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Abstract: According to the findings of the U.S. District Court on the BP Deepwater Horizon (DWH) 

case, “the misinterpretation of the negative pressure test was a substantial cause of the blowout, 

explosion, fire, and oil spill.” It is noteworthy that the Negative Pressure Test (NPT) was not only 

specific to the Macondo well operations; rather it is a critical procedure to ascertain well integrity in 

offshore drilling in general. Therefore, the correct interpretation of this test and designing optimal 

responses is crucial for the safety of future offshore drilling. 

 

This paper uses signal detection theory and proposes a model to provide responses to warning signals 

in offshore drilling and, in particular, to optimally respond to the findings of NPTs. The structure and 

generic parametric equations of this model enable oil and gas practitioners to calculate a cut-off point 

value, as a threshold to accept or reject an implemented NPT, which is crucial in the interpretation of 

this test.  

 

Keywords: Rational decision-making, risk assessment, signal detection theory, offshore drilling safety, 

negative pressure test. 

 

1.  INTRODUCTION 
 

Large-scale accidents occur because many complex technological systems use operations that are 

tightly coupled and interactively interdependent [1]. Of particular interest are low probability, high-

consequence events such as nuclear power plant accidents, explosions in chemical factories, and 

massive oil blowouts. 

   

The oil and gas drilling industry, especially offshore and deep-water drilling, is one of such complex 

systems in which large-scale accidents occur. Major issues, such as high operational pressures and 

temperatures, large seismological uncertainties, difficult formations, and very complex casing 

programs, associated with deep-water drilling make this type of drilling very risky [2]. 

 

While risky, offshore and deep-water drilling plays a major role in today’s oil production. According 

to the International Energy Agency (IEA) [3], a third of the world oil production came from offshore 

drilling in 2010, which will inevitably increase in the future. Fig. 1 shows the number of wells drilled 

versus water depth in the Gulf of Mexico from 1940 to 2010. In the past few decades alone, offshore 

and deep-water drilling has increased exponentially. 

 

Considering the stated trade-off between the high risk of offshore and deep-water drilling operations 

and the rising dependence of the oil supply to this type of drilling, there is a growing need for oil 

companies to incorporate suitable risk analysis practices into their operations. Risk assessment 

frameworks enable oil companies to analyze the increasing risks of offshore and deep-water drilling 

and develop appropriate contingency and mitigation plans for risk reduction. The main intention of 

developing such frameworks is to prevent accidents like the Deepwater Horizon blowout, which 

occurred in the Gulf of Mexico on April 20, 2010, in the future. 
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Fig. 1. Wells drilled in the Gulf of Mexico by water depth from 1940 to 2010 [4, page 41] 

 

Formal investigations of the Deepwater Horizon accident indicate that the misinterpretation of a 

critical procedure called negative pressure test was a major contributing cause of the loss of well 

control and the subsequent blowout on the DWH rig [5-9]. NPTs are currently the primary way to test 

cement integrity at the bottom of a well [7]. They are used to indicate whether a cement barrier and 

other flow barriers can isolate the well and prevent the hydrocarbon influx as part of temporary 

abandonment [8]. 

 

Several petroleum engineering and well design experts share the view that the misinterpretation of the 

NPT was a major contributing cause of the DWH accident. According to those experts, one single item 

that could have saved the day for the DWH was the correct interpretation of the negative pressure test 

conducted by the DWH crew on the day of the accident. For instance, the Honorable Dr. Donald 

Winter, the chairman of the National Academy of Engineering/National Research Council committee 

on the DWH accident, stated in his interview with Platts that the blowout was precipitated “not by a 

piece of hardware, but by the decision to proceed to temporary abandonment in spite of the fact that 

the negative pressure test had not been passed” [10]. The findings of the United States District Court 

on the DWH case, in September 2014, corroborate this conclusion. According to those findings, “the 

misinterpretation of the negative pressure test was a substantial cause of the blowout, explosion, fire, 

and oil spill” [11]. 

 

It is noteworthy that the NPT was not only specific to the Macondo well operations, rather it is an 

important procedural step for temporary abandonment in most offshore drilling. Therefore, the correct 

implementation and interpretation of this test is crucial for the safety of future offshore drilling. 

