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Abstract: Dynamic human reliability analysis (HRA) typically operates at the task or subtask level, 
allowing a tight coupling between plant evolutions and operator response. However, most HRA methods 
calculate human error probabilities (HEPs) at the human failure event (HFE) level. This results in a 
mismatch between the types of HEPs generated for static vs. dynamic HRA. There has been no clear 
guidance on how to aggregate the higher sampling frequency of dynamic HEPs to match the HEPs in 
static HRA. Applying available task dependence correction factors, for example, artificially inflates the 
HEPs, resulting in unrealistically conservative HEPs generated from dynamic HRA. In this paper, we 
review aggregation techniques that calibrates dynamic task-level HEPs to static HFE-level HEPs. This 
aggregation allows more direct validation of dynamic HRA results to reference static HRA results. 
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1.  INTRODUCTION 
 
The standard unit of analysis in human reliability analysis (HRA) is the human failure event (HFE). In 
their probabilistic risk assessment (PRA) standard, the American Society of Mechanical Engineers 
(ASME) has defined an HFE as, “a basic event that represents a failure or unavailability of a component, 
system, or function that is caused by human inaction, or an inappropriate action” [1]. Unfortunately, this 
definition fails to offer precision in terms of the level of task decomposition [2]. Generally, the HFE will 
encompass many human tasks that together contribute to the failure of a hardware system. The number 
of tasks and subtasks remains underspecified.  
 
Such underspecification was the source of considerable inter-analyst variability in the European Union’s 
Human Factors Reliability Benchmark Exercise (HF-RBE) in the 1980s [3]. In fact, it took three 
iterations of the study before the level of analysis within the HFE could be controlled enough to allow 
comparison of HRAs performed by different teams. The more recent International HRA Empirical Study 
[4] carefully defined the HFEs, arguably to a higher level of specificity than might be found in 
conventional PRA in practice. The highly specified HFEs ensured greater comparability between HRAs 
without confounds due to analysts looking at different tasks as part of their analysis.  
 
Despite considerable advancement in the field of HRA in the span of time between the two benchmark 
activities, there remains surprisingly little advancement in the definition or specification of the HFE. In 
fact, with the move toward streamlined, primarily quantitative HRA methods throughout much of the 
interval between benchmarks, many methods provide even less guidance on task analysis and HFE 
definition than earlier methods. For example, while the Technique for Human Error Rate Prediction 
(THERP) [5] offers extensive guidance on how to decompose human activities and synthesize them for 
calculation of the human error probability (HEP), newer methods like the Standardized Plant Analysis 
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Risk-Human (SPAR-H) method [6] simply guide the analyst on quantifying a predefined HFE. That 
predefinition comes from the PRA, but the PRA is primarily concerned with system impact rather than 
task decomposition. 
 
The use of a PRA-defined HFE serves HRA well in practice. The input from the HRA into the PRA 
needs to be an HEP, and the analyst is skilled at providing a realistic HEP commensurate to the number 
of tasks encompassed in the HFE. Still, there is considerable skill of craft in scaling the analysis to the 
right level of detail. It is possible that defining the tasks within the HFE and aligning the HRA method 
to that task level remains a significant source of inter-analyst variability. The challenge of aligning 
analysts and methods to the right task remains a concern, even 30 years after the HF-RBE [3]. 
 
While the underspecification of task decomposition in HFEs may still linger quietly as an unresolved 
issue for human analysts performing HRAs, the problem is not limited to traditional, so-called static 
HRA. Recent work in dynamic HRA reignites the problem of task decomposition, because dynamic 
HRA necessarily considers human activities at the task or procedure step level. Dynamic HRA strives 
for a realistic simulation of human performance through either a virtual operator or virtual analysis 
model [7]. The virtual operator may be linked to a virtual nuclear plant simulation in a dynamic PRA, 
such that virtual operator activities are tightly coupled to virtual plant performance [8, 9]. Because 
human performance is driven by a sequence of perceptions, decisions, and actions, simulations of human 
performance cannot exist at the aggregate level. The script of human goals and tasks to accomplish them 
must be played out step by step in order to achieve a realistic representation of that activity. Each step 
is influenced by context—the nature of the task, the environment in which the task is carried out, and a 
myriad of psychological and physiological factors that shape the performance of the human. While it 
would be possible to take a snapshot of a cluster of activities to plug into a dynamic HRA, this big 
picture would not be tightly coupled to the context. A generic snapshot would fail to be a function of 
the inputs into the human that ultimately determine the performance outcome.  
 
