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Abstract: Expert judgment elicitation is a key element of formal risk assessment. Some research in 

this subject has focused on identifying the best way to aggregate expert judgments. In this paper we 

explore this problem. Given the divergence in expert judgments, when using mathematical 

aggregation, it is possible to group expert judgments according to their mood, as optimists and 

pessimists. Using hard data, gathered after the expert judgment elicitation process, we test which 

group performs better. In this paper, we group the expert judgments elicited for building the risk 

model for the Nereid-UI hybrid autonomous underwater vehicle into optimists and pessimists. After 

the risk assessment the vehicle conducted 16 missions. We compared the two risk models from the 

risk assessment against the observed risk from actual missions. Our results showed that, for a 5 hours 

mission, differences between the pessimist risk model estimates and the observed risk were not 

statistically significant. On the other hand, differences between the predicted risk using the optimistic 

risk model and the observed risk were statistically significant. We conclude that for early missions in 

an extreme environment it is imperative to use the pessimistic risk model estimates to inform decision 

making. 

 

Keywords:  expert judgment aggregation, autonomous underwater vehicles, risk, risk of loss, 

reliability. 

 

1.  INTRODUCTION 
 

It is irrefutable that today’s risk assessment of complex systems is heavily dependent on expert 

judgment elicitation. This is particularly the case for problems where there is no hard data and the 

consequences of potential hazards can be catastrophic [1]. Expert judgment elicitation is the process of 

eliciting judgments on the likelihood of a hazard occurring from individuals deemed experts in a given 

subject matter. In engineering, research in expert judgment elicitation began in the 1970s when 

scientists and engineers made new efforts to improve safety risk assessment for Nuclear Power 

stations. Safety valve failure frequency prediction, nuclear waste safety risk prediction and many other 

applications were considered then by those involved in these processes [2, 3]. This research was 

grounded on studies in psychology, particularly on human reasoning under uncertainty. Amongst some 

key studies was that reported by Kahnemann and Tversky [4], which explored the mental short cuts 

that individuals follow when making estimates of uncertainty. When following these mental shortcuts 

individuals can introduce bias. Bias can also be introduced by the modeler during the process of 

aggregating the expert judgments or by the facilitator during the elicitation process. Formal expert 

judgment elicitation method is a process whereby judgments are elicited from experts with the aim of 

reducing the introduction of bias. Formal expert judgment elicitation provides transparency and 

enables reproducibility of the results, both of which are key characteristics for effective decision 

making. Formal expert judgment elicitation methods, such as the DELPHI method, the OTWAYs, 

EXCALIBUR, the SHELF-R and others, consider different ways for aggregating expert judgments. 

These methods apply different forms of mathematical and behavioural aggregation [5-7]. 

 

When Brito et al [12] applied the Otway expert judgment elicitation, which employs an analytical 

aggregation method, they concluded that two types of experts were present: the optimists and the 

pessimists. The first is not to be confused with optimistic bias, whereby people weight their own 

chances of success as better than average and their own chances of failure as lower than average [8].  

When asked to estimate the probability of fault 34, loss of network leading to Autosub3 loss in a 

coastal environment, a number of experts assumed that the AUV would ground on a beach and be 
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safely recovered, while others assumed that the AUV would crash against coastal rocks [9]. It is 

possible that availability and representativeness mental shortcuts may have been used by the experts, 

after all, these types of incidents happen [10, 11].  

 

Of course, one can make an argument that the environment should have been described in more detail. 

One could have specified whether the coastline to be considered is a sandy beach or a rocky shore. 

Given the variability in the coastline geology and the effect that the sea current and tides can have on 

the AUV dynamics, moving the AUV from a few hundreds of metres to a few kilometres, 

understandably the geology of the coastline was not specified.  

 

Recognising that an expert can be predominantly optimistic or pessimistic, the expert judgments had 

to be aggregated into these two groups. Brito et al [9, 12] used cumulative distributions to identify the 

mood of the experts. The expert judgment aggregation was done using a weighted linear pool. The 

decision maker was given mission risk estimates from the optimists’ and pessimists’ judgment 

aggregation models. The decision to deploy Autosub3 in Antarctica in 2009 and 2013 was informed 

by the optimistic model.  

