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Abstract: In this paper we present a series of methods designed to incorporate classical Probabilistic
Risk Assessment (PRA) models such as Event-Trees (ETs) and Fault-Trees (FTs) into Dynamic PRA.
In contrast to classical PRA, Dynamic PRA couples stochastic methods with safety analysis codes
to determine the risk associated to complex systems such as nuclear plants. Compared to classical
PRA methods, they can evaluate with higher resolution the safety impacts of timing and sequencing
of events on the accident progression. As part of a Dynamic PRA analysis, it is not uncommon that
some components of the system to be analyzed might not require a simulation model (which would be
computationally expensive) due to its intrinsic characteristics but such components could be actually
modeled by a classical PRA model (either ET or FT). In this paper, we investigate how we can integrate
classical PRA models (either ET or FT) into a dynamic PRA: an “hybrid” PRA. We show how this
integration has been performed within the the RAVEN statistical framework.
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1. INTRODUCTION

Dynamic Probabilistic Risk Assessment (PRA) [[1} 2] methods couple stochastic methods [3} 4} 5, 16} [7]]
(i.e., sampling methods) with system simulators (e.g., RELAP5-3D [8]] and MELCOR [9]) to determine
the risk associated to complex systems such as nuclear power plants. Compared to Classical PRA
methods [10], they can evaluate with higher resolution the safety impacts of timing and sequencing of
events on the accident progression without the need to introduce conservative modeling assumptions
and success criteria [[11]].

As part of a Dynamic PRA analysis, it is not uncommon that some components of the system under
consideration might not require a complex and computationally expensive simulation model due to its
intrinsic characteristics (e.g., no time or physics dependency). From a modeling point of view, such
components could be actually included in the analysis by employing simpler Classical PRA models
such as Event Trees (ETs) or Fault Trees (FTs) [[12].

This paper presents a set of methods to link Classical PRA models into a Dynamic PRA: a “hybrid”
PRA. We consider not only ETs and FTs, but also Markov Models [13]] and Reliability Block Diagrams
(RBDs) [12] as possible modeling solutions (see Section[2). The linking (see Sections [3|and ] has been
performed within the RAVEN statistical framework [[14] by creating a common data communication
flow among: the sampled parameters, the linked Classical PRA models and the safety analysis
code.

2. CLASSICAL PRA

PRA methods [12] have been employed in the nuclear industry after the publication of the NRC
document NUREG-1150 [[10]. Since then, each U.S. nuclear power plant has developed PRA models
for each unit based on ETs, FTs, Markov models and RBDs.
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ETs [12] inductively model the accident progression using a tree structure with the goal of depicting all
possible accident sequences. Starting from an initiating event, the accident progression evolves and
branches when a branching condition is encountered (i.e., the requested activation of a safety system).
This branching condition creates two possible scenarios: the successful (upper branch) or the failed
(lower branch) activation of the system. From there, the accident sequence progresses until a new
branching condition is encountered.

A FT [12] instead deductively models the status of a system given the Boolean logic status of its
components. Formally, system components are described by a set of Basic Events (which are boolean in
nature, i.e., True or False) and the system status (i.e., the Top Event of the FT) is uniquely determined
from the Basic Events through a series of logic gates (e.g., AND, OR).

A RBD [[12,15] models the dependencies among system components by employing a directed graph
formalism. System components are represented as blocks and component dependencies are represented
as directed links. System status is calculated by determining all possible communication flows among
the set of input nodes and the set of output nodes. If there is communication flow then the system is
failed. Each block is typically characterized by a simple reliability function that is used to compute the
system reliability based on the structure of the graph.

