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Abstract: ADS-IDAC stands for the Accident Dynamics Simulator coupled with the Information, 
Decision and Action in a Crew context. It contains both a cognitive crew model and a nuclear power 
plant thermal-hydraulic model to simulate their response behavior and interactions given abnormal 
conditions and generate a discrete dynamic event tree (DDET). When the probabilities of the initiating 
events and branching or non-branching events in a DDET are subject to uncertainty, the probabilities 
can be considered to be random variables described by some probability distribution. The form of their 
probability distribution depends on the type of events (e.g., hardware failure, human activity, etc.) 
Therefore, the probability of the end state events in such a DDET will also be a random variable, and 
the form of its probability distribution will depend both on the DDET structure and the probability 
distributions of the events. In this paper, the various sampling techniques (i.e., Monte Carlo, Latin 
Hypercube, quasi-Monte Carlo) that are implemented in an updated version of ADS-IDAC are 
summarized. They are used for the propagation of uncertainties in the DDET generated by ADS-
IDAC. These Monte Carlo methods are used to obtain a probability distribution of the end state events 
in a DDET using available information on the tree structure and the assumed probability distributions 
of its top events. The same methods can be applied to simulate the fault trees (FTs) used to represent 
frontline and support systems. For these accident sequences, the propagation of uncertainties is 
performed on the combined structure of DDET and FTs. 
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1.  INTRODUCTION 
 
The Accident Dynamics Simulator coupled with the Information, Decision, and Action in a Crew 
context (ADS-IDAC) simulation platform falls into the category of discrete dynamic probabilistic 
safety assessment techniques in which the time-dependent changes in the system elements are 
simulated to create scenarios by stepping forward in time or branching to new sequences at discrete 
time steps following a relatively small set of generic branching rules. These model-based branching 
rules have been developed to not only constrain the simulation into a realistic solution space, but also 
to avoid the sequence explosion phenomenon given the large number of system states. The latest 
version of ADS-IDAC is limited to point-estimate quantification, thus its events are not subjected to 
uncertainty. 
 
The two major types of uncertainties are aleatory and epistemic uncertainties. Aleatory uncertainties 
account for the randomness in the behavior of a system or crew, while epistemic uncertainties arise 
from a lack of knowledge of the systems, processes, or mechanisms. Dealing with the aleatory 
uncertainties is straightforward when data is available and allows probabilistic characterization. 
Probability-based approaches such as Monte Carlo simulations are typically used to describe 
uncertainties in input data and propagate them through fault trees (FTs) or event trees (ETs). This 
technique requires empirical input data information or expert judgement in the form of probability 
density functions of relevant parameters. In some cases, this information may not be available. As an 
alternative to empirical data that can be difficult to obtain, expert judgment is typically used. 
Moreover, it is known that Monte Carlo simulations can be computationally expensive, requiring 
efficient sampling techniques. 
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Given the motivation for this work, the following tasks were completed: appropriate probability 
distributions for the human failure events (HFE) were selected, capability to select various probability 
distributions for the hardware failure events was created, and algorithms to propagate the uncertainties 
through the generated DDET were implemented. Moreover, the Hybrid Causal Logic (HCL) library, 
which is internally coupled into ADS-IDAC, had to be extended with new quantification features. 
These features include multiple types of basic event quantification models, sampling methods, and 
time-dependent importance measures. 
 
2.  OVERVIEW OF ADS-IDAC 
 
To safely operate Nuclear Power Plants (NPPs), the crew are required to closely interact with the 
system and between themselves – especially under abnormal conditions. Although the NPPs are 
equipped with automated safety systems, the crew still need to perform complex activities during 
highly dynamic accident conditions. Their performance could be impaired by the inability to obtain 
information about the systems or the lack of time available to safely recover the NPP. The safety of 
NPPs can be improved by predicting, quantifying, and mitigating the conditions that could result in the 
crew making inappropriate decisions based on conflicting information or committing erroneous 
actions. Conventionally, the methodologies and techniques used to predict and quantify the HFEs (i.e., 
THERP) are static in time and include limited information about the cognitive context in which the 
crew perform. ADS-IDAC was and remains revolutionary for being the only simulation-based HRA 
method that not only attempts to quantify the time-dependent crew behavior, but also transparently 
predict it by simulating both the crew and NPP behavior. It is one of the most mature dynamic 
platforms with an evolution that spans more than 25 years as illustrated in Figure 1. 
 