 

Based on the critical role of an NPT in ascertaining well integrity in offshore drilling, we have 

developed a decision-making model using Signal Detection Theory (SDT) as the foundation to 

analyze and respond to the results of a negative pressure test. This model provides guidelines to 

decision makers; e.g. the crew, who conduct and interpret negative pressure tests, and as part of an 

integrated risk analysis methodology [12], contributes to reducing the risk of misinterpreting future 

conducted NPTs. 

 

Signal detection theory is a means to quantify the ability to distinguish a signal or a stimulus, as a 

piece of information, from random patterns of distraction; noise. In addition to science and 

engineering applications, SDT has been used in psychology and psychophysics for many decades; e.g. 

[13]. Some of the recent applications of this theory are in image analysis; e.g. [14], and diagnosis and 

prognosis; e.g. [15]. However, the concept of decision processes in the signal detection theory has 

neither been used in the oil and gas industry nor in any risk analysis applications. 

 

Following this overview, the general skeleton and structure of our proposed SDT model is introduced 

in section 2 of this paper. Section 3 describes the SDT model based on the foundation of the 

introduced structure in section 2. This description includes the explanation of possible scenarios and 
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variables states in section 3.1, the overview of general principles of decision processes in signal 

detection theory in section 3.2, and the development of general formulas and equations of the model 

for its quantification and analysis in section 3.3. Finally, section 4 provides some concluding remarks. 

 

2. NEGATIVE PRESSURE TEST INTERPRETATION 

 

The general structure of our proposed model to analyze and interpret a negative pressure test is shown 

in Fig. 2. The components of this model have been selected based on the most influential elements in 

conducting and interpreting an NPT. The main component of the illustrated structure is the target 

variable, which is the pressure deviation between the observed pressure in the second main phase of 

conducting a negative pressure test and the expected pressure for that specific phase.  

 

Generally, implementing a negative pressure test consists of two main phases. Phase I is the process of 

displacing drilling mud with seawater inside drill pipe, closing the annular preventer on the Blowout 

Preventer (BOP), and measuring the pressure from the installed gauge in the cement unit on the 

surface. And, phase II includes bleeding off more fluid from the well through drill pipe in order to 

reduce the pressure to zero and watching for any pressure built-up in the system. (For the detailed 

process of conducting a negative pressure test, refer to [12] and [16].) 

 
 

AP Leak:
Leak in the annular 

preventer

Well Leak:
Flow from the well

Target Variable:
Pressure deviation=

Actual Pressure- 
Expected Pressure

(AP-EP)

Decision:
Ok/NOT OK?

 
Fig. 2. Structure of the proposed model to interpret an NPT 

 

Pressure deviation, as explained above, is one of the main criteria for evaluating the success or failure 

of a negative pressure test. In each stage of conducting such test, crew is able to measure the pressure 

inside the well on the drill pipe and compare it with their expected pressure value. In theory, the ideal 

value for the stated target variable; pressure deviation, is zero. This means that in an ideal situation, 

crew expects to see no pressure deviation between the measured pressure from the well in either phase 

I or phase II of implementing an NPT and what they expected to observe at that stage.  

 

In our signal detection model, we considered the value of pressure deviation in the second phase of 

conducting a negative pressure test. However, this does not mean that crew does not record the value 

of pressure in the first phase of conducting the test. This will be an additional piece of data for further 

analysis of test results.  

 

In the second of phase of performing a negative pressure test, the expected observed pressure is zero 

since crew bled off enough fluid from the well to reduce the pressure to zero. Hence, measured 

pressure from the well, which will be in the form of pressure built-up, is equivalent to the pressure 

deviation as our target variable. It is needed to state that we have used the terms of pressure deviation 

and pressure built-up interchangeably in the remaining of this paper. 

 

There are two main factors influencing the explained target variable in our proposed model. These two 

variables, which affect the value of measured pressure from the gauge, are: 1) AP (Annular Preventer) 
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Leak; leak in the annular preventer on the BOP stack and 2) Well Leak; flow from the well. If there is 

any leaking in the annular preventer, which is installed on the BOP (Fig. 3), this can cause pressure 

built-up inside the well due to allowing heavier fluid to be present in the annulus below the BOP stack.  
 

