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Abstract: CO2/H2S corrosion is a major threat to gas pipelines because it often leads to loss of life and 

property when explosions happen as a result of corrosion. Corrosion inspection is one of the best ways 

to mitigate the potential risk, however, it is often costly in money and time if inline inspection is not 

done efficiently. This paper presents a probabilistic corrosion model that is able to predict the internal 

corrosion rate of gas pipelines in an aqueous CO2/H2S environment. Firstly, the corrosion type between 

uniform and pitting corrosion is determined for each pipeline by the extreme value analysis. Then, the 

proposed model for uniform corrosion and the Papavinasam model for pitting corrosion, respectively, 

are applied to predict the corrosion rate. Monte Carlo simulation is used for the calculation to include 

uncertainties of operating and basic design variables of gas pipelines. The results show good agreement 

between the observational corrosion rates and the predicted corrosion rates on eight wet gas gathering 

pipelines in Sichuan province, China. In addition, it is found that gas gathering pipelines tend to suffer 

uniform and pitting corrosion depending on ages when they are under similar operating conditions with 

the presence of chloride ions.   
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1. INTRODUCTION 
 

Much of the world relies on gas pipelines, which transport gas from where they are extracted to where 

they are needed. Regarding gas composition, corrosive matters such as CO2 and H2S are often 

unavoidable, which introduce the risk of corrosion to steel pipeline segments and potentially result in 

severe health and environmental hazards due to pipeline failure such as pipeline explosion. Therefore, it 

is important to develop predictive models of pipeline corrosion for different types of corrosion, and thus 

actions such as maintenance and replacement could be implemented proactively.  

 

To date, numerous models have been developed to quantitatively predict the corrosion rate. These 

corrosion rate models are categorized into mechanistic, semi-empirical, and empirical models [1]. Most 

of the time, linear-growth model or power-function model based on corrosion depth data can’t accurately 

predict the corrosion rate for the future; therefore, corrosion rate models based on operating parameters 

are of special interest. De Waard and Milliams firstly proposed a mechanistic corrosion rate equation as 

a function of the temperature and the partial pressure of CO2 for sweet corrosion [2]. A few years later, 

their model was further modified into a semi-empirical model to account for other environmental factors 

such as protective layers, pH value, and flow velocity [3]. Southwest Research Institute (SWRI) derived 

an empirical corrosion rate equation as a function of the concentration of O2, partial pressure of CO2 and 

H2S, and pH for CO2/H2S corrosion based on experimental data, which is able to be implemented in the 

regime of sour corrosion [4, 5].  Nešic’s group have demonstrated several mechanistic models based on 

electrochemical concepts, which are able to be applied to the regime of both sweet and sour corrosion 

[6-9]. Among three kinds of corrosion rate models, most corrosion rate models used by industries are 

empirical as they are more adjustable with respect to operating parameters, however, mechanistic models 

are suggested to be more reliable because of their reliability of extrapolation to wider domains of 

application.   
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These models are often carried out using the deterministic approach in which mean or average values 

for environmental and operating parameters are considered. However, the deterministic approach has 

limited application as these parameters change all the time, introducing substantial uncertainty in the 

model outcomes. On the other hand, the probabilistic approach uses probability distributions to account 

for the uncertainties of these parameters, meaning they are more reliable in regard to pipeline corrosion 

modelling [10-14]. Besides, the statistical model such as extreme value analysis has been used to analyze 

localized corrosion (e.g. pitting) because of its applicability on maximum value (e.g. pit depth) and its 

ability of extrapolation for un-inspected data [15].      