 

In this paper we explore the validity of this approach for AUV risk model mission risk analysis. We 

explore the problem of experts’ reliability by comparing the risk predictions made by optimist and 

pessimist groups with the risk model obtained from field results. We use the dataset from the Nereid-

UI AUV to identify which of the two risk models produce risk estimates that are most in line with the 

observed risk from field results.  

 

The manuscript is organised as follows: Section 2 presents a background to the Nereid-UI risk model, 

Section 3 presents the methodology used for assessing the reliability of experts’ judgment predictions, 

Section 4 presents the case study. Section 5 presents the analysis of the results and, finally, Section 6 

presents our conclusions and areas that we have identified that require further research. 

 

2.  NEREID-UI RISK MODEL AND OPERATIONAL DATA 
 

Stokey et al [13] initiated he discussions on finding the methods of increasing the reliability and to 

reduce the risks of AUV systems. To develop this further, Griffiths et al [14] used statistical survival 

methods to evaluate the probability of risk of loss for Autosub2 operations under ice. AUV loss is a 

real risk, and there is a body of anecdotal evidence concerning AUV loss. For example, reported in the 

public domain are the losses of Autosub2 under the Fimbulisen ice-shelf in 2005 [15] and the loss of 

Autonomous Benthic Explorer (ABE) off the Chilean coast in 2010 [16].  

 

Methods for estimating AUV risk of loss based on hard data have been criticised for the level of 

subjectivity involved in the failure criticality classification. Developments to elicit this subjectivity in 

a formal way were suggested by Griffiths and Trembanis [12]. This informed subsequent risk models 

of AUV loss. Up to this point the models were based on historical data and expert judgments.  

 

At the time of the risk analysis the Nereid-UI was a novel vehicle, with no historical operational data. 

The risk model was developed based on an analysis of the vehicle design and its functional and 

operational requirements. The following subsections describe the risk model in more detail and the 

operational data.  

 

2.1.  Nereid-UI risk model 

 

There are three key elements to the risk model of the Nereid-UI. The first element is a Markov chain 

model of the phases that comprise the deployment of the vehicle. This model extends that proposed for 

the Autosub3 AUV [18]. Eighteen states of operation and their associated transitions were identified; 

these include pre-mission states and states capturing different modes of operation: tethered and un-

tethered. The probability of failure in the transition from one state to another was calculated using 

fault trees.  Thirty fault trees were developed. For this study we consider the fault tree for Transit in 
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under ice state transition to itself [26]. This fault tree has 113 independent failure modes. A subtree of 

this fault tree is the Core Control System Failure fault tree depicted in Figure 1, below.   

 

The fault tree and the judgments were provided by five experts: SDM, LB, JO, MJ and DY.  These 

experts had more than 10 years of experience individually. The experts worked for oceanography 

centres in the United States, France and in the United Kingdom. The experts assessed the likelihood of 

each failure occurring. The experts provided the median, the lower bound and the upper bound. 

Assessments were provided for all 113 failures. The workshop was held at Woods Hole 

Oceanographic Institute, Cape Cod, United States on the 20 June 2012. 

 

 
Figure 1: Core Control System Failure fault tree model 

 

2.2.  Nereid UI Operation data 

 

The Nereid-UI is a hybrid autonomous underwater vehicle, designed to work close to the downside of 

glaciers/sea-ice and around the sea-floor. The vehicle is denoted a hybrid autonomous underwater 

vehicle because it can work connected to a ship with a fibre optical tether, or not connected to the 

ship – in autonomous mode. The vehicle provides a unique capability for polar research by enabling 

more detailed observation and sampling of the environment in cavities of the ice shelf. When 

operating in a tethered mode the vehicle provides live video feed of the environment [19]. The Nereid-

UI AUV design was informed by the design of the SENTRY AUV, developed by the same team.  

Core missions of Nereid UI require a high degree of reliability; thus, assessing the risk for under ice 

deployments is of great importance. The missions considered in this paper are those conducted up to 

the submission of this paper. Some missions were technology development missions, while the 

remaining missions were science missions [20-23]. Nereid-UI’s missions nui009-012 were test 
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missions for deployment and recovery. Short runs were conducted whilst underwater. Mission nui013 

aborted due to software configuration error. 

