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Abstract: This paper focuses on developing a framework for comprehensive time-dependent reliability 
analysis of a nuclear hybrid energy system (NHES) design. Subsystem interactions of this complex 
integrated system under stochastic electricity demand and load-following operation capabilities require 
dynamic reliability assessment of the NHES at the component, subsystem, and system levels. In order 
to capture the dynamic operational behavior of critical systems and components, a detailed thermal 
hydraulic model of the NHES was generated using Modelica and was tested under different electricity 
demand histories generated using RAVEN. The physical data (e.g., valve position, flow rates, inlet outlet 
water temperatures) gathered from Modelica were used to calculate time-dependent failure rates by 
fitting data into the piecewise Weibull distribution. The optimum maintenance interval was calculated, 
and maintenance cost estimates based on the calculated reliability metric were made for the selected 
component. Component time-dependent failure rates were fed into the subsystem reliability model, 
which was built with non-Markovian Stochastic Petri Nets. The component and subsystem failure rates 
were calculated and updated every hour to characterize the system’s behavior and to aid in understanding 
operational reliability of the NHES design at a given time. 
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1.  INTRODUCTION 
 
Nuclear Hybrid Energy Systems (NHESs) have been proposed to provide significant benefits in 
minimizing cost and volatility of energy production while simultaneously reducing greenhouse gas 
emissions. This complex, integrated system includes a nuclear reactor(s), renewable energy generation, 
and industrial processes to fulfill the need for grid flexibility (baseload and load-following capabilities). 
Technical (electric power frequency stability, load following response) and economic (net present 
value, internal rate of return) figures of merit (FOMs) were identified to optimize the design and the 
operations of the NHES design alternatives during the 2014 INL-NREL workshop [1]. The primary 
FOM driving the design optimization process is the total energy cost. Reliability was introduced as a 
new FOM by Oak Ridge National Laboratory to minimize reliability-related costs (operational and 
maintenance [O&M] costs) over lifecycle cost by assuring reliable operation of the NHES from early in 
the design phase.  
 
The NHES reliability analysis began with a component-level assessment. Early prediction of component 
reliability is a challenging problem because of many uncertainties associated with a system under 
development and under different types of operation (baseload and load-following). It has been observed 
that load-following influences the aging of certain operational components (e.g., valves), so an increase 
in maintenance costs can be expected [2]. This paper addresses the challenges in developing a 
component reliability analysis framework to track the simulated condition of a component to identify 
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its departures from normal operation, to update the change in failure rates at each time step, and then to 
map this into a cost optimization model.  
 
The Modelica simulation of the NHES [3,4] captures the typical dynamic characteristics of the selected 
component and the model used to predict system performance. The simulated operational data were fit 
into the piecewise Weibull distribution to estimate the failure rate of the component. Failure events were 
taken into account by Weibull parameters (the characteristic lifetime and the shape parameter) of the 
failure model. Failure events for non-constant hazard rate functions with respect to time are best 
represented by Weibull distribution because of its versatility to represent different failures according to 
the value of the shape parameter. The estimated failure rates were used to quantify the normalized cost 
of repairs, replacements, or other O&M actions through the cost forecasting model.  The reliability 
model coupled with the optimizer model in the Risk Analysis Virtue Environment (RAVEN) [5] was 
developed at Idaho National Laboratory. The optimum maintenance intervals were estimated as a 
function of failure rate during a given time and net present value change based on maintenance cost. 
Reliability of the turbine control valve (TCV) in the balance of plant subsystem was analyzed to 
demonstrate the feasibility of the framework. 
 
This paper summarizes the NHES modeling and simulation work underway, emphasizing the time-
dependent reliability model that has been developed and tested for an individual component and 
proposed for the overall system. Section 2 briefly introduces the NHES configuration and describes the 
selected subsystem and component. Section 3 discusses a dynamic reliability model for the simulated 
data and investigates the statistical inferences of the model parameters. Case study results are used to 
demonstrate reliability related cost analysis in Section 4. Section 5 draws conclusions based on the 
results and discusses future work associated with developing the system level’s reliability model. 
 