 

Many research has been done to develop predictive models for corroded gas pipelines, however, none of 

them combines the statistical model (e.g. extreme value analysis) with corrosion rate models as an 

integrated modelling tool. The main goal of this paper is to develop a probabilistic model to study the 

internal corrosion of gas pipelines subject to an aqueous CO2/H2S environment and predict reasonably 

accurate corrosion rate. This model applied extreme value analysis to identify the corrosion type between 

uniform and pitting corrosion. Then, a proposed model for uniform corrosion and the Papavinasam 

model for pitting corrosion, respectively, were used to calculate the predicted corrosion rate. To verify 

the validity of this model on operating gas pipelines, eight wet gas gathering pipelines in Sichuan 

province, China were studied and the results of the observational corrosion rates and the predicted 

corrosion rates were compared. 

 

2. MODEL DESCRIPTION 
 

2.1. Uniform corrosion  

 

Uniform corrosion is a common type of corrosion inside a gas pipeline subject to the aqueous CO2/H2S 

environment, which uniformly proceeds and thins the entire metal surface. The proposed model is a 

modified model based on the Sun and Nešic model for uniform corrosion [16]. This model is a 

mechanistic model, which assumes that the corrosion process is under mass transfer control in the 

presence of corrosion product layers (i.e. mackinawite layers). The diffusion processes of corrosive 

species e.g. H2S, CO2, and H+ control the severity of corrosion inside a gas pipeline. Take H2S for 

example, the steady state H2S flux (FluxH2S) in mol/(m2s) and its contribution to the corrosion rate 

(CRH2S) in mm/y are represented as Eq. (1) and Eq. (2), respectively.    

 

FluxH2S = AH2Sln [

cb,H2S - FluxH2S (
δOS

DH2Sεφ
 + 

1
 km,H2S

)

cs,H2S

] 
               (1) 

 

 

CRH2S=
FluxH2SMFe

ρ
Fe

 (2) 

 

FluxH2S is the flux of H2S km,H2S is the mass transfer coefficient (= 1 × 10-4 m/s); cb,H2S is the bulk 

concentration of H2S in the liquid phase in mol/m3; DH2S is the diffusion coefficient for dissolved H2S 

in water (= 2 × 10-9 m2/s); ε is the outer mackinawite layer porosity (= 0.9); ψ is the outer mackinawite 

layer tortuosity factor (= 0.003); δOS is the thickness of mackinawite layers in m; AH2S is the solid state 

diffusion kinetic constant for H2S (= 2 × 10-5 mol/(m2s)); cs,H2S is the near zero concentration of H2S on 

the steel surface (= 1 × 10-7 mol/m3); MFe is the molar mass of iron (= 55.84 g/mol); ρFe is the density of 

iron (= 7.874 g/cm3). It should be noted that further correction is needed for corrosion rate unit mm/y. 

As corrosion process proceeds, mackinawite layers grow in thickness as a diffusion barrier and the 

thickness of it is determined by the sulfide layer retention rate (SRR) in mol/(m2s), which is a tradeoff 

between the sulfide layer formation rate (SFR) and the sulfide layer damage rate (SDR) given by Eq. (3).   
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SRR = CR - SDRM - SDRD (3) 

 

SFR is the corrosion rate (CR) in mol/(m2s) because the supplier of Fe2+ for mackinawite layers is the 

steel itself. On the other hand, SDR includes the sulfide layer mechanical damage rate (SDRM) and the 

sulfide layer dissolution rate (SDRD). SDRM, representing the effect of intrinsic growth stresses and 

extrinsic hydrodynamic forces, is defined as Eq. (4). 

 

SDRM = α × CR (4) 

 

α is the sulfide layer mechanical damage coefficient, which is a function of temperature, pH, flow 

velocity, and partial pressure, ranging from 0 to 1. SDRD is a function of pH, temperature, which has a 

first-order dependence on H+ concentration in acid solutions and a H+ concentration independent term in 

neutral to alkaline solutions given by Eq. (5) [17]. 

 

SDRD = k1[H
+]+R(k2) (5) 

 

[H+] is the hydrogen ion concentration in mol/cm2; R(k2) is the H+ concentration independent dissolution 

rate of iron sulfides in mol/(cm2 min) given by Eq. (6); k1 is the rate constant that dominates in acid 

solutions (= 0.18 ± 0.06 cm/min at 25℃) and k2 is the rate constants that dominates in neutral to alkaline 

solutions (= 1.9 ± 0.9 × 10-9 mol/(cm2 min) at 25℃). 