Markov models (or Markov chains) [[12, [13] are often employed to determine reliability/availability of
systems characterized by multiple states, i.e., not only failed or operating states. These models consist
of N mutually exclusive states which describe a specific status of the system (e.g., system operating,
system under repair, system failed). Transitions among states are stochastic in nature and are described
by a set of probability transition rates M, , (p,q = 1,...,N). Mathematically, a Markov model can

dP(t
be described as [12]] (1) = MP(t) where each element P,(¢) of the vector P(t) = [Pi(t),...,Py(t)]

is the probability of being in state i at time # while M = [M,, ;| contains all possible transition rates

from state p to state g (p,g = 1,...,N). It is not uncommon that in PRA applications a sub set
of state transitions M), , are not stochastic (e.g., they have a fixed transition time) or they are time
dP(t

dependent (inhomogeneous Markov models: M = M(¢)). In these cases, cannot be solved

neither analytically nor numerically using linear algebra solvers. Instead, these models can be solved
numerically using a Monte-Carlo algorithm [13]]: starting from an initial state, the algorithm determines
a set of Ny transition histories and it determines each element P;(¢) as the ratio of the number of
histories that ended in state i at time ¢ over Nys.

3. DYNAMIC PRA

In contrast to Classical PRA, Dynamic PRA approaches [[16} 17] explicitly employ system simulation
tools instead of complex logic structures (such as ETs and FTs). In fact, they can model in a single
analysis: the thermal-hydraulic behavior of the plant [[18, [19], external events [20] and operators
responses to the accident scenario [21]]. The probabilistic part of the analysis is performed by defining
a set of stochastic parameters which dictates the time dependent accident progression [1, 2].

From a PRA perspective, a simulation run can be represented as a trajectory in the phase space:
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I (1)
E = F(O,C,S,t)

where:



¢ = c¢(t) represents the status of components and systems of the simulator (e.g., status of emer-
gency core cooling system, AC system)

0 = 6(t) represents the temporal evolution of physics-based variables. Each element of 6 can
be, for example, the temperature or pressure in a specific node of the simulator nodalization

e X is the actual simulator code that describes how 6 evolves in time

I" is the operator which describes how ¢ evolves in time, i.e., the status of components and
systems (system control logic)

e s is the set of stochastic parameters.

Starting from the system located in an initial state, 6(+ = 0) and the set of stochastic parameters s
(which are generally generated through a stochastic sampling process), the simulator & determines the
temporal evolution of 0(¢). At the same time, the system control logic I" determines the status of the
system components c(t).

Given this, a Dynamic PRA analysis is performed by:

1. Associating a probabilistic distribution function (pdf) to the set of parameters s (e.g., timing of
events)

2. Performing stochastic sampling of the pdfs defined in Step 1
3. Performing a simulation run given s sampled in Step 2, i.e., solve the system of Equation I]

4. Repeating Steps 2 and 3 a large number of times and evaluating user defined stochastic parameters
such as core damage probability.

This work focuses on extending Dynamic PRA capability to deal with multiple heterogeneous models:
the objective is to show how the deterministic modeling of Dynamic PRA can be performed by
considering multiple models, not only system simulators but also Classical PRA models. This paper is
designed for a Dynamic PRA framework such as RAVEN [7]] that allows multiple model to be linked
together.

4. INTEGRATION

The idea behind Classical PRA integration into a Dynamic PRA is to replace an expensive physics or a
control logic model with a simpler Classical PRA model such as a FT or an ET (see Section [2).

As an example, the control logic of the core safety injection system of a PWR could be modeled by an
already available Classical PRA model (e.g., a FT) instead of coding a complex control logic in the
RELAPS-3D [8]] model. Analogously, the severe accident MELCOR [9] model could be substituted by
a Classical PRA model (e.g., an ET).

The basic concept behind Dynamic PRA is that each of its models is characterized by a set of input
and output variables and a set of equations that describe the relations between them. Thus, in order
to create the integration of Classical PRA models into a Dynamic PRA, it is required to treat them as
models described by a set of input variables, output variables and a set of constituent equations that
map the two set of variables (see Table[T]).



Model Input Variables Output Variables
ET Branching conditions | Sequence, Outcome
FT Basic Events Top Event
Markov model | Initial state, End time Final state
RBD Block statuses System status

Table 1: Input and Output variables for Classical PRA models.