Table 1: Mission summary of the Nereid-UI AUV 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  METHODOLOGY 
 

3.1.  Un-weighted Linear Pool Aggregation Method 

 

For the expert judgment elicitation conducted by Brito et al [9], experts provided a weight that 

reflected their confidence in the assessment. On the other hand, for the Nereid-UI expert judgment 

elicitation, experts provided a probability range. Therefore, for the Nereid-UI judgment aggregation 

the un-weighted linear pool method was used to aggregate the experts’ judgements into two separate 

groups based on the different experts’ moods: optimistic and pessimistic. The mean estimates were 

calculated for the Lower bound (L), the Median (M) and the Upper bound (U). Where the Lower 

bound is the minimum probability of failure possible, the Upper bound is the maximum probability of 

failure possible. The Median is the estimated probability of failure for each, there is a 50% chance that 

the true probability of failure is higher than this probability of failure and lower than the Upper bound, 

and a 50% chance that real probability of failure is below this value and the Lower bound.    

 

3.2.  Reliability Function 

 

Several reliability functions are presented in the literature. For new components and systems, it is 

appropriate to use the exponential reliability function [24]. This reliability function is univariate and it 

takes the variable time, t. The other parameter in this function is the failure rate λ, or the mean time to 

failure (MTTF), which is 1/λ. The failure probability density function is presented in Eq. 1.  

 

 (1) 

 

In addition, based on this, the probability of no failures occurring before time t is obtained by 

integrating Eq. 1 between 0 and t - obtaining the cumulative probability of failure - and subtracting 

from 1. The reliability, or survival function is presented below. 

 

  (2) 

 

The probabilities elicited from experts’ judgement in the research were based on a mission length of 

20h. The maximum mission length from the data was approximately 11h. In order to compare the 

Mission  Date Dive Duration 

nui0001 7/21/2014 05:08 

nui0002 7/23/2014 05:05 

nui0003 7/26/2014 05:01 

nui0004 7/28/2014 05:20 

nui0005 15/09/2015 02:01 

nui0006 16/09/2015 01:40 

nui0007 17/09/2015 01:17 

nui0008 17/09/2015 01:47 

nui0009 02/05/2016 00:30 

nui0010 03/05/2016 00:30 

nui0011 04/05/2016 00:30 

nui0012 07/05/2016 00:30 

nui0013 08/05/2016 00:00 

nui0014 27/09/2016 08:24 

nui0015 30/09/2016 11:55:00 

nui0016 08/10/2016 05:07:00 
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experts’ risk estimates with the observed risk estimates, we must calculate the risk for a time shorter 

than 11h. We chose 5h as 5 out of 13 missions had this length of operation. 

 

3.3.  Binomial Distribution Calculation 

 

The loss or survival of a given deployment can be seen as a trial in a Bernoulli experiment. The 

binomial distribution is a well-known discrete probability distribution which enable us to estimate the 

probability of observing a number r successful outcomes out of n experiments. Since the total number 

of missions carried out by Nereid UI was 16, we considered this as the total number of experiments. 

The binomial distribution is presented below. 

 

 (3) 

where, n =1,…,16. P means the probability of success after n trial, the p is the probability of success in 

q single trial. 

 

The binomial distribution enabled us to estimate the number of successes and failures for each of the 

two models generated by the expert judgments. The X2 (chi square) non-parametric test enabled us to 

estimate whether the differences between the predicted successes and observed successes were 

statistically significant. 

 

4.  ANALYSIS 

 

4.1.  Results of the un-weighted linear pool aggregation 

 

With 113 potential failures, five experts and three assessments per expert, we had a total of 1695 

estimates. Using the un-weighted linear pool aggregation method, statistics for the judgements by two 

different expert groups in both optimistic and pessimistic risk attitudes were calculated. Table 2, 

below, presents a summary of the aggregated assessments provided by the experts for failures 3 to 11. 

 

Table 2: Summary of the aggregated assessments provided for failures 8 to 11. 

 
For each same failure, the group of pessimists always gave a higher probability to the failure 

compared with the optimistic group, and the Upper bound value for the optimists was even less than 

the Lower bound in the pessimists’ group. This difference may have originated from systematic errors 

of subjective expert judgement due to the heuristics and biases [4], which may be eliminated by the 

weighted linear pool aggregation method, but this is not possible to do if we elicit the distribution 

density function instead. 