 
Fig. 3. Leak in the BOP annular preventer (Source of image: [7], page 154) 

 

Another source of pressure built-up during a negative pressure test implementation is having flow 

from the well, which is equivalent to the existence of well integrity issues. Flow from the well can be 

due to different potential issues in well integrity such as cementing issues or leaking in wellhead seal, 

liner-top seal, well casing, and float equipment. Any of the aforementioned issues can cause a well to 

flow meaning that the hydrocarbon inside the reservoir enters the well and leads to pressure built-up in 

both the stated phases of conducting a negative pressure test. Fig. 4 shows some of the possible flow 

paths for hydrocarbon. The left hand side figure illustrates hydrocarbon traveling up the annulus and 

through the seal assembly and the figure in the right hand side demonstrates the entrance of 

hydrocarbon inside the production casing and its migration through different possible flow paths. 
 

 
Fig. 4. Possible flow paths for hydrocarbon (Source of image: [7], page 39) 

 
There is a third element in addition to the two aforementioned factors that can affect the value of the 

target variable; pressure deviation. This element is having part of spacer; a fluid which is pumped 

between seawater and drilling mud to prevent the contamination of the drilling mud, or mud, which 

was planned to be circulated above the BOP stack in the displacement process, below the blowout 

preventer. This issue can cause higher observed pressure than expected in the first phase of conducting 

NPT since spacer or mud is heavier than seawater. Therefore, this can be a source of pressure 

deviation in phase I. However, in phase II, this factor will have no impact on the observed pressure 

from the gauge since crew already bled off enough fluid from the well, which caused zero pressure. 

Nevertheless, as stated before, crew needs to record pressure deviation in both phases I and II and 

analyze the results based on all their recorded data. These sets of data will enable them to better 
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interpret the test results. For instance, if crew observes some pressure deviation in the first phase of 

performing NPT while there is no pressure built-up in the second phase, they can conclude that the 

main source of the observed pressure deviation in phase I was having part of spacer or heavier mud 

below the BOP stack. Therefore, there is no leaking in the annular preventer or flow from the well. 

This is because if either AP Leak or Well Leak was present, then crew would have observed some 

pressure built-up in the second phase as well.  

 

In addition to pressure recording, another important criterion that can assist the crew in better 

interpretation of NPT results is the actual versus expected number of barrels of bled-off fluid from a 

well in the second phase of conducting the test. For instance, if crew realizes that the stated actual 

number of barrels is higher than what they expected to observe, this can be due to the presence of 

either of those three stated influencing factors, which were part of spacer or mud remained below the 

BOP stack, leaking in the annular preventer, and flow from the well. However, if there is no pressure 

built-up in the second phase of implementing NPT, then crew can conclude that the higher observed 

number of fled-off fluid was due to having part of spacer or heavier mud below the BOP stack during 

the displacement process. 

 

We selected pressure deviation as the target variable for our proposed model rather than comparing the 

actual number of bled-off fluid with the expected amount since there is smaller measurement error 

associated with observing pressure from a gauge rather than tracking the number of barrels of bled-off 

fluid from a well through the trip-tank system. In addition, pressure reading and pressure recording is 

more commonly used as part of negative pressure test procedure for most oil companies. 

 

We contacted several experts in the area of drilling and well-design to make sure that the structure and 

the selected variables in our proposed model are logical. All these experts kindly helped us in 

validating the structure of our model and among them, four contributed in quantifying the results. 

Some of these experts were retired drilling managers, drilling engineers as well as superintendents of 

major oil companies such as ExxonMobil and BP. In addition, there were well-known drilling and 

well-design professors among these experts. 

 

The fourth and the last element in our proposed model, in Fig. 2, is a decision node to whether accept 

or reject the conducted negative pressure test by crew. For making such decision, the other three 

components of the model need to be quantified, and based on that quantification, a cut-off point value 

for pressure deviation has to be calculated and be used as a threshold. Such analysis and calculation 

enables crew to reject any negative pressure test with an observed pressure deviation higher than the 

determined cut-off point. This prevents next step investigations for interpreting the test results in the 

described situation, which provides some cost saving. Of course, crew needs to investigate and 

identify the contributing causes of an unsuccessful NPT, resolve those identified causes, and re-

conduct the test.  

 

On the other hand, if the observed pressure deviation is less than the determined cut-off point value 

but more than zero, crew still needs to conduct more investigations to evaluate whether the conducted 

NPT is successful. For this purpose, they have to open the well and watch for flow for several hours. 

