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Abstract: Raw material transportation equipment is considered as a key factor to meet production planning 

goals in mining industry. Mine dynamic circumstances lead to variations in equipment reliability, which 

has a direct effect on the attained production capacity during operating intervals. Prevalent reliability 

evaluation techniques are concentrated only on analyzing failure time data based on fully known 

probabilistic distribution functions. Nevertheless, time between failures may be influenced by various 

operational and environmental conditions. In this study, Cox proportional hazard regression model is 

proposed to estimate the reliability of complex systems considering significant covariates in dynamic 

situations. In this method, baseline hazard function is parametrically modeled for simulation and 

extrapolation purposes. A real case study was completed to investigate the impact of different scenarios on 

the mining equipment reliability. The collected covariates data consist of severity of failure incidents, type 

of failed sub-systems, environmental temperature and climate conditions. The research results revealed that 

identification and quantification of the covariates are taken into consideration as a main aspect in prediction 

of failure rate of mining equipment. This framework results in strong insights into critical sub-systems and 

environmental uncertainties, leading to high risk levels on the complex systems. 
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1. INTRODUCTION 

Haulage equipment is considered as a critical element to meet the production planning targets. However, 

operational variations and dynamic environment considerably affect the haulage equipment reliability and 

thus the attained production capacity is declined. In mining industry, these kinds of situations can be 

classified into two main groups including operational and environmental factors. The operational factors 

refer to various working bench locations, rock types, conditions of haulage roads, skill of operators and 

maintenance crews, as well as different maintenance strategies and so on. The environmental factors are 

consisted of harsh climate, temperature, presence or absence of wind, dust, snow and rain fall and so on. 

As a result, the equipment reliability, maintainability and availability should be addressed by identifying 

and analyzing these factors.  

The conventional methods are associated with fitting failure time data set to a suitable distribution function 

such as exponential, Weibull and Power law process [1-6]. Many researches have been accomplished for 

evaluation of mining equipment reliability using the standard parametric models. Some of the studies were 

comprised of reliability evaluation of crushing plant [7], dragline reliability estimation [8], reliability 

evaluation of off-highway trucks [9], modeling reliability block diagram for horizontal drilling equipment 

[10]. Although, the standard parametric models have the capability of simulating and extrapolation of the 

complex system reliability, nonetheless, the model is dependent only on failure time data and it doesn’t the 

ability to quantify and address the impact of covariates on the system reliability and performance. As an 

alternative, Cox proportional hazard model (PHM) can be considered to predict the effect of operational 

and environmental covariates in engineering regions. The Cox proportional hazard regression model was 
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developed by Cox [11] in 1972. This model is expressed by baseline hazard rate, and a multiplicative term 

comprising set of covariates. It is employed when the covariates have multiplicative influence on the 

observed hazard rate.  

There are various studies about modeling equipment reliability and performance evaluation considering 

significant covariates. Kumar [12] utilized the proportional hazard model to consider the most influential 

covariates dealing with different maintenance strategies (perfect, imperfect and minimal repairs) for electric 

load-haul-dump machines. The author computed hazard ratios with respect to the maintenance strategies. 

Ghodrati et al. [13] employed the proportional hazard model to predict the quantity of required spare parts 

considering the environmental factors for hydraulic jacks on a LHD machine. Gasmi et al. [14] applied the 

proportional hazard model to investigate the effect of changes in failure intensity due to switching of 

operating circumstances. Barabadi et al. [15] used a proportional repair model (PRM) [16] to analyze the 

effect of climate conditions on the quality of maintenance activities in harsh environment. 

This paper is aimed to develop an integrated methodology based on proportional hazard model for analyzing 

off-highway trucks reliability and performance under dynamic environment of open pit mines. In this case, 

various covariates have been developed and examined to recognize the most significant covariates leading 

to variations in truck reliability and performance under heterogeneous environment. The covariates are 

composed of truck sub-systems, severity of failure incidents and climate conditions, which are investigated 

as set of covariates and Weibull distribution function is employed for modeling baseline hazard rate 

function. The final results provides a valuable insight into the truck crucial sub-systems and type of truck 

failure incidents. Accordingly, the complex system reliability and performance are characterized more 

efficiently for developing maintenance plan strategies.  