At present, there is no surrogate or reduced order model for a series of human tasks in a dynamic 
simulation. The human actions must be modeled at the task (or smaller) level. The necessity of task-
level modeling in dynamic HRA means that HEPs are calculated (and preferably autocalculated [9, 10]) 
at the task level, not the HFE level. In this paper, we overview some strategies to reconcile task-level 
HEPs with the HFE-level HEPs preferred in PRA in current practice. 
 
2.  TASK-LEVEL MODELING 
 
A human error is not necessarily the same as a human failure, and a task is not necessarily the same as 
a human failure event. An HFE typically consists of several tasks performed toward a common goal. 
For example, an HFE of Failure to Initiate Safety Injection in a nuclear power plant likely spans multiple 
tasks and corresponding steps in procedures, when available.  Each task or step presents an opportunity 
for success or error (and corresponding task HEP), and thus an HFE may actually entail multiple human 
errors (and successes) at different steps in the overall process.  
 
The HFE is generally represented as a binary branch of an event tree in the PRA, and the tasks are 
generally represented as nodes linked by logical AND or OR gates in a fault tree. The fault tree fails to 
represent the sequence of tasks, nor does it specify the optimal level of tasks to be modeled, any more 
than the HFE does in the event tree. While the optimal level of ideal decomposition certainly features 
prominently in discussions of task analysis (e.g., [11]), it often remains a matter of analyst discretion in 
HRA. Often, those salient points of physical connection between operators and hardware (e.g., opening 
a valve) are more completely modeled than cognitive tasks like detection, monitoring, and decision 
making. 
 
We have already discussed the need for task-level modeling in dynamic HRA. Additional reasons for 
using task-level HEP calculations include the following: 
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1. Recovery: Just as every task includes the opportunity for success or error, each error likely has 
opportunity for recovery. The error-recovery pairing is essential to accurate modeling of the 
HEP for that task. The original HRA method, THERP [5] included its own form of event tree—
the HRA event tree—which is no longer widely used. In THERP’s HRA event tree, a binary 
success-failure node representation of all tasks served to link the tasks together explicitly, 
including the mathematical aggregation of all task HEPs. Each node in the HRA event tree 
featured an HEP, and each error should explicitly consider the opportunity for recovery. After 
THERP, the modeling of recovery has gradually shifted to the HFE level, but at this level there 
is opportunity to overlook the precise pairing of task errors and task recoveries. Recovery 
occurs at the task level. It may impact the HFE, but it is best understood at the task level.  

2. HRA without PRA: While PRA and HRA are well entrenched in some industries like nuclear 
power, there are many safety-critical industries where PRA and HRA are still emerging. The 
adoption of HRA may follow independently of PRA. For example, in the petroleum industry 
in the U.S., there are minimal PRA requirements. Yet, there is active work in human factors 
and human performance improvement. HRA is sometimes being sought as a complementary 
tool to human factors and human performance in the design of new systems. Identifying and 
quantifying human errors helps to prioritize the most impactful items in terms of safety when 
refining the design of a new system. In such cases, there is no PRA to define the HFE, and the 
HFE is derived from a task analysis [12-13]. For HRA to be useful to such applications, it must 
be standalone, and it must be able to calculate HEPs meaningfully at the task level, which 
corresponds to the task analysis level used in human factors. 