 

 
Figure 1 ADS-IDAC Development History [1-7] 

 
ADS-IDAC is a simulation engine that includes a scheduler module, a hardware reliability module, a 
control panel module, and the IDAC operator response model coupled with the RELAP5/MOD3.3 
thermal hydraulic code (the system model) to generate DDETs containing contextually rich scenarios 
that could occur given an initiating event. Its modular structure and the flow of information between 
modules are shown in Figure 2. A scheduler module coordinates the interactions between all the other 
modules and generates the DDETs. The probability of each scenario/sequence is calculated as the 
product of conditional probabilities of its constituent branches (as is the case for conventional ETs). 
The indicator module simulates the control panel indicators’ states driven by information from the 
system module. The hardware reliability module simulates the failure probabilities of the system’s and 
control panel’s components. The IDAC operator response model requires either the heuristic cognitive 
engine or the reasoning module to guide operator decision-making. The cognitive engine forms a 
situational assessment from perceived information to identify and select suitable goals and strategies 
based on the situational assessment and to prioritize and resolve conflicts among the selected goal and 
strategy sets [6]. In the reasoning module, the operators’ knowledge-based behavior is augmented 
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through an embedded attention mechanism in information perception channels, better capturing 
cognitive resource limitations, and top-down attention control [7]. This module also simulates an 
operator ‘making sense’ of perceived information, connecting different pieces of information to form a 
comprehensive mental picture of the plant situation, and making accident diagnoses. 
 
One of the new features that was implemented into the simulation engine was support systems 
integration by dynamically linking FTs [8]. This was achieved by linking the Control Panel Module to 
the HCL Module (Figure 2). In turn, this allowed the frontline systems to be also modeled with 
dynamic FTs when they could not be included into the thermal hydraulic model. 
 
 

 
Figure 2 ADS-IDAC architecture 

 
This coupling gave access to HCL’s capability for creating, updating, and quantifying of FTs. Also, 
HCL supports creating, updating, and evaluating of Bayesian Networks (BNs). A BN does not require 
complete knowledge of the cause-and-effect relations between the random variables. HCL offers a 
natural platform for creating a BN for all the PSFs when more empirical data becomes available. 
Overall, the modeling of the impact of the situational and cognitive factors on the operator’s behavior 
was improved. 
 
However, both ADS-IDAC and the HCL library had to be expanded to support uncertainty 
propagation, even if the coupled HCL library was used as the basis for this work. 
 
3.  NEW QUANTIFICATION FEATURES 
 
In this chapter, the new features implemented into the HCL library are described. New quantification 
models were included to allow the modelling of more advanced hardware failures. For uncertainty 
propagation, a number of sampling methods have been included into the HCL library. A range of 
importance measures have been implemented that can be used to assess the relative importance of 
different components in a system modeled with a FT. 
 
3.1.  Basic event quantification models 
 
The following quantification models were implemented into the HCL library to expand the types of 
system failures that ADS-IDAC can simulate and provide the necessary probability distributions for 
uncertainty quantification: Uniform, Normal, Lognormal, Gamma, Noncentral chi-squared, Cauchy, 
Student’s t, Exponential, and Weibull. 
 
Time-dependent reliability results from third-party advanced models of component failure 
mechanisms (e.g., MATLAB simulation) may be used in the system analysis. If the results cannot be 
fitted to the common statistical distributions, they can be included in the analysis in the form of a 
nonparametric model given by the time-dependent reliability cumulative distribution function for each 
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component. The data should be included in a ‘.csv’ file containing two rows for time and reliability 
data pairs. 
 