The paper is organized as follows. The research theory is described in section 2. Section 3 presents a case 

study to address the off-highway trucks reliability and performance with respect to the collected 

environmental and operational factors at Sungun copper mine. In section 4, conclusion and remarks are 

characterized for the proposed reliability evaluation method under dynamic environment. 

2. RESEARCH THEORY AND FRAMEWORK 

The research methodology is presented in Figure 1. According to the figure, the study is initially started by 

data collection process. The data collection is dealt with complex system familiarization and specifying 

boundaries for reliability evaluation (step 1). The required data is gathered based on operational and 

environmental evidences. The operational document is associated with recognizing equipment sub-systems, 

collection of failure and maintenance time data. The environmental document is gathered based on geology 

and climate conditions. The step 2 is coincided with determination of set of important covariates for the 

regression model. To do this, it is essential to follow a covariate selection structure. In the first stage, the 

potential covariates are divided into qualitative and quantitative parameters. In the second stage, the 

covariates are numerically quantified. The qualitative covariates are addressed by binary or categorical 

values. There are some examples for the qualitative covariates including presence or absence of snow or 

icing. The quantitative covariates are characterized by continuous values (e.g. system age and temperature). 

In the third stage, the outliers are found and eliminated from the collected data set. In the fourth stage, time 

dependency of the covariates are tested. From time dependency point of view, a proper hazard model is 

selected for the analysis process (i.e. PHM, Stratified or extended PHM) [17, 18]. The fifth stage is related 

to elimination of unimportant covariates, leading to some bias and errors on the regression model. Finally, 

there are various approaches for covariate selection comprising polynomials models [19], Akaike 

Information Criterion (AIC) [20], Bayes Information Criterion (BIC) [21], stepwise method (Backward 

Elimination (BE), Forward Selection (FS) and Stepwise Regression (SR)) [22].  
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Figure 1: Step-By-Step Study Flowchart for Modeling Cox Regression Model 

According to the analysis process, the step 3 is associated with employing Cox regression model to evaluate 

the complex system reliability. In general, Cox model contains two key elements encompassing baseline 

hazard function, dependent only on failure time data and an exponential term for set of covariates. It is 

introduced as follows [23]:  

ℎ(𝑡|𝑍) = ℎ0(𝑡) 𝑒𝑥𝑝(𝛽
𝑇𝑍)    (1)  

where, ℎ(𝑡|𝑧) denotes the observed hazard function, 𝑍 is a 𝑝 × 1 vector containing set of covariates, 𝛽𝑇 is 

a 1 × 𝑝 vector of regression coefficients, entailing the effect of covariates, ℎ0(𝑡) presents the baseline 

hazard function, occurring when the covariates have no influence on the failure rate (𝑍 = 0 or exp(𝛽𝑇𝑍) =
1). Proportionality of hazard is considered as a key assumption for Cox proportional hazard model. 

According to this assumption, the hazard ratio remains constant for any two observations over time. If the 

proportionality assumption is violated, non-proportional hazard models are utilized to compute the complex 

system failure rate and reliability considering time-dependent covariates (e.g. extended and stratified PHM 
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[17, 18]). Otherwise, the PHM is employed for analyzing process. The proportionality assumption is 

derived by: 

𝐻𝑅 =
ℎ1(𝑡|𝑍1)
ℎ2(𝑡|𝑍2)

=
ℎ0(𝑡)𝑒𝑥𝑝(𝛽

𝑇𝑍1)

ℎ0(𝑡) 𝑒𝑥𝑝(𝛽
𝑇𝑍2)

= 𝑒𝑥𝑝[𝛽𝑇(𝑍1 − 𝑍2)]   (2) 

where, 𝑍1 and 𝑍2 are introduced as sets of covariates for two different observations, the term 

𝐻𝑅= 𝑒𝑥𝑝[𝛽𝑇(𝑍1 − 𝑍2)] is denoted by hazard ratio and gets a constant value over time.  

The step 4 is involved in modeling and computation of baseline hazard function. As shown in the flowchart, 

the baseline hazard function is derived by non-parametric and parametric models. In the case of non-

parametric model, value of the baseline hazard rate is obtained through recovery techniques [24]. The 

outcomes of the Cox regression model (e.g. hazard ratio and regression coefficients) are estimated without 

realizing the functional form of the baseline hazard rate function. The regression coefficients are estimated 

by maximizing partial likelihood function [25]. The obstacle of non-parametric model is concerned with 

inaccessibility of reliability function for simulation and extrapolation purposes. According to the flowchart, 

the parametric baseline hazard function is characterized by standard parametric distribution functions. In 

this case, the baseline hazard function is modeled through some of the probabilistic distribution functions. 