3. HRA for Design: To reiterate a point made in [14], when designing a new system and 
considering the opportunity for human error in that system, the analysis may benefit from finer 
granularity. Identifying the opportunity for error is better accomplished by considering each 
task a user will undertake rather than considering a block of tasks at the HFE level. The 
individual error matters in the design, because that task-level error provides a specific 
resolution area rather than a general mitigation requirement. A pinpointed issue to fix is of 
considerably greater value to the system engineer than a broad issue that may vaguely span 
multiple aspects of the system.  

 
As a final point on task-level modeling, it is important to consider that a task may consist of subtasks. 
In task analysis, a task may be further decomposed into subtasks, each representing a hierarchy of goals 
and corresponding activities. An HRA method like the Goals-Operators-Methods-Selection rules 
(GOMS)-HRA method captures this nuance [15]. GOMS-HRA models human activities in terms of task 
level primitives (TLPs), which are basic units of human activities such as taking physical actions, 
checking something, retrieving information, issuing or receiving instructions, selecting something, and 
making decisions. GOMS-HRA also offers procedure level primitives (PLPs), which correspond to 
procedure steps [16]. The PLPs are at a higher level of task activity than the TLPs. A single procedure 
step indexed as a PLP may consist of several TLPs. The relationship between PLPs and TLPs therefore 
is one of task and subtasks, respectively. GOMS-HRA quantifies at the TLP or subtask level. It is 
essential that GOMS-HRA be able to scale from the subtask to the task and HFE level in terms of 
quantification. There is no current method to aggregate such subtask HEPs to the HFE level. This 
represents a fundamental misalignment of GOMS-HRA to the standard level of analysis in HRA. Yet, 
GOMS-HRA has already proved a versatile simulation method for dynamic HRA. To begin to redress 
this shortcoming, next we explore different ways to aggregate subtask and task HEPs to the HFE level. 
 
3.  SAMPLE DYNAMIC DATA 
 
For our exploration of HEP aggregation, we are using data from a simulation related to a station blackout 
at a nuclear power plant [17]. The station blackout has three successive phases: 
 

1. Loss of offsite power (LOOP): The electric grid fails, at which point the plant can no longer 
continue to produce power. The plant no longer has access to an external power source, and the 
plant is no longer producing its own power. It must rely on backup power in the form of 
emergency diesel generators. 
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2. Loss of diesel generator (LODG): The diesel generators may fail for reasons incident to weather 
(e.g., flooding or other natural disaster that renders them inoperable) or for reasons related to 
prolonged use (i.e., running out of available fuel in the event of a prolonged grid disturbance). 
Human error can also be a contributor, e.g., if the diesel generator is aligned to the wrong power 
train, resulting in damage to key systems. For light water reactor designs without passive 
cooling, it is necessary to maintain power to continue cooling the reactor via coolant 
recirculation pumps following shutdown. 

3. Loss of battery (LOB):  In the event of diesel failure, the plant has large batteries to allow 
essential plant functions like coolant recirculation for a specified time. This time window may 
ideally be the period required for safe shutdown or may incorporate the time required to setup 
or transport secondary backup generators. 

 
A failure of all three levels is extremely rare but was evidenced at the Fukushimi Daiichi event [18]. 
Awareness of the possible failure of all levels due to natural disaster has led to additional defense-in-
depth measures such as emergency mitigation equipment (so-called “flex” gear) to ensure the 
availability of necessary power to the plant under a wider range of unlikely but high consequence 
disruptive events. 
 
Our simulation of the event featured a thermal hydraulics-based plant simulation coupled to a dynamic 
HRA implementation based on GOMS-HRA [17]. GOMS-HRA served to calculate nominal HEPs 
following the steps in the Post Trip Action and Station Blackout procedures. The nominal HEPs were 
modified using performance shaping factors (PSFs) from the SPAR-H method [6]. The PSFs were 
autocalculated based on plant parameter information from the plant simulation [9, 10]. The PSFs 
correspond to multipliers to increase or decrease the overall HEP. The simulation therefore calculated 
distinct context-dependent HEPs for each procedure step. Task durations were also approximated using 
GOMS-HRA timing data [19].  
 