The challenge resides in the fact that, in a Dynamic PRA, the timing of events is explicitly considered
while Classical PRA models are defined only over Boolean logic variables (i.e., True or False). Thus,
this integration requires that these models must be able to handle in input not only Boolean logic
variables but also the time of occurrence of specific events. In Sections | 1| through [4.4] the integration
of Classical PRA models is described in detail for the four models (ETs, FTs, Markov models and
RBDs).

Note that the following notation is employed: a Boolean logic variable set to False implies that the
event related to that variable has not occurred while when the variable is set to True, the event related
to that variable has occurred. In addition, an input variable with a time value implies that the event
related to that variable occurred at that time.

4.1. FT Integration

As described in Section[2] a FT is a model that relates the Boolean logic status of the Top-Event (TE) to
the set of S Basic Events bey,...,bes: TE = FT (bey,...,bes) Thus, from a Dynamic PRA perspective,
a FT is a model which accepts in input a Boolean logic value (True or False) for each Basic Event
bey,...,bes and it generates a Boolean logic value for the output variable TE.

Now, the goal is to extend FT capabilities to accept in input not only Boolean logic values but
also the time of occurrence of sub-set of Basic Events. An example of FT model evaluation for
different combinations of input variables is shown in Tables [2] and [3] for the AND and OR gates
respectively.

For the AND gate, if all Basic Events have logical values, the output of such gate is True only if all of
them are True. Recalling that a time value for a Basic Event defines the occurrence time for such event
(i.e., the transition from False to True), the AND gate (see Table returns a time value if both Basic
Events are time dependent (be; = t; and be; = ;). Such value corresponds to the first time instant
when both Basic Events are True: max(t,t;) (see middle table of Table . If the two Basic Events
have mixed (time and logical) values, similar reasoning applies: if at least one Basic Event is False
then the gate return a logical value: False. If be; = True then the gate returns the first time instant
when both Basic Events are True: t;.

Similarly reasoning can be applied to the OR gate (see Table [3)); if all Basic Events have logical values,
the output of this gate is True if at least one of them is True. If both Basic Events are time dependent
(bey =t and be, = 1), the OR gate returns a time value corresponding to the first time instant when at
least one Basic Event is True: min(t;,t,). If the two Basic Events have mixed (time and logical) values,
similar reasoning applies: if at least one Basic Event is True then the gate return a logical value: True.
If bey = False then the gate returns the first time instant when one Basic Event is True: t;.

In order to extend the FT model capabilities to accept both logical and time values, the evaluation of the
Top Event has been performed as described in Algorithm[I] The main method, FTEVALUATION, uses



beq be; out bey bey out beq be; | out
False False | False t 1, | max(t,t) False 1, | False
False True | False True ¢t t
True False | False
True True | True

Table 2: AND gate responses for different types of input basic events: Boolean logic (left), time valued
(center) and mixed (right).

be; be, out be; bes out be; bey | out
False False | False t tr | min(t,t) False 1 t
False True | True True t, | True

True False | True
True True | True

Table 3: OR gate responses for different types of input basic events: Boolean logic (left), time values
(center) and mixed (right).

two sub methods: EVALUATETIMEFT (which is described in Algorithm[I)) and EVALUATELOGICFT.
The latter one is not explicitly described here since it simply evaluates the Top Event of the FT given the
logical status of the set of Basic Events. The method FTEVALUATION is structured as follows:

o If the values of all Basic Events are Boolean logic values, then evaluate the FT using EVALUATE-
LOGICFT (return a Boolean logic value)

e If the values of all Basic Events contain at least a time value, then perform the following:
1. Set all time values to False and evaluate the FT; if the Top Event is True then return True
2. Arrange time values in ascending order and set #,;, equal to the first time #,, =1,
3. Set all time values to True if their value is less than ¢; otherwise set them to False

4. Evaluate the FT using EVALUATELOGICFT; if the Top Event is True then return ¢, else set
Iih =1

5. Repeat Steps 3 and 4 over all time values.

Finally, note that the output value of the method FTEVALUATION can be either a logical or a time
value.