 

 

 

 

  Optimist Pessimist 

No Failure 

description 

L M U Experts L M U Experts 

8 Thruster 

Reliability 

0.0002 0.0023 0.0045 SDM,JO,

DY 

0.0295 0.265 0.305 MJ,LB 

9 Depth Sensor 

Reliability 

0.0002 0.0005 0.00165 MJ,SDM

,JAN,DY 

0.009 0.01 0.011 LB 

10 Phins Reliability 0.0002 0.002 0.0039 SDM,JA

N,DY 

0.0095 0.015 0.0555 MJ,LB 

11 Microstrain 

Reliability 

3.67E-05 0.0004 0.0018 SDM,JA

N,DY 

0.005 0.01 0.0305 MJ,LB 
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4.2.  Results of Fault Tree Analysis 

 

Six fault tree analyses were performed; three fault tree analyses for the optimistic model, using 

estimates for the Lower bound, Median and Upper bound, and three fault tree analyses were estimated 

for the pessimistic model, one for each of the three parameters. Table 3, below, presents the 

probability of failure calculated for the 14 sub-trees and the combined probability of failure. 

 

Table 3: Probability of failure calculated using fault trees and expert judgments for the 14 

critical components for a 20h mission. The total probability of failure for the Nereid-UI transit 

under ice is presented in the last row 

 

 

Considering the median, the pessimist expert aggregated model gave a 0.9097 probability of loss of 

the vehicle under ice in a 20h mission, based on design information. The optimist experts gave a much 

smaller probability of loss than the pessimist model, 0.5497. Although the result given by the optimist 

experts was significant smaller than the pessimist experts, more than a 50% probability of loss still 

illustrates a high level of risk for the vehicle. However, this figure is comparable to that of Autosub 3 

risk estimates without mitigation.  

 

For the results of the 14 main systems’ failures, Table 3, the optimist experts and the pessimists 

showed significantly large differences. Figure 2, below, presents a graph of the aggregated 

assessments for each model.  The pessimists gave much higher failure probabilities in most of the 

events, except for PDS Failure, Dry Cable Failure and ROV Commends Bad Motions. For these 

events, the assessments from both groups were very similar.  Significant differences between the two 

groups are observed for the assessments given for the Core Control System, the Battery Net Working 

and the FO Failure. It is interesting to notice that the value of the Upper bound of the pessimists was 

much higher than that of Median, such as in Vehicle shape changes and Vehicle Stuck. This may 

indicate that the pessimist experts had lower confidence in their judgement for these kinds of failures. 

Moreover, most of the probabilities of failure from the optimists were less than 0.05. However, the 

failure probabilities for the Vehicle Stuck on Underside of Ice and the FO Failure had been given the 

median of 0.2401 and 0.1498, respectively. It is also reasonable to consider that this was main reason 

for the high failure probability of Transit in Underwater Ice phase. 

 

No. Failure Optimist Pessimist 

  L M U L M U 

1 Core Control System Failure 0.01048 0.02328 0.121 0.2486 0.2875 0.3956 

2 PDS Failure 0.0001 0.0010 0.0030 0.0046 0.0075 0.0305 

3 Battery Net Working 0.0203 0.0301 0.0404 0.1058 0.1667 0.3498 

4 Dry Cable Failure 0.0001 0.0050 0.0100 0.0075 0.0150 0.0325 

5 Vehicle Shape Changes 0.0176 0.0376 0.0501 0.0936 0.1678 0.6639 

6 Bad-Wet-Connection 0.0107 0.0113 0.0118 0.2464 0.3080 0.3605 

7 Housing Floods 0.0002 0.0014 0.0055 0.2383 0.2633 0.2876 

8 Failed Electrical Board 0.0004 0.0013 0.0032 0.1304 0.1667 0.2329 

9 OA Failure 0.0167 0.0220 0.0455 0.1376 0.2327 0.3531 

10 Vehicle Stuck on Bottom 0.0029 0.0061 0.0202 0.1388 0.1758 0.4621 

11 Vehicle Stuck on Underside of 

Ice 

0.1270 0.2401 0.3492 0.1462 0.2680 0.3888 

12 ROV Commands Bad Motion 0.0004 0.0014 0.0120 0.0224 0.0395 0.0443 

13 FO Failure 0.1340 0.1598 0.2738 0.4236 0.4996 0.5708 

14 Pilot Error 0.0478 0.0870 0.1733 0.2049 0.3138 0.4377 

15 Transit in Underwater Ice 0.2280 0.5497 0.6004 0.8058 0.9097 0.9915 
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Figure 2: Results of the fault tree analysis for 14 main failures of the system based on optimistic 

and pessimistic experts’ judgement aggregation. 