There are few probabilistic distributions (i.e. Weibull and exponential) to fulfill the proportionality 

assumption for Cox proportional hazard model [26]. According to the definition, combination of 

multiplicative term into the Weibull and exponential baseline hazard functions lead to same shape for the 

observed hazard function. The Weibull baseline hazard function is expressed according to Equation (3) 

[13].  

ℎ0(𝑡) = 𝜆0. 𝛾0. 𝑡
𝛾0−1    (3) 

Assumed that 𝑤 = 𝑒𝑥𝑝(𝛽𝑇𝑍) and 𝑔 =
1

𝑤1 𝛾0⁄   . Then, 

ℎ(𝑡|𝑍) =
𝛾0

(𝛼0×𝑔)
𝛾0
𝑡𝛾0−1    (4) 

Finally, the observed hazard function (ℎ(𝑡|𝑍)) is derived as a form of Weibull baseline hazard function: 

ℎ(𝑡|𝑍) =
𝛾0

(𝛼∗)𝛾0
𝑡𝛾0−1 = 𝜆∗. 𝛾∗. 𝑡𝛾

∗−1   (5) 

where, 𝜆∗ is equal to 
𝛾∗

(𝛼∗)𝛾
∗; and 𝛼∗ = 𝛼0(𝑒𝑥𝑝(𝛽

𝑇𝑍))
(−

1

𝛾0
)
, 𝛾∗ = 𝛾0 are scale and shape parameters of the 

observed hazard function, respectively; 𝛼0, 𝛾0 are the shape and scale parameters for the Weibull baseline 

hazard function, respectively.  

The Equation (5) demonstrates that the covariates effect changes the scale parameter of the Weibull baseline 

hazard function, whereas the shape parameter remains constant for the Weibull baseline hazard function. 

Therefore, the Weibull family fulfills the proportionality assumption. Finally, maximum likelihood 

estimation is utilized to compute the unknown regression coefficients and Weibull parameters for the 

parametric Cox regression model.  

The step by step analysis process leads to establish a comprehensive formulation considering significant 

covariates for reliability evaluation in dynamic and heterogeneous environment. 

3. CASE STUDY 

The off-highway trucks play a vital role in the planned production capacity at Sungun copper mine. The 

mine dynamic environment causes to major variations in failure rate and performance of the trucks. An 

accurate estimation of the truck reliability is viable to develop a realistic production plan for the mining 

operation. 

The required database was collected based on failure time data and covariate information including 

operational and environmental parameters. In this study, one type of covariate was concerned with five 
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main sub-systems (engine, transmission, gearbox, hydraulics, body and chassis). Another type of covariate 

was associated with severity of failure incidents (mild or severe failure incidents). This kind of covariate 

plays an important role in repair times and maintenance quality. As a matter of fact, mild failure incidents 

are frequent, whereas they have short repair times and low repair costs. In contrast, severe failure incidents 

occasionally occur on the truck system, whereas they spend long repair times and high repair costs, leading 

to considerable mining operation interruption. Furthermore, the environmental conditions were considered 

as the environmental covariates such as climate conditions (i.e. temperature, rain fall). The gathered failure 

data set is expressed in Table 1. In Table 2, the binary codes are introduced for each covariate. 

Table 1: The Historical Data Set with Respect to Covariates 

No. 

Failures 

TBFs  

(Hr) 

Engine 

Failure 

Incidents 

Transmission 

Failure 

Incidents 

Hydraulics 

Failure 

Incidents 

Body 

Failure 

Incidents 

Gearbox 

Failure 

Incidents 

Climate 

conditions 
Severity 

Temperature 

(◦c) 