For a successful negative pressure test, there has to be either no flow from the well or a decreasing 

flow rate which stops within the period of watch for flow. It is noteworthy that we ideally expect to 

see no flow from the well at this stage. However, there might be some flow due to phenomena such as 

thermal effect and compressibility of fluid, which both cause fluid expansion [17,18]. 

 

In addition, as explained before, taking into account the number of barrels of measured versus 

expected bled-off fluid from the well can be useful in better interpretation of the test. For instance, if 

the observed pressure deviation is less than the identified cut-off point while the measured number of 

barrels of bled-off fluid from the well exceeds the expected amount, this indicates an abnormal result 

for a negative pressure test. Therefore, crew needs to perform the aforementioned watch for flow 

process for final conclusion about the test results.  

 



 

Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

It is noteworthy that some of the existing procedures for NPT do not allow the entrance of spacer or 

seawater inside the annulus. (Refer to [12] and [16] for the details of a negative pressure test 

procedure.) In such case, the two stated influencing variables in our model are still valid as 

contributing causes of pressure deviation. However, the factor of remained spacer or mud below the 

BOP stack does not exist anymore and that cannot be a source of pressure deviation in phase I of 

conducting NPT, as we explained before. Nevertheless, there is another factor as an additional source 

of pressure deviation in phase I and that is pumping different amount of seawater inside the well 

during the displacement process. This is equivalent to existence of less or more amount of mud inside 

drill pipe, which causes pressure deviation from what crew expected to observe. Similar to the factor 

of having part of spacer or mud remained below the BOP stack, this factor only contributes to pressure 

deviation in the first phase of conducting a negative pressure test and it has no impact on phase II 

possible pressure built-up. 

 

Furthermore, using a packer during NPT implementation is possible [12,16]. Using a packer rather 

than conducting a negative pressure test through the annular preventer on the BOP stack does not 

change the main variables of the discussed model in Fig. 2. The only change will be in having the first 

variable as leaking in the packer seal and not the annular preventer seal. 

 

3. THE SIGNAL DETECTION MODEL FOR THE NEGATIVE PRESSURE TEST 
 

3.1 Possible Scenarios and States of Model Variables 

 

At this stage, we further discuss different possible scenarios for the variables in the proposed signal 

detection model and explain the process of calculating the cut-off values on the negative pressure 

differential that would lead to the conclusion that there is an unsafe condition. However, exact 

formulas and numbers for determining the cut-off point value will be described in the next sections. 

 

As we explained, we have two influencing variables of leaking in the annular preventer (AP Leak) and 

flow from the well (Well Leak). Each of these two variables can have two states of yes (Y) and no (N) 

showing their presence. To be more specific, “AP Leak=Y” is equivalent to having leakage in the BOP 

annular preventer, and “Well Leak=Y” means that the well in which an NPT is conducted is flowing. 

The combination of yes and no for each of these two variables constructs four different states or 

scenarios as follows: 

 

1) NN: There is neither any leaking in the annular preventer nor any flow from the well. 

2) YN: There is leaking in the annular preventer but there is no flow from the well. 

3) NY: There is no leaking in the annular preventer but there is flow from the well. 

4) YY: There is both leaking in the annular preventer and flow from the well. 

 

Any of the aforementioned states or scenarios affects the behavior of the target variable; pressure 

deviation, differently. For instance, there is a much higher chance of having pressure built-up in the 

well if the state “YY” is present comparing to the “NN” situation. 

 

AP Leak and Well Leak as well as the target variable in the model are probabilistic. The first two 

variables in this model are discrete binary elements while the target variable is continuous. Therefore, 

we need to determine two discrete probability values of )( YAPLeakP  and )( YWellLeakP   as 

well as four different probability distributions for the pressure deviation, as the target variable, for the 

four aforementioned states. 

 

Finally, we have the decision node in the model to whether accept or reject the test based on the 

observed pressure deviation. In order to make the stated decision, there is a need for calculating the 

described cut-off point. For this purpose, the concept of decision processes in the signal detection 

theory has been used to choose a decision; accepting or rejecting the conducted test, with a higher 

Expected Value (EV). In this regard, we first describe some preliminary concepts of decision 
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processes in signal detection theory in section 3.2 and then in section 3.3, we explain our extensive 

equations and formulas for quantifying our proposed model using that theory. 