 

4.3.  Reliability Function Results 

 

The assessments were provided for a mission of 20h. Because the average mission time of a vehicle in 

actual performance is around 5h and based on the given probabilities of failure of 20h mission period, 

the reliability function is used to calculate the mean time to failure (MTTF). The conversion results for 

the reliability of 20h to a 5h mission period are shown in Table 4, below. 

 

Table 4: Reliability of experts’ judgement, based on 20 h missions and the converted results to 

5h 
 

 

 

 

 

 

 

 

Figure 3, below, presents a comparison of the different reliabilities, based on different mission periods. 

 

 
 

Figure 3: Reliability of 20h and 5h missions 

No. Optimist Pessimist 

 L M U L M U 

Failure(t) 0.2280 0.5497 0.6004 0.8058 0.9097 0.9915 

R(t)(20h) 0.3996 0.4503 0.772 0.0085 0.0903 0.1942 

MTTF 77.5194 25.0627 21.7865 12.2100 8.3195 4.1946 

R(t)(5h) 0.9375 0.8191 0.7949 0.6640 0.5483 0.3036 
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4.4.  Binomial Distribution Result of Expert Judgement  

 

With the estimates for the reliability for a 5h mission, we could calculate the successful probability of 

Transit in Underwater Ice based on experts’ judgements. The binomial function presented in Eq. 3 

enabled us to estimate the number of successes that maximize the probability function. Table 5, below, 

shows the success probability for 16 missions, in both the optimistic experts’ judgement and the 

pessimistic judgement. The number from 0 to 16 indicates the success time during the 16 missions. 

 

Table 5: Success probability in optimist and pessimist expert 

 

The differences between the optimists’ and the pessimists’ judgements are shown in Figure 4, below. 

This shows that the turning point appears when both the optimistic and pessimistic experts assume that 

there are 11 successes in the missions. Before this point, the success probabilities given by the 

pessimist expert aggregated model are larger than the probabilities provided by the optimist expert 

aggregated model. The pessimistic experts’ aggregated model estimates most of missions as not being 

successful. In addition, the peak value for the optimistic experts appears when the experts consider the 

number of successes to be 13, while the peak value for the pessimists is when the number of successes 

is 9. The comparison of the two results reveals that the optimistic experts had more confidence than 

the pessimistic experts regarding the success probability for the vehicle transits in under ice 

conditions. 

 
 