 

R(k2) = (1 −  
c

cs

) k2 (6)  

 

c is the concentration of dissolved iron sulfides in mol/cm3; cs is the saturation concentration (= 2×10-9 

mol/cm3) for the medium at the natural water pH. R is the gas constant (= 8.314 J/(mol K)); T is the 

temperature in K. The unknown parameter c is simplified into a one-dimensional problem for simplicity 

and is expressed as Eq. (7).  

 

c = cs (1 - exp [- (
2k2

Dcsr
)

0.5

δos])   (7) 

 

Mackinawite layers are assumed to be composed of many mackinawite particles with the radius (r) in m; 

δos is the thickness of mackinawite layers in m; D is the diffusion coefficient of dissolved iron sulfides 

(= 3×10-3 cm2/min).  After CR, SDRM, and SDRD are obtained, SRR can be obtained by Eq. (3) and then 

used to calculate the thickness growth of mackinawite layer thickness (∆δos) in a time interval (Δt) in 

seconds given by Eq. (8). 

 

∆δos =
∆mOS

ρ
FeS

A
 = 

SRR×MFeS×∆t

ρ
FeS

 (8) 

 

∆mOS is the change in mass of mackinawite layers in kg; A is the surface area of mackinawite layers in 

m2; ρ
FeS

 is the density of mackinawite in kg/m3; MFeS is the molecular mass of mackinawite in kg/mol. 

These steps are repeated and δOS is then updated for the CRH2S calculation of the mission time. 

 

2.2. Pitting corrosion 

  

Pitting corrosion is a typical kind of localized corrosion, which appears in the form of small pits. As it 

is hard to be detected inside gas pipelines, it often results in destructive consequences. There are three 

stages of pitting: passive film breakdown, metastable pitting, and pit growth [18]. Over the past thirty 

years, many models have been developed to study and simulate these three stages, however, most of 

them require complicated experiments to determine critical parameters for modelling, limiting their 

practicability on operating gas pipelines [19-22]. In recent years, Papavinasam et al. proposed a model 
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to predict pit growth rates in which they introduced three kinds of parameters (i.e. construction, operating, 

and computable parameter) as inputs based on laboratory experiments to simulate real operating 

conditions [23]. In this paper, this model is used to predict pitting corrosion rates given by Eq. (9).  

 

PCRmean = {(-0.33θc + 55) + (0.51W% + 12.13) + (0.19Wss + 64) + (50 + 25Rsolid) +    

(-0.081P + 88) + (-0.54PH2S + 67) + (-0.63PCO2 + 74) + (-0.013[SO4
2-] + 57) +  

(0.57T + 20) + (-0.014[HCO3
-] + 81) + ( 0.0007[Cl-] + 9.2) + PCRaddition}/12 

(9) 

 

PCRmean is the mean pitting corrosion rate in mpy; θc is the contact angle of oil in a water environment 

in degree; W is the water production rate/(water + oil production rates) × 100; Wss is the wall shear 

stress in Pa; Rsolid is 1 if solids exist; otherwise it is 0; T is the temperature in °C; P is the total pressure 

in psi; PH2S is the partial pressure of H2S in psi; PCO2 is partial pressure of CO2 in psi; [SO4
2-

 ] is sulfate 

concentration in ppm; [HCO3
-] is bicarbonate concentration in ppm; [Cl-] is chloride concentration in 

ppm; PCRaddition is the mean value of these 11 pitting corrosion rates. θc and W are not considered in this 

case. In general, pitting corrosion rate diminishes parabolically with time, and therefore the average 

pitting corrosion rate for mission time (PCRaverage) in mpy can be expressed as Eq. (10) [24]. 

 

PCRaverage= (
PCRmean

1
+

PCRmean

2
+…+

PCRmean

t
)

t
⁄

 
(10) 

 

t is the mission time in year.         