4.2. ET Integration

As indicated in Section[2] an ET model relates the sequence number seq and the predicted outcome our
of such sequence given the set of input variables, i.e. the set of R branching conditions (BCj, ... ,BCg):
(out,seq) = ET(BCy,...,BCg)

Similar to the FT case (see Section4.1)), the challenge on the integration of ETs in a Dynamic PRA
perspective is that branching conditions (BCy,...,BCg) can have either a Boolean logic or time values.
However, in contrast to deductive nature of FTs, ETs emulate accident progression through an inductive
process. This implies that, provided a set of time-valued branching conditions, the inductive nature of



Algorithm 1 FT Evaluation Algorithm.

: procedure FTEVALUATION
: Input: S Basic Event be; (s =1,...,5)
: Output: Top Event TE

Set time to empty array
for s=1to Sdo
if be; '= (True,False) then
Add beg to time

1
2
3
4:
5: retrieve_time_input_values:
6
7
8
9:
10: Add 0. to time

11: re-order time in ascending order

12:

13: evaluateFT:

14: if size(time) = 1 then

15: TE < EVALUATELOGICFT(bey,...,bes)

16: return TE

17: else

18: TE < EVALUATETIMEFT (bey,...,bes,time)
19: return TE

20:

21: procedure EVALUATETIMEFT

22: Input: S Basic Event bey (s =1,...,5)
23: Input: array of time values time

24: Output: Top Event TE

25:

26: for all ¢ in time do

27: if 1 = 0 then

28: Set all temporal Basic Events to False

29: TE < EVALUATELOGICFT(bey,...,beys)

30: if TE = True then

31: return TE

32: break

33: else

34: Set temporal Basic Events be; to False if be; > ¢
35: Set temporal Basic Events bes to True if bey < ¢
36: out < EVALUATELOGICFT(bey,...,bes)

37: if out = True then

38: TE <t

39: return TE

40: break




the ET would require the generation of a temporal profile of the the variable seq and out which would
not be meaningful or possibl

In order to overcome this issue, the evaluation of the ET provided a set of branching conditions BC,
(r=1,...,R) with either logical or time values can be performed by:

e Setting all time-valued branching conditions to True (a time value implies the event has occurred)
e Determining seq and out for the corresponding combination of branching conditions

Algorithm [2| describes in more detail how the ET model is solved. The main method, ETevaluation,
is employing a sub method EVALUATELOGICET which determines seq and out provided the logical
values of the branching conditions.

Algorithm 2 ET Evaluation Algorithm.

1: procedure ETEVALUATION

2: Input: R Branching Conditions BC, (r =1,...,R)
3: Output: ET Sequence seq

4: QOutput: ET outcome out

5

6 forr=1toRdo

7: if BC, = (True,False) then

8: BC, < True

9 (seq,out) <— EVALUATELOGICET(BC\,...,BCg)
10: return (seq,out)

4.3. RBD Integration

The most effective way to include RBDs in a Dynamic PRA framework is to model them as graph
models: the system is composed of a set of of nodes (i.e., corresponding to the blocks in a RBD) that
are connected to each other using directional edges. System failure is determined if, given the status of
each node, an information flow can be established between the input and the output nodes.

Note that a mapping between RBD and FT is always valid, i.e., it is possible to uniquely model a
RBD by employing a FT. Given this, it is possible to extend the RBD capabilities to accept timing
values (similarly to the FT case shown in Section[4.1) as indicated in Algorithm [3] The main method,
RBDEVALUATION, uses two sub methods: EVALUATETIMERBD (which is described in Algorithm [3)
and EVALUATELOGICRBD. The latter one is not explicitly described here since it simply solve the
RBD given the logical status of its nodes.