Figure 4: Success probability of different times in 16 missions of 5h 

No. Optimist Pessimist 

 L M U L M U 

1 1.003E-11 1.3153E-12 5.4210E-20 3.0601E-03 3.0033E-06 2.6389E-08 

2 6.21E-10 9.5287E-11 1.3010E-17 2.1345E-02 5.8330E-05 8.3441E-07 

3 1.8025E-08 3.2359E-09 1.4637E-15 6.9792E-02 5.3103E-04 1.2367E-05 

4 3.2542E-07 6.8375E-08 1.0246E-13 1.4199E-01 3.0081E-03 1.1405E-04 

5 4.0914E-06 1.0062E-06 4.9948E-12 2.0118E-01 1.1867E-02 7.3251E-04 

6 3.7987E-05 1.0934E-05 1.7981E-10 2.1049E-01 3.4572E-02 3.4742E-03 

7 2.6941E-04 9.0768E-05 4.9448E-09 1.6824E-01 7.6937E-02 1.2587E-02 

8 1.4889E-03 5.8713E-04 1.0596E-07 1.0478E-01 1.3341E-01 3.5535E-02 

9 6.4799E-03 2.9908E-03 1.7881E-06 5.1388E-02 1.8219E-01 7.9002E-02 

10 2.2283E-02 1.2037E-02 2.3841E-05 1.9914E-02 1.9658E-01 1.3878E-01 

11 6.0341E-02 3.8153E-02 2.5033E-04 6.0771E-03 1.6703E-01 1.9197E-01 

12 1.2733E-01 9.4228E-02 2.0482E-03 1.4451E-03 1.1059E-01 2.0693E-01 

13 2.0524E-01 1.7777E-01 1.2801E-02 2.6250E-04 5.5936E-02 1.7039E-01 

14 2.4430E-01 2.4768E-01 5.9082E-02 3.5212E-05 2.0892E-02 1.0361E-01 

15 2.0252E-01 2.4031E-01 1.8991E-01 3.2895E-06 5.4342E-03 4.3875E-02 

16 1.0446E-01 1.4508E-01 3.7981E-01 1.9121E-07 8.7952E-04 1.1561E-02 
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4.5.  Binomial Distribution of Observed Data 
 

We turn now to the experimental evidence on the observed data, which is the vehicle’s actual 

performance. It is also based on the rationale of the binomial distribution. The historical reports record 

that, for all of the 16 missions, the vehicle was successfully launched and recovered 15 times. 

Therefore, we could assume the probability of success for a single mission to be 15/16.  Using Eq. 3, 

we could calculate the probability of success for 15 out of 16 missions. 

 

  = 0.3798  

Using this model, the expected frequency is 0.3798 * 16 = 6, and the expected un-success frequency 

can be 16 – 6 = 10. 

 

4.6.  Chi-square Test Results 
 

The X2 test is a hypothesis test method that allow us to estimate whether differences in frequency 

distribution are statistically significant or not. The Null hypothesis H0 is: There is no difference 

between expert judgement and actual performance. The Alternative hypothesis H1 is: There is a 

difference between expert judgement and actual performance. In this section, the theoretical frequency 

for optimist and pessimist were compared with the actual frequency from observed data. Table 6, 

below, shows the chi-square result for the optimistic experts. 

 

Table 6: Optimist expert aggregated judgements, X2 test results. 

 

In order to examine whether the null hypothesis is true or not, it is necessary to compare the 

value of X2 with the X2
critical. If the value of X2 is greater than the X2

critical then the differences 

between the predicted success estimates and the observed success are statistically significant. 

This means that the null hypothesis must be rejected. In this case, the degree of freedom is 

equal to: (2-1) * (2-1) = 1. The X2
critical is 3.8410 at 95% confident level.  

 

Since X2 is greater than X2
critical (20.1025 > 3.8410), the null hypothesis can be rejected with a 

p value < 0.005. Thus, the alternative hypothesis is accepted. As a result, a difference between 

the optimistic expert judgement and actual performance can be identified. The X2 result for 

the pessimist expert aggregated model is shown in Table 7, below. The X2 of 2.2875 is less 

than the X2
critical (3.8410). Thus, the null hypothesis fails to be rejected. As a result, no 

difference between the pessimistic expert judgement and actual performance can be 

identified. 
Table 7: Pessimist expert aggregated judgements, X2 test results. 

Value fo 

(Actual performance) 

fe 

(Expert judgement) 

fo-fe 〖 ((fo-fe))/fe〗 ^2 

Success 6 13 -7 3.7692 

Un-success 10 3 7 16.3333 

Total 16 16  X2 = 20.1025 

Value fo 

(Actual performance) 

fe 

(Expert judgement) 

fo-fe 〖 ((fo-fe))/fe〗 ^2 

Success 6 9 -3 1 

Un-success 10 7 3 1.2857 

Total 16 16  X2 = 2.2857 
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5.  CONCLUSIONS 
 

The un-weighted linear pool aggregation method was used to aggregate the experts’ judgements 

mathematically and fault tree analysis (FTA) technique was employed to calculate the probability of 

loss/reliability of the Nereid-UI AUV. The probability of loss for the Nereid-UI AUV was based on its 

design assessment only, with the use of no operational data. For Autosub 3 deployment under the Pine 

Island Glacier, the estimated probability of loss for scenario 1 was 0.33 (for the optimistic model) and 

0.48 (for the pessimistic model).  For the Nereid-UI AUV, the probability of loss for a 5h mission was 

estimated at 0.181 (for the optimistic model) and 0.452 (for the pessimistic model). There are of 

course differences between the two vehicles in terms of operation profile and there are differences 

between the mission lengths. If we were to update the risk estimates for the Nereid-UI AUV with 

operational data, the risk profiles between the two platforms would be much closer. 