 

2.3. Extreme value analysis  

 

As localized corrosion is stochastic in nature, statistical approaches have been used to study localized 

corrosion inside gas pipelines [10, 25, 26]. Kowaka suggested that pit depth and pit growth rate can be 

well described by extreme value distribution [27]. Specifically, Gumbel distribution is found to be 

suitable for maximum value analysis such as maximum pitting corrosion rate and maximum wall loss. 

In this paper, extreme value analysis is applied to observational data as a tool to identify the corrosion 

type between uniform and pitting corrosion. In addition, estimation of corrosion rate for un-inspected 

regions along a pipeline is also available. The sequence of steps of extreme value analysis is as follows: 

 

Step 1: Collect corrosion rate data and arrange data in ascending order. 

Step 2: Compute the cumulative probability distribution of the observational data using the average 

rank method given by Eq. (11).  

 

F(y)=
i

N+1
 (11) 

 

i is the rank of the observational corrosion rate; N is the total number of data points.  

 

Step 3: Fit the observational data to the Gumbel distribution by Eq. (12). In this model, the distribution 

is recognized as a good fit to the observational data only when R2 is equal to or larger than 0.95. 

 

z = -α[ln(- ln F(y))] + λ (12) 

 

z is the observational corrosion rate in mm/y; α is the Scale parameter; λ is the Location parameter.  

 

Step 4: Estimate corrosion rate across the range of interest inside a pipeline.  

 

Once the parameters of Gumbel distribution are obtained, an updated cumulative distribution function 

was then calculated using Eq. (13), which is capable of estimating corrosion rate across the range of 

interest inside a pipeline.     
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F(y) = exp[-exp(-y)] (13) 

 

y is denoted as (x-λ)/α; x is the corrosion rate in mm/y. 

 

3. RESULTS AND DISCUSSION 

 
In this paper, the field data of eight wet gas gathering pipelines in Sichuan Province, China, was used to 

validate the proposed model [28]. The gas composition of these pipelines is CH4 (≥ 94%) with a small 

amount of CO2 (0.5 ~ 2.0%) and H2S (1.7 ~ 2.3%). As pCO2/pH2S ratios are in the range of 0.3 ~ 0.9,  

the corrosive environments of these pipelines are categorized as the sour regime (pCO2/pH2S < 20) [29]. 

The pipe material is 20 Gauge steel. The basic design variables relevant to these pipelines are given in 

Table 1 and the operating variables are given in Table 2. They are length (L), diameter (D), thickness (d) 

of the pipe, temperature (T), operating pressure (P), percentage of H2S in the gas composition (%H2S), 

the percentage of CO2 in the gas composition (%CO2), flow velocity (V), pH level (pH),  concentration 

of chloride ions (Cl-), and presence of solids (Rsolid). As the paper [28] only provides a value for each 

parameter, these values were viewed as the means values of the assigned distribution types. The 

coefficient of variation (COV) was determined depending on the degree of uncertainty of each variable, 

in which the operating variables often have higher COV than the basic design variables. These 

assumptions were made based on the suggestions of some literature [25, 30].  

 

Table 1: Basic design variables of eight gas pipelines 

 

Table 2: Operating variables of eight gas pipelines (partly [28]) 

*pH2S and pCO2 are calculated by P×mol% H2S/100 and P×mol% CO2/100, respectively. 
*N.A. means the data is unknown. 