2.  SYSTEM DESCRIPTION 
 
The current NHES design configuration can be categorized in four main subsystem groups: (1) nuclear 
heat generation source, the pressurized light-water cooled, medium power reactor (1000 MWt) IRIS 
(International Reactor Innovative and Secure) reactor plant; (2) power conversion (electricity 
generation); (3) industrial processes; and (4) interface or storage technologies. The Modelica modeling 
language, relying on thermal-hydraulic Modelica-based libraries such as TRANSFORM [6], is used as 
the modeling and simulation environment to construct and simulate the dynamic models of the selected 
NHES. Figure 1 illustrates the NHES Modelica model under development [4]. NHES can be designed 
in numerous configurations to meet diverse technical specifications; it can be adapted based on the needs 
and opportunities of a given local market.  
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Figure 1: The NHES Configuration 
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The reliability analysis was focused on the balance of plant (BOP), which is marked as subsystem 3 in 
Figure 1. The BOP generates the primary share of electrical energy in the NHES. The current NHES 
BOP Modelica model contains a steam turbine, a condenser, a feedwater heater system, and a control 
and a bypass valve (circled in red), as seen in Fig. 2 [7].  
 

 
 

Figure 2: Modelica Model of the Balance of Plant of the NHES  
 
2.1. Selected Component: Turbine Control Valve 
 
The turbine control valves (TCVs) are the most essential components of the steam turbines in regard to 
the operation, reliability, and safety of the plant. The TCVs regulate the mass flow rate entering the first 
nozzle of a turbine to control and protect the main turbine. These valves are responsible for small, fast 
control modulations. The current NHES design has only one TCV (indicated with red circle in Fig. 3) 
instead of multiple parallel trains of TCVs and bypass valves that typically exist in operating nuclear 
reactors. Therefore, the TCV was selected for the component reliability analysis due to its lack of 
redundancy and its increased possibility of failure under stochastic demand.  
 
Failure modes of the TCV were identified, and the reliability model was defined according to the failure 
mode of the component. There are limited common control valve failure modes: the dominant problems 
are usually related to leakage, speed of operation, or complete valve failure. The reference failure rate 
was assumed as 2.5E-2/demand, which is the only failure to open/close the TCV. This rate is reported 
in the component reliability database [8]. Only functional failure is being considered in this work, which 
is a failure to support a process need (flow of fluid, provide electrical power, etc.). Failure mechanisms 
such as stress corrosion cracking are not considered since current simulation capabilities have not yet 
included failure mechanisms. This approach complies with the US Nuclear Regulatory Commission’s 
maintenance rule [9], which includes a performance measure based on functional failure. 
 
3.  RELIABILITY MODELING AND ANALYSIS  
 
The proposed reliability model of the NHES combines the stochastic processes of degradation and 
fluctuating load, which are combined to evaluate time-dependent reliability. The component degradation 
process was modeled with piecewise Weibull distribution by using operational parameters (valve 
position, flow rate, etc.) from the Modelica model to estimate the Weibull parameters in every selected 
time step. The stochastic process of loads was generated by a Poisson process which is widely used to 
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model loads for structural analysis due to memoryless and randomness properties. Details of the model 
are given in Section 3.1, and implementation of the approach for the TCV is given in Section 3.2. 
 
3.1. Component Reliability Analysis 
  
The procedure of the component reliability analysis includes four main steps: 
 

1. Create synthetic operational time series data, or gather data from Modelica 
2. Fit the data set to the Weibull distribution and determine the scale and shape parameters  
3. Model accuracy tests on the distribution to determine the acceptance of the statistical model 
4. Calculate mean time between failures (MTBF), reliability, and availability metrics 

 
The assumptions described below pertain to the basis for the proof-of-concept analysis and are 
applicable to other component assessments. If the intended operating mode of the component/system is 
known, then duration of the operation can be specified. Otherwise, a default value of 1 hour was used. 
The data set created from the Modelica model and three representative groups were used to test the 
model. The Weibull distribution was fitted to the time-series data using median rank regression (MRR). 
 
