8). By fixing Ωp upfront we are artificially restricting the probabilistic performance the RPM
can attain. The optimal/smallest dispersion is obtained when the six components of all the θ ’s are used
during optimization. This practice however, will not prevent the occurrence of multimodality.
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Figure 3: PDFs of the parameters of the minimal-dispersion RPM.

3.2. Maximum-Likelihood RPMs

This section presents a technique in which the hyper-parameters of the variables describing p are
tuned using a maximum likelihood technique. To this end, we define the Zero-Prediction-Error (ZPE)
manifold corresponding to the data point {x(i),y(i)} ∈ D as

Zi =
{

p : y(i) = M(x(i), p)
}
. (13)

The uncertainty set P corresponding to any data containing IPM/RPM must intersect all ZPE manifolds
Z(1), . . .Z(N). Unless the intersection between P and Zi is at one of its vertices, there are infinitely many
parameter realizations, thus infinitely many model predictions y = M(x, p), p ∈ P, passing through the
data point {x(i),y(i)}. When the model is given by (3), the ZPE manifolds are hyperplanes.

The formulation below seeks RPMs that maximize the likelihood of the ZPE manifolds. Evaluating the
likelihood on the parameter space p rather than on the input-output space X ×Y eliminates the need for
simulating the random process at each solution candidate considered in the search for the optimal RPM
(i.e., reconstructing the random process and evaluating the likelihood at each of the N data points).
Therefore, this technique is more computationally efficient than such an alternative. In contrast to
the other techniques proposed thus far, and because the likelihood is not uniquely dependent on θ ,
this approach requires assuming a structure for the random variables describing p up front. Hence,
this is a distribution-fixed approach. In this section we will assume the parameters in p are staircase
variables having a fixed number of bins nb. Any other family of random variables can be used instead.
However, we expect the versatility of the staircase variables to render a greater likelihood of the data.
The formulation for generating a maximum log likelihood RPM is as follows.

Assume that the parameters p in (3) are the independent staircase random variables p j ∼ S
(
θp j ,nb,J

)
,



j = 1, . . .np, where nb is fixed. The RPM that maximizes the likelihood of the data is given by

〈
θ̂p1 , . . . , θ̂pnp

〉
= argmax

θp1 ,...,θpnp

{
N

∑
i=1

log (Li) : θp j ∈ S(nb), Ωp∩Zi 6= /0; i = 1, . . .N, j = 1, . . .np

}
, (14)

where Li is given by the surface integral

Li =
∫

Zi=0
fp(θp1 ,...,θpnp )

(p) dS, (15)

and fp(θp1 ,...,θpnp )
is the joint density of p. Hence, this RPM maximizes the sum of the integrals of the

log likelihood over the ZPE manifolds2. Recall that all the parameter points over a ZPE manifold yield
responses y(x) passing through the corresponding datum. The cost in (15) can be readily evaluated
using sampling. When the uncertainty set Ωp is fixed in advance, which is the case considered hereafter,
the corresponding samples are independent of the remaining optimization variables. Consequently,
the samples falling into Ωp ∩ Zi will only have to be generated once, substantially mitigating the
computational demands of the algorithm. Furthermore, by choosing the set in Equation (12) the data
containment constraint will be satisfied by design. The case in which the parameters in p are not
independent can be considered by augmenting the set of design variables with the hyper-parameters of
a copula with staircase marginals. This practice, however, will be presented elsewhere.

Example 2: Next we calculate a maximum-likelihood RPM based on the same data sequence used
above. The staircase structure Sp(θ ,500,E) was assumed for all np = 10 parameters. Figure 4 shows
the PDFs of the RPM in input-output space. The RPM allocates most of the probability near the
data as intended. Notice the multimodal predictions near x = 0.36 and x = 0.55. The solution to (14)
maximizes the likelihood of reproducing the data without any consideration on the resulting shape of
the RPM, so there is no basis to expect convergence to a prediction assuming any particular form. The
average log likelihood for this RPM is 2.4318. For comparison sake, the cost corresponding to an RPM
having a uniform distribution over Ωp is −0.6016.

The comparison of Figures 2 and 4 indicates that the maximum-likelihood RPM allocates more
probability near the data than the minimum-dispersion RPM. However, the spurious multimodal
prediction and the zero likelihood subdomains occurring at x = 0.33 and x = 0.55 are undesirable.
These anomalies can be avoided by further restricting the feasible design space Θ, e.g., forcing the
parameters to by simply supported unimodal variables, at the expense of a reduction in the value of the
optimal likelihood [8].

Figure 5 shows the corresponding staircase variables. Note that the PDFs of p1, p4, p6, p9 and p10
are multimodal with p6 exhibiting a large spike. The multimodal nature of the parameters yields the
multimodal prediction seen at some input values. Note however that desirable features on the PDFs
of the parameters might not necessarily transfer to the predicted output, e.g., a linear combination of
unimodal PDFs for all p’s does not necessarily yield a unimodal y(x).

2 One could alternatively evaluate the moments of y given those of p using Equations (4-7), approximate the response with a
staircase variable at each observed input x(i) and then evaluate the likelihood of y(i) for all i = 1, . . .N. This practice requires
calculating N staircase variables for each optimization point found in the search for the optimum, instead of the considerably
less np variables required by (14). Having to solve np optimization programs is computationally viable thanks to the convex
structure of the staircase variables.



Figure 4: Maximal-likelihood RPM.

4. DISCUSSION

The minimal-dispersion approach is well suited for DGMs having a unimodal distribution concentrated
about its mean. The predicted third- and fourth-order moments of the resulting RPM solely depend
on the manner by which the high probability region Iα is parameterized. The computational demands
of this approach, which separates distribution-free and distribution-fixed steps, are kept low by not
requiring the simulation of RPM candidates during the search for the optimal RPM. Conversely, the
maximum likelihood approach requires assuming a class of distributions for the model parameters
up front. Furthermore, it requires calculating such distributions repeatedly making the method more
computationally expensive. The versatility of a predictor is intrinsically linked to that of the assumed
distribution structure for its parameters. As such, staircase variables are particularly suitable for
describing complex DGMs. However, all this freedom might render predictors having undesirable
spikes and spurious multimodal distributions. This can be avoided by further restricting the feasible
space Θ or by relaxing some of the staircase constraints [8].

The strategies proposed can be naturally extended to the case in which the parametric model depends
arbitrarily on p, and to the case in which the staircase variables are dependent. These situations,
however, will require simulating the predictor candidates repeatedly, practice that will substantially
increase the computational cost.
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