4.4. Markov Models Integration

Integration of Markov models is straightforward since a Markov model (see Section[2]) can be considered
a model which accepts in input: the initial state S;, (i.e., the state at time ¢t = 0), the time 7,,,; at which
we want determine the end state S,,,; and the transition matrix M. The output of this class of models
is the state S,y at time 7,,4. The evaluation of this model is accomplished by performing transitions
among states until 7,,,4 is reached [13] using a Monte-Carlo approach as described in Algorithm[] The

! For example, a transition of our from OK to CD followed by transition from CD to OK could occur.



Algorithm 3 RBD Evaluation Algorithm.

: procedure RBDEVALUATION
: Input: M Nodes values Node,, withm=1,... M
: Output: Graph Status GS

Set time to empty array
form=1to M do
if Node,, \= (True,False) then
Add Node,, to time

1
2
3
4
5: retrieve_time_input_values:
6
7
8
9:
10: Add 0. to time

11: re-order time in ascending order

12:

13: evaluateRBD:

14: if size(time) = 1 then

15: GS < EVALUATELOGICRBD(Nodey,...,Nodey)
16: return GS

17: else

18: re-order time in ascending order

19: GS <+ EVALUATETIMERBD(Nodey,...,Nodey,time)
20: return GS

21:

22: procedure EVALUATETIMERBD

23: Input: M Nodes values Node,, withm=1,... .M
24: Input: array of time values time

25: Output: Graph Status GS

26:

27: for all ¢ in time do

28: if t = 0 then

29: Set all temporal Nodes to False

30: GS <+ EVALUATELOGICRBD(Nodey,...,Nodey)
31: if GS = True then

32: return GS

33: break

34: else

35: Set temporal Nodes Node,, to False if Node,, >t
36: Set temporal Nodes Node,, to True if Node,, <t
37: out <~ EVALUATELOGICRBD(Nodey,...,Nodey)
38: if out = True then

39: GS +1t

40: return GS

41: break




sub method SAMPLETRANSITION, provided a generic state S, (p = 1,...,N) and M, randomly picks
when the next transition occurs out of S, and the arrival state S,. Algorithm A continuously performs
these transitions until 7,,,; is reached.

Algorithm 4 Markov Evaluation Algorithm.

1: procedure MARKOVEVALUATION

2: Input: Initial state S,

3: Input: End time T,,,4

4: Input: Transition matrix M

5: QOutput: Final state S,,,4

6:

7: actual_state < S;,

8: actual_time < 0

9: while true do

10: (newState, transitionTime) = SAMPLETRANSITION (actual _state,M)
11: actual_time < actual_time + transitionTime
12: if actual_time > T,,; then
13: Seond < actual_state
14: break
15: else
16: actual_state < newState
17: Send < actual_state
18: return S,,,;

5. CONCLUSIONS

In this paper we have summarized a series of algorithms that can be employed to incorporate Classical
PRA models into Dynamic PRA analyses. We have described in detail how it is possible to perform
such integration with FTs, ETs, Markov models and RBDs. The objective is to model parts of the
system not with advanced simulation tools but instead with Classical PRA models such as FTs or
ETs.

Unlike Classical PRA, Dynamic PRA explicitly takes into account of timing of events and, thus,
Classical PRA model capabilities needed to be extended in order to deal not only Boolean logic vales
but also time values. This is in particular valid for models like FTs and DBDs. We have presented a set
of algorithms that, provided an existing Classical PRA model, it creates a Dynamic PRA compatible
model that can receive in input both Boolean logic or temporal values. In addition, by employing
the EnsembleModel capability of the RAVEN code we were able to link such models to codes such
as RELAP5-3D. The advantage of this modeling approach is that the implementation of a complex
Dynamic PRA analysis can be strongly simplified since already available Classical PRA models can be
integrated and connected to a Dynamic PRA simulation tools, not only codes (e.g., RELAP5-3D) but
also ROMs.
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