1 50 0 0 0 1 0 1 0 -0.1 

2 73 1 1 0 1 0 1 1 7 

3 45 1 0 0 0 0 1 0 7 

4 17 1 1 1 0 0 1 0 7 

5 70 0 1 0 0 0 1 0 3.3 

6 30 0 0 1 0 0 1 1 3.3 

7 18 0 0 1 0 0 1 1 3.3 

8 37 1 0 0 1 0 0 0 9.1 

9 185 1 0 0 0 0 1 0 7.6 

10 30 1 0 0 0 0 0 1 11.6 

11 18 0 1 0 0 0 0 1 11.6 

12 25 0 1 0 0 0 0 1 11.6 

13 92 1 0 0 0 0 1 1 12.6 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

As shown in the Table 1, time between failures (TBFs), value of the continuous covariates, as well as the 

status of the binary covariates are characterized for each failure event. The table rows demonstrate time 

between failures of the truck with respect to the status of the covariates. The number of 103 failure incidents 

were collected for one year of truck operation. The status of each covariate was also gathered to start the 

reliability analysis process. As an example, the first failure occurred after 50 operation hour. In addition, 

the failure event was due to failure in body & chassis sub-system. The failure incident was mild event, the 

weather was rainy during the day (bad climate condition) and the average temperature was -0.1 for a week.  

Table 2: Definition of Binary Codes for the Collected Covariates 

Severity Engine Transmission Hydraulics Body Gearbox 
Climate 

condition 

Severe Mild F S F S F S F S F S Bad Good 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 

 F: Failure, S: Success  

3.1. Covariate Analysis Process 

The time dependency (time-dependent or time-independent) of the covariates must be examined to make 

decision regarding an appropriate Cox regression model for evaluation of system reliability. Graphical 

technique was completed to test the proportionality assumption. The plot of log[-log(R(t))] against 

log(time) was drawn for each covariate. As an example, Figure 2 illustrates the proportionality test for the 

engine covariate. If the curve is nearly parallel, the proportionality assumption is fulfilled and the PHM is 

employed for modeling hazard rate. Otherwise, the stratified or extended PHM are considered for modeling 
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of the hazard rate function. As shown in the graph, the engine covariate is taken into account as a time-

independent covariate. 

 

Figure 2: Evaluation of Proportionality Hazard Assumption for Engine Covariate 

The next step is concentrated on employing stepwise method (i.e. BE, FS and SR) to choose a set of 

important covariates for Cox regression model (Table 3Table 4). To select the set of significant covariates, 

the probability value (p-value) is utilized as a statistical hypothesis testing. In this approach, the analysis 

procedure is implemented through specifying a null hypothesis (H) and significance level (𝛼𝑐𝑟𝑖𝑡). The null 

hypothesis is rejected where the computed p-value is less than the pre-defined significance level. As a result, 

the BE method is started by full model consisting of all the potential covariates. Afterwards, one of the 

covariates is eliminated with highest p-value greater than the significance level (𝛼𝑐𝑟𝑖𝑡). Then, the regression 

model is refitted and the p-value of the covariates are assessed to remove another candidate covariate. The 

stopping criterion happens when all the p-values are less than 𝛼𝑐𝑟𝑖𝑡. The FS technique is accomplished in 

reverse direction of the BE. First, there is no covariate in the regression model. Then, the covariates are 

subsequently imposed on the regression model with respect to their p-values (the covariate with the greatest 

improvement in the fitted model is added at each step). The SR is a combination of BE and FS methods. 

This process is started by FS technique. After adding second covariate, this method examines if an existing 

covariate can be removed from the model without a significant effect on the fitted model. In the Table 3, 

the BE technique was considered to recognize the final set of covariates for Cox regression model.  

Table 3: The Results of Backward Elimination Method for Covariate Selection Procedure 

Covariates p-values Status in Cox Model 
Estimated Cox 

Regression Coefficients 

Engine 0.000 Keep 0.834 

Transmission 0.002 Keep 0.703 

Hydraulics 0.000 Keep 1.400 

Gearbox 0.000 Keep 1.058 

Body and Chassis 0.059 Keep -0.385 

Severity 0.049 Keep 0.401 

Climate Conditions 0.92 Remove N/A 

Temperature 0.260 Remove N/A 
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In this table, the covariate selection was carried out based on the significance level of 10 percent. Based on 

the Table 3, the major covariates were identified as engine, transmission, severity and body and chassis. 

The eliminated covariates were comprised of temperature, hydraulics, climate conditions. 