Figure 1: Human Error Probability (HEP) as a Function of Time (t) for Loss of Offsite Power 
(LOOP) and Loss of Diesel Generator (LODG). 
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Figure 1 presents HEPs calculated for LOOP and LODG activities. The two data sets represent different 
types of curves. The LOOP curve, occurring earlier in the event progression when there are multiple 
changes as the plant cools down, is curve fitted by a two-order polynomial function: 
 

𝐻𝐸𝑃 = 𝑒 − 10𝑡2 − 7𝑡 + 0.0028, 𝑅2 = 0.951, (1) 
 
where HEP is the human error probability at that point in time and t is the time of the activity. R2 is a 
measure of the goodness of fit. For the interval of time representing actions taken in response to the 
LODG event, the HEP function is considerably more linear: 
 

𝐻𝐸𝑃 = 4𝑒 − 7𝑡 + 0.0036, 𝑅2 = 0.999. (2) 
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The HEPs are higher for Equation 2, because the severity of the event and the factors influencing 
operator performance (e.g., available time and complexity) are rendered worse as the event progresses.  
 
Equations 1 and 2 are, of course, not the functions originally used to autocalculate the HEPs. They do, 
however, show the dynamic nature of HEPs across time and tasks. A limitation of this paper is that these 
data sets do not begin to cover the variety of HEP possibilities over an event progression, but they 
provide a working sample of the types of data that an actual dynamic HRA approach has generated. A 
more hypothetical and complete HEP example can be found in [20]. Note that the HEPs as presented 
here do not account for dependence between tasks and the types of HEP adjustments that might be 
performed to account for error escalation once an initial error occurs. 
 
4.  HUMAN ERROR PROBABILITY AGGREGATION 
 
4.1  Introduction 
 
Let us assume that LOOP and LODG represent HFEs associated with activities where the human 
contributes to a Failure to Prepare Plant for Shutdown for LOOP and a Failure to Initiate Backup Power 
for LODG. Over fifty procedure steps were modeled for the station blackout scenario, such that HFELOOP 
and HFELODG each include approximately 25 separate operator tasks (i.e., procedure level primitives in 
the parlance of GOMS-HRA) that map to even more task level primitives. The two HFEs produced error 
curves as shown in Figure 1. The question remains how to translate the individual task-level HEPs to 
overall HEPs for each of the HFEs. Put another way, how should we map a continuous HEP function 
from dynamic HRA into a discrete HEP aligned to the HFE used in static HRA? 
 
4.2  Conservative HEP 
 
Some HRAs may forsake realism for conservatism. Especially screening analyses tend to consider near 
worst case scenarios and result in higher likelihood HEPs. The reasoning for such an approach is 
typically to test the risk significance of the HFE—if a high HEP has little consequence to the overall 
outcome in the HRA or PRA, the HFE is screened out.  
 
A conservative interpretation of the error curves for HFELOOP and HFELODG might simply entail 
assuming the worst case HEP, which would be the maximum value: 

 
𝐻𝐸𝑃𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 = max

𝐻𝐸𝑃∈𝑃
𝑓(𝐻𝐸𝑃), (3) 

 
where f(HEP) is the set of HEPs calculated for that HFE. The maximum function is not a good reflection 
of the evolution of the series of HEPs for that HFE unless there is little variability in the HEPs. Applying 
Equation 3, the conservative HEP is 2.773E-3 for HFELOOP and 4.118E-3 for HFELODG. Note that both 
HFEs have narrow ranges between the minimum and maximum values in the series. HFELOOP has a 
range of 6.288E-06, while HFELODG spans 1.070E-4. With such small ranges, the conservative HEPs for 
both HFEs may prove reasonable estimations of the aggregate HEPs.  
 
4.3  Central Tendency HEP 
 
The standard measures of central tendency are the median and mean. (For the present discussion, we do 
not consider the mode.) The median is the true midpoint of the data series, while the mean is the average 
value. The mean assumes a normal distribution and is therefore susceptible to outliers; however, most 
human performance is assumed to fall on a normal distribution and would be appropriate for treatment 
by the mean. 
 