The first developmental task pursued was to create a generic expression parsing module with added 
distribution recognition and global variable functionalities by linking the C++ Mathematical 
Expression Parsing And Evaluation Library (called ‘exprtk’ and available for free use under the MIT 
license [http://partow.net/programming/exprtk/]). The exprtk library was extended to include the 
dictionary of the following commonly-used distribution functions: “uniform”, “normal”, “lognormal”, 
“exponential”, “weibull”. These can be individually used to model uncertain failures on demand or be 
part of expressions defining complex failure mechanisms including time-to-failure or other user-
defined global variables. 
 
For example, temperature could be a global variable for an Arrhenius degradation model. A user could 
define the temperature to be sampled from a distribution or fix it to a certain value through the 
assignment operator. In this example, it is assumed the component time to failure is exponentially 
distributed with the failure rate given by an Arrhenius degradation model. The input XML snippet for 
this case is: 

<expression expressionLiteral="T:=uniform(223.2,353.2); 
1-exp(-(1/(5.57e-6*exp(8566/T)))*t)" testInterval="500.0"/> 

In other component definitions that require the use of the same temperature variables, the user would 
not need to redefine it. In other words, each global variable needs to be defined only once, otherwise it 
will be overwritten. 
 
3.2.  Sampling methods 
 
The sampling techniques presented here were used in HCL to perform uncertainty analysis on the 
discrete DDETs. All the sampling methods that have been implemented into this version of ADS-
IDAC fall into the category of forward samplers because they do not learn from information gathered 
during the sampling of the system. 
 
The HCL library includes Monte Carlo sampling (MCS) and three variants of Latin Hypercube 
sampling (LHS). The HCL library offers more advanced forward sampling strategies that use low-
discrepancy sequences called quasi-Monte Carlo sampling (QMCS). The difference between these 
sampling methods can be seen in Figure 3. 

 
Figure 3 Density plot of Monte Carlo sampling (MCS), Latin hypercube sampling (LHS) and quasi-Monte 

Carlo sampling (QMCS) on a 16x16 grid with 1024 samples [9] 
 
Monte Carlo simulation leverages the law of large numbers (amongst other things) to estimate the 
expectation using the sample mean of a function of a set of sampled random variables. To initialize the 
sampler, a priori knowledge of the needed number of samples or the number of dimensions is not 
required. Forward sampling generates pseudorandom numbers using the Mersenne Twister algorithm 
without considering the previously generated sample points. Monte Carlo is arguably the most used 
sampling strategy across multiple fields [10]. 
 
LHS requires the number of samples at initialization. The number of samples is then used to stratify 
the domain space into Latin squares such that each sample’s location must be remembered to not be 
explored at future iterations. The following LHS methods have been implemented: 

• LHC Center determines each subsquare’s center that is equidistant from the square’s corners 
or apexes, 
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• LHS Random determines each subsquare’s center that is randomly located within the square’s 
corners or apexes; and 

• Improved Distributed LHS finds a set of samples that are optimally spread out in the domain 
space [11]. 

 
QMCS employs a quasi-random number generator. A quasi-random or low-discrepancy sequence 
(such as the Faure, Halton, Hammersley, Niederreiter or Sobol sequences) is less ‘random’ than a 
pseudorandom number sequence, but more useful for tasks such as uncertainty quantification in higher 
dimensions. This is because low discrepancy sequences tend to explore the space more evenly than 
random numbers as successive samples are generated in a position as far as possible from the previous 
samples. Low-discrepancy sequences avoid clustering of samples. However, careful review of each 
sequence’s limitation needs to be given as each has its strengths and weaknesses, especially in terms 
of the maximum number of dimensions allowed. 
 
The raw result of an uncertainty quantification using any of the sampling strategies described above is 
a median with confidence interval centered about it. During the simulation setup, the user is asked for 
a confidence level larger than 0.5 and smaller than 1.0. Cumulative distribution function (CDF) 
uncertainty quantification involves a family of CDFs - one for each sample. The user can opt to have 
the raw data post-processed and output the median failure function with its confidence limits defined 
by the confidence level. 
 