 

The aim of the study was to test the validity of grouping experts into optimists and pessimists. Using 

the Nereid-UI AUV operational data and risk assessments, we tested which risk model would better 

reflect the field results.  

 

X2 test results have shown that the judgements by optimistic experts had a significant difference with 

actual performance. The pessimist expert aggregated judgements model has no significance difference 

with the actual performance. Our results show that the pessimistic model was more reliable for risk 

estimates. This was the case at least for the first few missions of the vehicle, 16 in our case. If we 

consider both optimists and pessimists as an integral group and calculate their judgement only via 

mathematical average method, it will lead to significant biases and make the experts’ judgements 

unreliable when compared to the real cases. This difference has been noticed while dealing with the 

data in this work and mainly comes from the systematic errors due to heuristics and bias, which may 

be eliminated by the weighted linear pool aggregation method. 

 

We plan to extend this study as follows: we would like to assess the impact of the seed questions on 

the experts’ performance. In this study we elicited the experts’ judgements for 10 seed questions. We 

intend to use this data to provide further insight into the expert judgment elicitation process. 

 

 

Acknowledgements 

 

The authors would like to acknowledge the work of colleagues from Woods Hole Oceanographic 

Institute in organizing the risk workshop. The authors would like to thank, in particular, Dr. Carl 

Kaiser, Dr. Michael Jakuba and Mr. Andy Bowen.   

 

 

References 

 

[1] Cooke R.M.: ‘Experts in Uncertainty: Opinion and Subjective Probability in Science’ (Oxford 

University Press, 1991. 1991) 

[2] Apostolakis G.: ‘The Concept of Probability in Safety Assessments of Technological 

Systems’, Science, 1990, 250, (4986), pp. 1359-1364 

[3] Keeney R.L., and Winterfeldt D.v.: ‘Eliciting Probabilities from Experts in Complex 

Technical Problems’, IEEE Transactions on Engineering Management, 1991, 38, (3), pp. 191-201 

[4] Kahneman D., and Tversky A.: ‘Subjective probability: A judgment of representativeness’, 

Cognitive Psychology, 1972, 3, (3), pp. 25 

[5] O'Hagan A., Buck C.E., Daneshkhah A., Eiser J.R., Garthwaite P.H., Jenkinson D.J., Oakley 

J.E., and Rakow T.: ‘Uncertain judgements: Eliciting experts’ probabilities’ (Wiley, 2006. 2006) 

[6] Otway H., and von Winterfeldt D.: ‘Expert judgment in risk analysis and management: 

process, context, and pitfalls’, Risk Analysis, 1992, 12, (1), pp. 11 

[7] Cooke R., and Goossens L.H.J.: ‘Expert judgment elicitation for risk assessments of critical 

infrastructures’, Journal of Risk Research 2004, 7, (6), pp. 643-656 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

[8] Alicke M.D., Klotz M.L., Breitenbecher D.L., Yurak T.J., and Vredenburg D.S.: ‘Personal 

contact, individuation, and the above-average effect’, Journal of Personality and Social Psychology, 

1995, 68, pp. 804-825 

[9] Brito M., Griffiths G., and Trembanis A.: ‘Eliciting expert judgment on the probability of loss 

of an AUV operating in four environments’, in Editor (Ed.)^(Eds.): ‘Book Eliciting expert judgment 

on the probability of loss of an AUV operating in four environments’ (National Oceanography Centre, 

Southampton 2008, edn.), pp.  

[10] Brito M.P., Smeed D.A., and Griffiths G.: ‘Analysis of causation of loss of communication 

with marine autonomous systems: A probability tree approach’, Methods in Oceanography, 2014, (0) 

[11] Brito M.P.: ‘Reliability Case Notes No. 10. Board of Inquiry: Circumstances surrounding the 

stranding of the AutoNaut ‘Gordon’ on the Plymouth coast on 7th November 2014’, in Editor 

(Ed.)^(Eds.): ‘Book Reliability Case Notes No. 10. Board of Inquiry: Circumstances surrounding the 

stranding of the AutoNaut ‘Gordon’ on the Plymouth coast on 7th November 2014’ (National 