 

Firstly, extreme value analysis was carried out for the observational corrosion rate data of each pipeline 

to classify eight gas pipelines into uniform and pitting corrosion. Here, pipeline No.1 is taken as an 

example for the demonstration. Fig. 1(a) depicts the Gumbel distribution fit of the observational data of 

pipeline No.1 with 50% confidence. The result shows a good fit with R2 = 0.9527, and therefore the 

corrosion type in pipeline No.1 is categorized as pitting corrosion. According to Eq. (12), the estimated 

Variables 

Data 

Type COV 
Mean 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 

L (km) Normal 0.05 12.26 2.69 2.82 2.47 2.16 3.52 8.41 7.84 

D (mm) Normal 0.05 159 108 108 108 108 108 219 273 

d (mm) Normal 0.05 8 6 6 6 6 6 8 8 

t (y) Normal 0.05 17 7 6 7 6 8 20 20 

Variables 

Data 

Type COV 
Mean 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 

T (K) Lognormal 0.10 299.5 299.5 299.5 299.5 299.5 299.5 299.5 300 

P (MPa) Lognormal 0.15 4.15 1.95 2.65 5.15 1.95 1.95 4.35 4.45 

pH2S (Pa) Lognormal 0.15 72625 33540 46640 89095 41535 40950 93525 101905 

pCO2 (Pa) Lognormal 0.15 33200 11505 27825 41715 28080 35880 39585 56960 

V (m/s) Lognormal 0.10 2 2 2 2 2 2 2 2 

pH Lognormal 0.05 6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58 

O2+Ar (Pa) Lognormal 0.15 8300 390 N.A. N.A. N.A. 390 870 2225 

Cl- (ppm) Lognormal 0.15 92000 92000 92000 92000 92000 92000 92000 92000 

Inhibitor 

Availability(%) 
Uniform 

Lower limit 

85 

Upper limit 

95 

Inhibitor 

Efficiency(%) 
Uniform 60/25 95/50 

Rsolid Uniform 0 1 
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scale parameter (α) is the slope and the estimated location parameter (λ) is the intercept of the fitted line. 

It should be noted that a fitted line with 90% confidence is recommended and used for the following 

analysis. Once these parameters are obtained, the cumulative density function can be calculated as shown 

in Fig. 1(b). 

 

Estimated maximum pitting corrosion rate for inspection area of interest was calculated by Eq. (13). 

Considering that only 10% of total area was inspected, F(y) = 1-1/N = 0.9 where N = 10, the estimated 

corrosion rate will be less than or equal to 0.15 mm/y for pipeline No.1 with 90% confidence. The same 

analysis was done for the rest pipelines, and the observational data can be described by Gumbel 

distribution only when R2 is equal or larger than 0.95. Otherwise, the inspected pipeline is said to mainly 

suffer uniform corrosion with its observational corrosion rate described by Generalized Extreme Value 

distribution, which is the best-fit distribution estimated by EasyFit 5.6 [31].  

 

The detailed results of the extreme value analysis on the observational corrosion rates for eight gas 

pipelines are shown in Table 3. It is found that pipelines No.1, No.3, No.7, and No.8 tend to mainly 

suffer pitting corrosion, whereas pipelines No.2, No.4, No.5, No.6 tend to mainly suffer uniform 

corrosion. In addition, the probability distributions of pitting corrosion rates spread wider than uniform 

corrosion, indicating that extreme corrosion rates are more likely to happen. In addition, pipelines suffer 

pitting corrosion have higher mean values of the corrosion rates. According to the film-breaking 

mechanism for pit initiation, the first step of pitting corrosion [21, 32], a local breakdown of passive 

films is not only related to the presence of chloride ions but also mechanical stresses (e.g. surface tension 

effect) at flaws on the passive film surface in contact with the electrolyte. It is suggested that pipelines 

that have been operated for a long time (i.e., No.1, No.7, and No.8) are likely to have more flaws and 

point defects on the passive film surface, which expose them to a higher possibility of passive film 

breakdown and make them vulnerable to pitting corrosion. This phenomenon is further facilitated in the 

presence of chloride ions which can be seen in these pipelines.  

 

    

Fig. 1. (a) Gumbel distribution fit; (b) Cumulative density function of the observed data of pipeline No.1. 