3.3.  Importance Measures 
 
Importance measures are key ingredients of PRA used to rank the relative contributions to risk 
between end states or components in a system. A wide range of time-dependent importance measures 
have been included in ADS-IDAC: conditional, marginal, improvement potential, criticality, 
diagnostic, risk achievement worth, and risk reduction worth. 
 
The conditional importance measure of a component is based on the time-dependent conditional 
probability of system failure given that component has already failed: 

 
 
The marginal or Birnbaum’s importance measure quantifies the rate of change of the system reliability 
because of changes to the reliability of a single component. Its mathematical expression is: 

 
 
If the importance measure is large for a component i, then a small change in the reliability of 
component i results in a large change in the system reliability at time t. The marginal importance 
measure can be interpreted to be the probability that at time t component i is critical for the system. 
 
Also note that the marginal importance measure of component i is independent of the actual reliability 
of component i. In other words, it only depends on the structure of the system and the reliabilities of 
the other components. 
 
In practice, components with a very low value of the marginal importance measure have a small effect 
on the system reliability, thus requirements for finding highly reliable components to perform their 
functions may be relaxed. On the other hand, components with a very high value of the marginal 
importance measure are critical for the system at that time t; therefore, a lot more effort should be put 
into finding components with higher reliability, finding higher quality reliability data, or even 
changing the structure of the system. 
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The improvement potential importance measure is the difference between the system reliability with 
an ideal component i (that is, its reliability is equal to 1), and the system reliability with the actual 
component i. Mathematically, this is defined as: 

 
 
The improvement potential importance measure, as its name is suggesting, indicates how much it is 
possible to improve the current system reliability by replacing component i with an ideal component. 
 
The criticality importance measure is defined as the probability that component i is critical for the 
system and is failed at time t, given that the system is failed at time t. It can be obtained from the 
marginal importance measure in the following way: 

 
 
In other words, the criticality importance measure gives a measure of the probability that a component 
i causes the system to fail. Therefore, if the component i is repaired, the system is expected to function 
again. The prioritizing of maintenance or repair actions in complex systems can be accomplished with 
the criticality importance measure. 
 
The diagnostic or Fussell-Vesely importance measure is the probability that at least one minimal cut 
set that contains component i is failed at time t, given that the system is failed at time t. It is expressed 
as: 

 
 
In practice, it should give similar results as the criticality importance measure, thus they can be used 
for the same scope. 
 
The risk achievement worth (RAW) importance measure quantifies the relative increase in the system 
failure given that component i is in a failed state: 

 
 
In practice, the RAW importance measure is used to find the risk significance of components that are 
removed from the system. If the importance measure is close to 1, then its improvement has negligible 
effect on the system. 
 
The risk reduction worth (RRW) importance measure quantifies the relative reduction in the system 
failure given that component i is functioning: 

 
 
The basic event i may sometimes represent an operator action instead of a component failure. For such 
cases, it may be useful to analyze the effect of operator inaction on the mission success. It is similar to 
the critically importance measure. 
 
4.  UNCERTAINTY QUANTIFICATION OF A PWR STEAM GENERATOR TUBE 
RUPTURE EVENT 
 
A test case capturing the system and crew behavior given a concurrent steam generator tube rupture 
(SGTR) and a main steam line break (MSLB) designed for the International HRA Empirical Study 
[12] was simulated to showcase the new models implemented into ADS-IDAC. The scope of the 
empirical study was to perform experiments at the Halden Reactor Project’s HAMMLAB (HAIden 
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huMan-Machine LABoratory) research simulator where real crews were asked to respond to a series 
of carefully designed accident conditions to build an empirically based understanding of the 
performance, strengths, and weaknesses of the most used conventional HRA methods. 
 