Weibull analysis is a technique in which a statistical distribution is fitted to the data, allowing predictions 
to be made about the failure rate of the component. The two-parameter Weibull analysis was conducted 
on each data set to determine a shape parameter (β), scale parameter (η), the characteristic life, and the 
MTBF. The β and η parameters are used in reliability equations to determine lifecycle qualities of the 
data sets. The corresponding probability density function is given by  

 

											𝑓(𝑡|𝛽, 𝜂) = +
,-
𝑡(+./)	𝑒𝑥𝑝 3−56

,
7
+
8 , for			𝜂 > 0, and	𝛽 > 0.                                       (1) 

 
Beta values represent the failure behavior of the component, where β > 1 wear-out, β = 1 chance failures, 
and β < 1 infant mortality failures are indicated. Knowledge of the failure behavior will help to improve 
overall reliability and availability. This will aid in decisions regarding whether preventive or predictive 
maintenance techniques should be applied to the component. The Kolmogorov-Smirnov goodness-of-
fit test was performed on the same set of data and showed that the Weibull distribution is a good fit; 
high p-value (>0.5) is the case for the groups. 
 
Because of its uses in lifetime analysis, a more useful function is the probability that the lifetime exceeds 
any given time: P (T > t). This is called the survival function or in the case of a product, reliability. For 
the Weibull distribution, the reliability is calculated as follows: 
 

𝑆(𝑡) = 𝑅(𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡) = 1 − 𝐹(𝑡|𝛽, 𝜂) = 𝑒𝑥𝑝 3−56
,
7
+
8                                (2) 

 
 
3.1. Test Case 
 
According to the proposed approach, the first step (Section 3.1) is to collect the real-time position of the 
internal turbine control valve as discrete values each hour for three time periods (t1, t2, t3). The charts 
presented in Figure 3 show the Weibull fit results for the first data sets; the axes in these charts represent 
the Weibull parameters estimate equation, which is equal to  𝛽 log(𝑡) − 𝛽 log(𝜂) and the logarithmic 
frequency of the valve position data. Calculated Weibull parameters for each time interval are listed in 
Table 1, along with the reliability percentages.  
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Figure 3: Weibull Analysis Results and Fitting Statistics for TCV at t1 
 

In Figure 3, the dot distributions at the regression line graphs imply the presence of more than one failure 
mode for the TCV failure or degrading component’s health.  
 

Table 1: Weibull Parameters and Reliability Estimations 
 

Time Interval  Beta (β) Eta (η) hours R (%) 
Period #1  1.358 90,129 76.63 
Period #2 1.372 79,797 69.26 
Period #3 1.383 68,854 63.71 

 
Estimated Weibull beta values imply wear-out conditions (at the bathtub curve). These results are 
consistent with actual behavior, as degradation increases with time. The estimated eta values 
consistently decreased at each period, representing an accelerated deterioration process. The 
characteristic lifetimes of the component for different time histories are calculated as 10.29, 9.11 and 
7.86 years.  
 
Glasser’s optimum replacement equation, shown in Eq. (3), was used to convert Weibull failure data 
to reliability cost data [10]: results for each data set are listed in Table 2. 
                             

 

𝑂K =
LM∗OP(Q/S)

-TLUM∗(/.OP(Q/S)
-)

∫ OP(Q/S)-Q
W XY

                                                          (3) 

 
The first term of the numerator is the lower cost planned maintenance, 𝐶[, and the replacement cost off-
line before failure, multiplied by reliability; this term decreases with time. The second numerator term 
is the high cost of an unplanned, 𝐶\[,	online, failure multiplied by the unreliability; this term increases 
with time. The denominator of the optimum replacement equation is the mean time to failure within the 
replacement interval. This relationship is valid up to the age of the characteristic life of the component 
and does not reflect the second replacement, which often occurs after the characteristic lifetime has been 
reached.  
 
The optimum maintenance intervals for the all data sets are listed in Table 2. While component 
resistance decreases due to operational degradation, the replacement interval decreases, leading to a 
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lower net present value for the NHES system. This replacement interval is fed into the RAVEN 
CashFlow module for lifecycle cost analysis. 
 