 
3.2. Decision Processes in Signal Detection Theory 
 
The signal detection theory is a computational framework to discern signal from noise, while taking 

into account other influencing factors such as biases within this distinction process. Fig. 5 illustrates 

the main components of the theory of decision processes in detection. 
 

 

 

 

 

 
 

 

 

 

 

Fig. 5. Signal detection theory and decision processes [19] 

 

Based on this theory, we can have “m” different states of the world; h1, h2,…, hm, and “m” different 

judgments or response alternatives associated to each state; H1, H2,…, Hm. In this case, each state has a 

prior probability of P(hi); i=0, 1, …, m. In addition, there exists P(Hj|hi) as the probability of having Hj 

as the judgment or decision when the state of system is hi [20]. 

 

There will be a pay-off value associated to the combination of each state and judgment; e.g. Vij as the 

pay-off value for the judgment Hj while the state is hi. The best judgment for the state hi will be Hi 

with zero associated cost; Vii=0. 

 

Now, if we assume that there exist only two states and two judgments; m=2, there will be only four 

outcomes as illustrated in the matrix in Fig. 6. In this case, there will be four pay-off values each 

associated to one of the stated possible outcomes. These four values are: 

 

1) V00: value associated with a correct choice of H0 

2) V01: value (cost) associated with an incorrect choice of H1 (when, in fact, H0 is the correct 

judgment) 

3) V10: value (cost) associated with an incorrect choice of H0 (when, in fact, H1 is the correct 

judgment) 

4) V11: value associated with a correct choice of H1 

 

Based upon availability of any new data or observation from a studied system, the value of prior 

probability for each state can be updated to what is known as posterior probability. In addition, 

decision makers can choose either H0 or H1 as their possible judgments.  

 

 
 

States of the World  

  h0 h1  

D
ec

is
io

n
s H0 P(H0|h0)  P(H0|h1)  P(H0) 

H1 P(H1|h0)  P(H1|h1)  P(H1) 

  P(h0) P(h1)  

Fig. 6. Matrix representing possible outcomes for a binary decision 
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Based on a specific goal set by decisions makers, choosing either H0 or H1 can be more appropriate. If 

maximum expected value is the decision goal; which is what we have considered as the objective for 

our signal detection model, then the decision maker has to say H0 if and only if the inequality (1) 

holds. 

 

)|H()|H( 10 dEVdEV               (1) 

 

Where, )|H( i dEV is the expected value for saying or judging Hi after observing the value “d” from 

the system for our target variable. 

 

Equation (1) can be simplified to: 
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Where: 

 

)|( ihdf  is the conditional probability of the target variable being equal to “d” knowing that “hi” is 
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If we substitute equation (4) in the inequality (3), we will have: 
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Based on the inequality (5), we can calculate a cut-off point value for our target variable which holds 

in that inequality. 

 

The introduced theory in this section is the foundation for deriving the required equations for our 

quantitative decision-making model. However, since our proposed model deals with four different 

states based on the combination of AP Leak and Well Leak, we need to extend the described process 

in this section in order to cover a four-state situation rather than 2 scenarios. This process has been 

described in the next section. 
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3.3. Generalization of the Parametric Signal Detection Model  

 

In this section, we derive a generalized formula for our described model based on the stated theory and 

equations in section 3.2. As we explained before, there are four different scenarios in our signal 

detection model based on the combination of states for AP Leak and Well Leak. We name these four 

scenarios as follows: 

 

1) h0:  NN: There is neither any leaking in the annular preventer nor any flow from the well. 

2) h1:  YN: There is leaking in the annular preventer but there is no flow from the well. 

3) h2:  NY: There is no leaking in the annular preventer but there is flow from the well. 

4) h3:  YY: There is both leaking in the annular preventer and flow from the well. 

 

Based on the general theory, there is a need for four judgments as well. However, we have considered 

only two judgments for our model since interpreting a conducted NPT can be defined as an acceptance 

or a rejection decision (H0: accept or say OK and H1: reject or say NOT OK). Based on this definition, 

there exist four states and two judgments in this model.  