The HAMMLAB research simulator is a three-loop Westinghouse PWR. Also, The HAMMLAB’s 
EOPs were loosely based on the emergency response guidelines (ERGs) developed by the 
Westinghouse Owners Group. The EOPs used in the complex SGTR scenario are: E-0 – “Reactor Trip 
or Safety Injection” and E-3 “Tube rupture in one or several steam generators”. E-0 is the safety 
systems verification and diagnosis procedure used by the crew when the reactor has tripped, when 
safety injection has started, or when there is a need for either of them. E-3 is the procedure to which 
the crew are typically expected to transfer from E-0 when a diagnosis of SGTR is declared. E-3 
contains the recovery instructions following a SGTR. 
 
The complex SGTR scenario starts with a concomitant SGTR and a main steam line break (MSLB) in 
normal operation at 100% that immediately activates automatic SCRAM and the expectation that the 
crew would open the E-0 procedure for verification of safety systems and diagnosing the NPP 
condition. Two more complications were introduced to create a more complex scenario: the main 
steam isolation valves (MSIVs) close automatically in response to the MSLB, and the failure of any 
remaining secondary radiation indications. The scenario was designed so that as the MSLB drives the 
NPP response early in the scenario, where the initial symptoms of the NPP resemble a severe MSLB 
with the quick closure of the MSIVs, and all the secondary radiation indications fail. These conditions 
are expected to mask the occurrence of the SGTR and make its diagnosis a lot more challenging than 
the typical SGTR alone where the crews are expected to transfer to E-3 at step 19. This challenges the 
crew’s procedure-following strategy, and a correct diagnosis of the NPP conditions would heavily rely 
on their knowledge-based reasoning or otherwise delay the transfer until they reach step 21. 
 
The HFE selected to be quantified in ADS-IDAC is HFE 1B: failure of the crew to isolate the faulted 
steam generator. The sequence of interest for the selected test case is replicated only by crew M that 
diagnose the SGTR based on the steam generator level at step 21 by following the procedures. The top 
events of interest leading to HFE 1B are: successful reactor trip, feedwater available, and high-
pressure injection started. Note that ADS-IDAC generates multiple sequences and covers most of the 
crew variability observed in the International HRA Empirical Study. Also, the algorithms and 
methodology behind the point-estimate quantification has already been published in [13].   
 
For uncertainty quantification in ADS-IDAC, a probability distribution with its variance was needed 
for the HFEs given that the means are obtained in the point estimate stage of the dynamic simulation. 
In this respect, the results of the empirical study provide a good basis. A lognormal distribution has 
been selected for all the HFEs. From the empirical study estimation using various HRA methods, the 
variance in probabilities of all the HFEs is around 1.5E-3, therefore this value was adopted in this 
analysis as well. 
 
In order to obtain the probability of success for HFE 1B (that is, the crew succeeds to isolate the 
faulted steam generator) all the decision-maker’s and action-taker’s conditional event probabilities 
from the time step when the high-pressure injection starts until the crew has isolated steam generator 
A have been multiplied to obtain: 87.82% with the 5th and 95th percentile bounds 82.69% and, 
respectively, 89.55%. The confidence bounds have been obtained by running a Monte Carlo 
simulation with 100,000 samples. Therefore, the probability of HFE 1B (failure of the crew to isolate 
the faulted steam generator) is 12.18% with the 5th and 95th percentile bounds 10.45% and, 
respectively, 17.31%. This falls in the band for HFE 1B, which is in agreement with the empirical 
study results. 
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Figure 4 HFE 1B prediction of ADS-IDAC 

 
5.  CONCLUSION 
 
In this paper the new quantification features of ADS-IDAC necessary to perform uncertainty 
quantification have been described. Also, an example of a fully quantified with uncertainties human 
failure event in a scenario with a concurrent steam generator tube rupture and a main steam line break 
is described and compared with available empirical data obtained from the International HRA 
Empirical Study. Good agreement between the simulation and empirical data is shown, nevertheless 
the qualitative predictive power of ADS-IDAC is as important as the quantification itself. 
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