 

Secondly, corrosion rate models (i.e., the Papavinasam model for pitting corrosion and the proposed 

model for uniform corrosion) were used to calculate the estimated corrosion rate for mission time based 

on basic design variables and operating variables listed in Table 1 and Table 2 by Monte Carlo method 

to consider the uncertainties of these variables. As the pipelines have different ages, the simulation time 

was extended to the specific operating time for different pipelines in which this process is repeated for 

thousands of time. It should be noted that the proposed model predicts instantaneous uniform corrosion 

rates at a specific time interval (i.e., daily in this case) and the Papavinasam model predicts average 

pitting corrosion rates on a yearly basis, however, the observational corrosion rates are the average 

corrosion rates for how long these pipelines have been operated; therefore, further conversions were 

conducted before the comparison was made in terms of corrosion rate. Considering the factor of 

inhibitors, the inhibited corrosion rate was calculated based on the inhibition efficiency (E%) as follows: 
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E% = (
CRun - CRinh

CRun

)×100 (14) 

 

CRun is the uninhibited corrosion rate; CRinh is the inhibited corrosion rate. As Swidzinski et al. and 

Bouklah et al. indicate that E% is largely dependent on the concentration of the inhibitor, due to lack of 

data, E% is conservatively set in the range of 60% to 95% [33, 34]. Also, E% is assumed to drop to a 

range between 25% to 50% when the corrosion rate is lower than 0.1 mm/y because it is more difficult 

to further reduce the corrosion rate when it is lower given the same concentration of corrosion inhibitors.  

Due to many factors such as failures of injection pumps or human errors the availability of inhibitors is 

hard to maintain at 100% over the entire life of a pipeline. Studies show that it is often found to be 

between 85% and 95% in practice. The overall corrosion rate for an inhibited system should be calculated 

on the basis of the inhibitor availability principle as follows [30]:  

 

CRtot = f × CRinh + (1 - f) × CRun (15) 

 

f is the fraction of time the inhibitor is available (i.e. availability).  

 

Table 3: Detailed results of extreme value analysis on the observational corrosion rate 
 

 No.1 No.3 No.7 No.8 

Corrosion type Pitting  

Distribution type Gumbel 

Scale parameter, α 0.035 0.024 0.020 0.038 

Location parameter, λ 0.070 0.033 0.039 0.047 

Mean (mm/y) 0.090 0.043 0.050 0.069 

Std dev (mm/y) 0.045 0.031 0.025 0.048 

Median (mm/y) 0.083 0.042 0.046 0.060 

Mode (mm/y) 0.070 0.033 0.039 0.047 

F(y) = 0.9 (mm/y) 0.150 0.087 0.085 0.135 

 No.2 No.4 No.5 No.6 

Corrosion type Uniform 

Distribution type Generalized Extreme Value 

Scale parameter, σ 0.019 0.007 0.014 0.013 

Location parameter, μ 0.016 0.004 0.008 0.007 

Shape parameter, κ 0.480 0.054 -0.092 0.018 

Mean (mm/y) 0.037 0.008 0.015 0.015 

Std dev (mm/y) 0.062 0.010 0.016 0.017 

Median (mm/y) 0.023 0.007 0.014 0.012 

Mode (mm/y) 0.010 0.004 0.011 0.007 

F(y) = 0.9 (mm/y) 0.081 0.020 0.031 0.037 

 

To test the validity of the proposed probabilistic model, the predicted corrosion rates were compared to 

the observational corrosion rates. Fig. 2 compares the predicted corrosion rates with the observational 

corrosion rates for pitting corrosion (i.e., pipeline No.1, No. 3, No.7, and No.8). The predicted corrosion 

rates follow generalized extreme value (GEV) distributions and most of the model predictions show 

good agreement with the observational corrosion rates except pipeline No. 3. Direct comparison in terms 

of distribution parameters e.g. median and mean values as shown in Fig. 3 presents that the predicted 

corrosion rates deviate within or around a factor of 2. Fig. 4 compares the predicted corrosion rates with 

the observational corrosion rates for uniform corrosion (i.e., pipeline No.2, No.4, No.5, and No.6). All 

the average B values (i.e., sulfide layer mechanical damage coefficients) for these pipelines are found to 

be around 0.22 because of the similar operating conditions (i.e., temperature, pH, and flow velocity). 