3.2. Fitting Parametric PHM 

The hazard rate function has been formulated by employing Weibull distribution function as the baseline 

hazard rate function for Cox regression model. The Weibull distribution was used because of its ability to 

describe the service lifetime of mechanical elements. The maximum likelihood estimation was applied to 

estimate the unknown parameters for the Cox regression model. The unknown parameters were composed 

of set of covariates and the Weibull distribution parameters. The log-likelihood function is formulated for 

PHM with respect to Weibull baseline hazard function as Equation (6). In this equation, it is assumed that 

di =1, if each event is a failure incident, otherwise di =0.  

ln(𝐿𝑖) = 𝑑𝑖[ln(𝛾𝑖) − ln(𝛼𝑖) + (𝛾𝑖 − 1)(𝑙𝑛(𝑡𝑖) − 𝑙𝑛(𝛼𝑖)) + 𝛽𝑍] − (
𝑡𝑖

𝛼𝑖
)
𝛾𝑖
exp⁡(𝛽𝑍) (6) 

Table 4 indicates the results of estimation of parameters for parametric Cox regression proportional hazard 

model under dynamic environment. 

Table 4: Estimation of Unknown Parameters for Parametric Cox Proportional Hazard Model 

Parameters Estimated Unknown Parameters p-values 

Engine 0.795 0.000 

Transmission 0.614 0.006 

Body & Chassis -0.37 0.062 

Severity 0.406 0.048 

Hydraulics 1.22 0.000 

Gearbox 0.941 0.000 

𝜆0 0.0004 0.000 

𝛾 1.66 0.000 

In this table, there are six significant covariates encompassing engine, transmission, chassis & body, 

hydraulics, gearbox, severity. In addition, there are two parameters for Weibull distribution function. These 

unknown parameters were estimated by using maximum likelihood estimation. The p-values were 

employed to characterize the statistical significance level for the estimated parameters in the model. The 

significance level was defined at the level of 10%. The output results reveal that the most important 

covariate is associated with hydraulics sub-system so that it has the greatest effect on the baseline hazard 

rate function. The lowest effect is related into the body & chassis sub-system. The estimated coefficients 

were 1.22 and -0.37 for hydraulics and body & chassis sub-systems, respectively. This process gives a good 

guideline to investigate the effect of failure of each sub-system, environmental and operational conditions 

on the of hazard rate value. Therefore, a comprehensive maintenance strategy can be developed based on 

the outputs of Cox regression model. 

3.3. Estimation Results 

This section is dealt with prediction of reliability and hazard rate values for the developed Cox regression 

model. These graphs make a proper validation for the proposed Cox PHM. The reliability function is 

introduced as probability of implementation of component mission without occurrence of failure incident 

at a certain time interval. Figure 3 indicates the estimated reliability curve by using Cox regression model.   
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Figure 3: Reliability Graph for Off-Highway Truck by using Cox Regression Proportional Hazard 

Model 

According to the Figure 3, the truck reliability approaches to 0.8, 0.6 and 0.5, after nearly 22, 38 and 43 

operation hours, respectively. In addition, the truck failure probability goes to one, after approximately 140 

operation hours. Figure 4 demonstrates the hazard rate graph for the established Cox regression model. The 

graph illustrates that the truck failure rate is monotonically increasing during the operating intervals. 

Therefore, the truck age is in wear-out period, which requires holistic maintenance strategies like preventive 

maintenance, condition-based maintenance to improve the status of truck circumstance.  

 

Figure 4: Hazard Rate Description for Off-Highway Truck 

4. CONCLUSION 

This research proposes an integrated methodology to analyze the complex system reliability and 

performance in dynamic conditions. The standard parametric model does not have the capability to consider 

various covariates in heterogonous environments. Cox regression proportional hazard model was developed 

to accurately compute the impact of different covariates on the complex mining systems. A case study was 

developed to validate the outcomes of the proposed Cox regression model. In this case, the off-highway 

truck system was considered for the reliability evaluation process. The selected covariates were associated 

with truck failure sub-systems, severity of failure events and climate conditions. The Weibull distribution 

function was considered to characterize the service lifetime of off-highway trucks for baseline hazard rate 
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function. Maximum likelihood estimation was employed to compute the regression coefficients for Cox 

regression proportional hazard model. The results showed that Cox regression model has the ability to 

efficiently analyze the influence of different significant covariates on the truck hazard rate and reliability 

values. In addition, the truck sub-systems were ranked to be able to develop an appropriate maintenance 

policy for the truck system.  
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