 

The derived formulas in the previous section describe a two-state, two-judgment situation. Therefore, 

we need to generalize those formulas for the scope of our model. As we explained in section 3.2, 

judgment H0 is selected if and only if the expected value for that judgment based on the observed 

amount; “d”, for the target variable in the studied system is more than the expected value when H1 is 

chosen. In our model, the target variable is the pressure deviation (Actual Pressure (AP)-Expected 

Pressure (EP)). Therefore, the value for “d” will be a pressure deviation observed from the installed 

gauge in the cement unit on the surface while conducting negative pressure test. Based on this 

explanation, there is a need to choose H0 if and only if: 

 

)|H()|H( 10 dEVdEV               (6) 

 

Since there are four states in our model, as described above, we can extend equation (6) as follows: 
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Fig. 7 shows the decision tree associated with the above decision-making process to either accept or 

reject a conducted negative pressure test based on the observed pressure deviation “d”. 
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V11
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Fig. 7. A decision tree for accepting or rejecting a NPT 
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Also, we can define the prior and posterior odds and the likelihood ratio for each state “hi”; i=1,2,3, by 

comparing that state with the normal state, which is “h0” or “NN” (no leaking in the annular preventer 

and no flow from the well). Based on this logic, we will have: 
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dhP

i

i  : Posterior odd for the state “hi” comparing to “h0”                    (8) 
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According to the equation (4), we can extend the equation (8) into: 
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Therefore, the defined posterior odd for each state is the product of the likelihood ratio and the prior 

odd for that state comparing to the state “h0”. 

 

Equivalently, equation (11) can be written down as follows: 
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If we substitute (12) in the inequality (7), we will have: 
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By simplifying (13), we get the following: 
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      (14) 

 

Based on the derived inequality (14), we can determine a cut-off point value “e” for our target variable 

which holds in that inequality. In another word, we can calculate a threshold for the observed pressure 

deviation in the second phase of conducting a negative pressure test that for any pressure deviation 

more than that, crew ought to reject the test (say H1). 

 

In this specific case of conducting a negative pressure test, all associated pay-off values to each 

combination of states and judgments are costs with negative values. Therefore, we can substitute Vij 

with Cij; as a positive value for cost and change the direction of the inequality (14): 
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For calculating the described cut-off point value using the above equation, there is a need for three 

main sets of data: 
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1) )( ihP ; prior probability of the state “hi”; i=0,1,2,3 

2) )|( ihxf ; conditional probability of the pressure deviation being equal to “d”  knowing that 

the state of system is “hi” (x=pressure deviation or “AP-EP”) 

3) 
ijC ; Cost of saying “Hj”; j=0,1, while the state of system is “hi”; i=0,1,2,3 

 

Upon availability of data for the three above-mentioned categories of probabilities and costs 

associated with different judgement-state cases, the needed values in equation (15) can be calculated. 

Based on that, the described cut-off point value can be determined; by entering all the data in 

Microsoft Excel and solving the stated equation using the “what-if analyses >- goal seek”. It is 

however noteworthy that the proposed signal detection model in this paper is a generic parametric 

framework that enables oil and gas drilling practitioners to calculate the discussed cut-off point value 

for their own specific case based on the characteristics of their operations. In addition, they can update 

their calculations upon availability of new information.   

 

There are different sources for data gathering to quantify the described signal detection model in this 

paper. One of these sources is expert judgment elicitation. We have used this source of data collection, 

quantified the proposed model for a conducted negative pressure test, and calculated a cut-off point 

value based on the characteristics of a well similar to the Macondo in the DWH case. This case study 

analysis has been provided in another paper (the second paper in the sequence in this proceedings) due 

to the page limitation to include both the generic model development and the case study in one paper.  

 

4. CONCLUSION 

 
In this paper, a signal detection model was proposed in order to analyze and correctly interpret the 

results of a conducted negative pressure test, as a primary procedure to ascertain well integrity in 

offshore drilling. This model, which utilizes the signal detection theory as the foundation, provides a 

structure and generic parametric equations that enable oil and gas practitioners to calculate a cut-off 

point value, as a threshold for accepting or rejecting an implemented NPT, associated with their own 

specific situation. In addition, the cut-point value calculation can be updated upon availability of 

additional information or modification of previous collected data. 

 

The described cut-point value is related to the target variable of our model, which is the pressure built-

up in the second phase of implementing an NPT, when crew bleeds off enough fluid from the well to 

reduce the pressure to zero.  

 

It is noteworthy that although the proposed model in this paper has been utilized for negative pressure 

test interpretation, it can be generalized and used in other decision-making applications in complex 

technological systems and industries. 
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