Oceanography Centre, 2015, edn.), pp. 1-91 

[12] Brito M.P., Griffiths G., and Challenor P.: ‘Risk Analysis for Autonomous Underwater 

Vehicle Operations in Extreme Environments’, Risk Analysis, 2010, 30, (12), pp. 1771-1788 

[13] Stokey R., Austin T., von Alt C., Purcell M., Goldsborough R., Forrester N., and Allen B.: 

‘AUV bloopers or why Murphy must have been an optimist’. Proc. Proc. 11th International 

Symposium on Unmanned Untethered Submersible Technology, New Hampshire1999 pp. Pages 

[14] Griffiths G., Millard N.W., McPhail S.D., Stevenson P., and Challenor P.G.: ‘On the 

Reliability of the Autosub Autonomous Underwater Vehicle’, Underwater Technology, 2003, 25, pp. 

175-184 

[15] Strut J.: ‘Report of the inquiry into the loss of Autosub2 under the Fimbulisen.’, in Editor 

(Ed.)^(Eds.): ‘Book Report of the inquiry into the loss of Autosub2 under the Fimbulisen.’ (National 

Oceanography Centre, Southampton 2006, edn.), pp.  

[16] http://oceanexplorer.noaa.gov/technology/subs/abe/abe.html, accessed 15/05/2018  

[17] Griffiths G., and Trembanis A.: ‘Eliciting expert judgment for the probability of AUV loss in 

contrasting operational environments’, New Hampshire, US2007 pp. Pages 

[18] Brito M., and Griffiths G.: ‘A Markov Chain state transition approach to establishing critical 

phases for AUV reliability’, IEEE Journal of Oceanic Engineering, 2011, 36, (1), pp. 139-149 

[19] Bowen A.D., Jakuba M.V., Yoerger D.R., Whitcomb L.L., Kinsey J.C., Mayer L., and 

German C.R.: ‘Nereid UI: A Light-Tethered Remotely Operated Vehicle for Under-Ice Telepresence’. 

Proc. OTC Arctic Technology Conference, Houston, Texas, USA, 2012/12/3/ 2012 pp. Pages 

[20] Jakuba M.V., Bailey J., Kelley S., Suman S., Machado C., and Kaiser C.: ‘SVC4: AUV 

Operations’, in Editor (Ed.)^(Eds.): ‘Book SVC4: AUV Operations’ (Woods Hole Oceanographic 

Institution, 2016, edn.), pp. 1-11 

[21] Jakuba M., and Laney S.: ‘Shallow-water sea trails of the WHOI NEREID Under-Ice ROV to 

demonstrate capability in ice-covered shelf in polar oceans’, in Editor (Ed.)^(Eds.): ‘Book Shallow-

water sea trails of the WHOI NEREID Under-Ice ROV to demonstrate capability in ice-covered shelf 

in polar oceans’ (Woods Hole Oceanography Centre, 2017, edn.), pp. 1-4 

[22] German C.R., Jakuba M.V., Bailey J., Elliott S., Judge C., McFarland C., Suman S., 

Whitcomb L.L., and Laney S.: ‘TECHNOLOGY DEVELOPMENT: USE OF HROV NUI FOR 

UNDER ICE RESEARCH’, in Editor (Ed.)^(Eds.): ‘Book TECHNOLOGY DEVELOPMENT: USE 

OF HROV NUI FOR UNDER ICE RESEARCH’ (Woods Hole Oceanographic Institution, 2014, 

edn.), pp. 1-20 

[23] German C., Jakuba M., Bailey J., Branch A., Machado C., Suman S., Whitcomb L., Boetius 

A., Hand K., McDermott J., Purser A., Bowen A., Chien S., Kinsey J., Schaffer S., Bach W., 

Nakamura K.-i., and Pizarro O.: ‘Use of HROV NUI for Under Ice Extreme Environment Exploration 

(PSTAR&ROBEX)’, in Editor (Ed.) (Woods Hole Oceanographic Institute, 2016, edn.), pp. 1-12 

[24] O’Connor P.D.T.: ‘Practical Reliability Engineering’ (Wiley, 1995, Fourth ed. edn. 1995) 

[26] Brito, M.P., Jakuba, M. and Kaiser, K.  2018. A Performance-based Risk Model for Autonomous 

Underwater Systems Deployment. Risk Analysis (in preparation). 