The median HEP values were 2.773E-3 for HFELOOP and 4.066E-3 for HFELODG. The median HEP is 
identical to the conservative HEP for HFELOOP, owing to the narrow range of autocalculated HEP values 
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for that HFE. The median HEP is lower than the conservative HEP for HFELODG, which reflects the 
broader range of data. 
 
The average value, also known as the expected value (E), is calculated as the average value of the HEP 
function over the HFE interval. This may be represented as:  
 

𝐸(𝐻𝐸𝑃 ) = ∫
𝐻𝐸𝑃 (𝑡)𝑑𝑡

𝑡𝑛 − 𝑡0

𝑡𝑛

𝑡0

, (4) 

 
where t0 is the starting time of the HFE interval and tn is the ending time. The expected or average HEP 
is 2.772E-3 for HFELOOP, and 4.065E-3 for HFELODG. These values are quite similar to the median HEPs 
for the two HFEs, suggesting minimal skew in the data. 
 
5.  CONCLUSION 
 
Both the median and mean (Equation 4) HEP estimates provide more representative single-point echoes 
of the HEP dynamic function than does the conservative (Equation 3) HEP calculation. While the range 
of numbers for each HFE is limited, an index of central tendency will prove less prone to outliers than 
a conservative calculation. Unless the purpose of the analysis is screening, the risk of excessive 
conservatism limits the generalizability of the results from Equation 3. 
 
Additional measures of mathematical and functional (i.e., task analytic) aggregation should be 
considered across more diverse data sets. The present simple functions serve to demonstrate that it is 
possible to map dynamic HEPs at the task level to an aggregate HFE level. Such aggregation serves as 
a necessary step to calibrating the results of autocalculated HEPs to those produced by human analysts. 
Human analysts—prone to considerable intra- and inter-analyst variability—may not be the best 
benchmark for accurate HEPs. Rather than calibrate dynamic HEPs to human analysts, it may prove 
more fruitful to validate dynamic HEPs to empirical data sources. 
 
HRA must not only be useful at a level that is defined by vague interactions with hardware systems. 
Yet, such is the case with HFEs. In fact, human error always occurs at the task level. Some task-level 
human errors are consequential, while others are not. It is the consequential ones that trickle up to affect 
the HFE, but the HFE is rarely the most suitable level of analysis to understand those underlying human 
tasks. Human reliability analysts may employ considerable skill in accounting for the relevant tasks 
when considering the HFE, but such expertise remains largely unformalized. A virtual analytic tool like 
dynamic HRA cannot deduce handpicked tasks that may have guided a human analysis. It is therefore 
essential that HRA consider the task—not the HFE—as the fundamental unit of analysis. To do so 
requires compatibility between HEPs generated for HFEs vs. tasks. This paper is a first attempt to bridge 
task and HFE quantification. Despite this beginning, additional aggregation techniques should be 
explored. These become important not only to calibrate to HFEs as treated in HRA in current practice 
but to allow HRA to operate outside the bounds of HFEs. The groupings of HFEs may ultimately prove 
less useful than the high consequence tasks amid a series of human activities. Such tasks are likely the 
main drivers of human errors that cause hardware failures. These tasks are not, however, discrete events. 
They are part of a continuum of activities, all of which should be considered for the sake of modeling 
completeness. 
 
Disclaimer 
 
The opinions expressed in this paper are entirely those of the author and do not represent official 
position. This work of authorship was prepared as an account of work sponsored by Idaho National 
Laboratory, an agency of the United States Government. Neither the United States Government, nor any 
agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any 
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legal liability or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned 
rights. Idaho National Laboratory is a multi-program laboratory operated by Battelle Energy Alliance 
LLC, for the United States Department of Energy under Contract DE-AC07-05ID14517. This research 
was funded through the Laboratory Directed Research and Development program at Idaho National 
Laboratory. 
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