3.2.  Integration of the Reliability Metrics into the Cost Optimization  
 
An economic evaluation of NHES was performed to investigate the minimum cost of a hybrid system 
using Modelica/RAVEN optimization routines [11]. The reliability model introduced in Section 3.1 is 
written in the Python language and is used as an external model in RAVEN, which is tightly coupled 
with the CashFlow module. 
 
Integration of the reliability tool into the overall methodology is outlined in Figure 4; RAVEN supplies 
the dynamic model demand time histories for specific subsystems, along with subsystem capacities. The 
dispatch then operates the overall system to meet the required demand. At the end of the simulation, 
various FOMs (e.g., ability to meet demand, reliability based on operation of components, maintenance 
intervals) are passed to RAVEN. The CashFlow module computes economic indicators such as internal 
rate of return (IRR) or net present value (NPV) and passes them back to the Optimizer in RAVEN. The 
reliability model output updates the O&M costs and the other economic indicators.  
 

 
Figure 4: Reliability Model Integration into the Overall Optimization Methodology 

 
In the RAVEN CashFlow module, the nuclear reactor has an assumed lifetime of 60 years. The tax and 
inflation rates are assumed to be 39.2% and 4%, respectively [9]. For the computation of the NPV, a 
weighted average cost of capital (WACC) of 5% has been assumed. Two O&M costs are modeled for 
the nuclear reactor: the fixed O&M cost and the variable O&M and fuel cost. Taxes are applied to both 
costs. The reference fixed O&M cost is for a 1100MWe plant with yearly a yearly cost of $93.5 million. 
The economy of scale factor for nuclear plants is 0.64. The variable O&M for the reactor is 0.5 $/MWh.  
 
Within the nuclear industry, the performance of a lifecycle cost analysis (LCCA) typically results in 
calculating the NPV of both the benefit and the cost of a proposed change. Knowing the net cash flow 
(CF) and discount rate (DR) associated with each failure event, the value NPVc from discounted cash 
flow for the current maintenance policy, which is based on the CF and failure rate, can be calculated 
[12]:  

𝑁𝑃𝑉_ = 𝜆_𝐶𝐹 − ∑ b	(6cT6W)
-d

	(/Tef)c
− 	(6cPgT6W)-d

	(/Tef)c
hi  ,                                                      (4) 
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where i refers to the year the cash flow occurs, and the subscript c refers to the current maintenance 
policy. Planned and unplanned costs are given in Table 2 based on assumptions due to lack of real 
data.  

 
Table 2: Planned and Unplanned Cost Estimation and NPV Changes 

 
Planned 
Replacement 
Cost ($) Cp 

Unplanned 
Replacement 
Cost ($) Cup 

Optimum 
Interval 
(Years) 

NPV change 
 

Period #1 250,000 400,000 5.83 -3,484% 

Period #2 250,000 400,000 5.21 -4,171% 
Period #3 250,000 400,000 3.73 -4,633% 

 
The NPV changes listed in Table 2 do not represent realistic NPV changes due to the high demand 
simulated in the time series and in the data uncertainties and assumptions. However, it provides an 
insight into how the reliability of degrading components can impact lifecycle costs. 
 
4.  CONCLUSION 
 
To ensure the high reliability and economic competitiveness of design, component reliability should be 
estimated and analyzed. To capture overall system reliability, the NHES model decomposed the 
subsystems and components, and reliability analysis was conducted, beginning with development of the 
component reliability model. This paper describes the development and implementation of a Weibull 
model to (1) maintain and improve the reliability of the NHES based on operational demand and to (2) 
assure the safety of operations. 
 
The model is implemented with the turbine control valve (TCV) as a case study due to the valve’s 
importance in the balance of plant system of the NHES. The time-dependent reliability of a TCV is 
calculated for 3 data series, and the proposed approach is feasible to apply to other NHES components 
for larger data sets. 
 
Once this component-level, time-dependent reliability information is available for critical components 
of the BOP, simulation can be expanded and performed to determine the reliability of the NHES BOP 
using non-Markovian Stochastic Petri Nets. 
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