The predicted corrosion rates also follow generalized extreme value (GEV) distributions and these 

findings are in agreement with a study by Modiri et al. [26] although a different corrosion rate model is 

used in their study. The figures show that the predicted uniform corrosion rates have smaller spreads of 

values as well as smaller maximum values (F(y) = 0.9) compared to the predicted pitting corrosion rates. 

Most model predictions have reasonable agreement with the observational corrosion rates. Comparison 
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between the predicted and observational corrosion rates in terms of median and mean values (see Fig. 5 ) 

shows that most predicted corrosion rates deviate within or around a factor of 2 except pipeline No. 4. 

Due to limited historical information on maintenance or repair and replacement records, it is difficult to 

explain why the model prediction for pipeline No.3 and No. 4 have higher deviations.   

 

    
 

    
 

Fig. 2. Comparison between predicted corrosion rate and observational corrosion rate for pitting 

corrosion (a) No.1, (b) No.3, (c) No.7, and (d) No.8. 
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Fig. 3. Predicted vs. Observational corrosion rates in terms of median and mean values for pipelines 

No.1, No.3, No.7, and No.8 that suffer mainly pitting corrosion. The solid line outlines the perfect fit 

while the dashed lines depict an area that is within a factor of 2. 

The proposed model for uniform corrosion has been shown to be capable of predicting reasonably 

accurate corrosion rates in terms of median and mean values, however, it could not capture either 

extremely large or small values of observational corrosion rates. Most of the time the places where 

maximum corrosion rates happen are the places where pipeline failures such as leakage and burst will 

occur if they are not detected and treated properly; therefore, this issue should be taken care carefully.  

 

Undoubtedly, the possibility that some segments of these pipelines may suffer small extent of pitting 

corrosion more or less can’t be ruled out although more data is required to verify this statement. Another 

viewpoint which is also worth mentioning is that the uncertainties of the observational corrosion rates 

are far beyond than what are considered in this study. For example, this study considers the uncertainties 

of operating parameters and how they affect the corrosion rate as time proceeds, however, the modelling 

scope is limited in a segment of the pipeline. As the observational corrosion rates are randomly generated 

from the whole pipes which are several kilometers long, the operating parameters are believed to vary 

on different positions, each of which should be considered as an independent corrosion process. The 

issue of positional variability of operating parameters and its effect on the corrosion rate will be 

addressed in the future work.  
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Fig. 4. Comparison between predicted corrosion rates and observational corrosion rates for uniform 

corrosion (a) No.2, (b) No.4, (c) No.5, and (d) No.6.  

 

 

 
 

Fig. 5. Predicted vs. Observational corrosion rates in terms of median and mean values for pipelines 

No.2, No.4, No.5, and No.6 that suffer mainly uniform corrosion. The solid line outlines the perfect fit 

while the dashed lines depict an area that is within a factor of 2. 

In view of the findings in this study, it can be inferred that gas gathering pipelines are likely to mainly 

suffer uniform corrosion after a few years of operation (i.e., less than 10 years) while the dominating 

corrosion mechanism may change into pitting corrosion after a longer time of operation (i.e., more than 
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15 years) in an environment with corrosive electrolytes especially chloride ions. However, the exact 

transition periods among uniform corrosion and pitting corrosion are still unclear, which requires more 

studies on available field data before it can be determined.    

 

The proposed probabilistic model is proven to be able to predict reasonably accurate corrosion rate for 

the operating gas pipelines subject to the aqueous CO2/H2S environment, and it could also be used to 

predict the corrosion rate of other gas pipelines with similar operating conditions. However, this model 

should be applied with cautions because both corrosion rate models mentioned in this model have their 

own domains of application in which they will be less reliable when operating parameters of a pipeline 

deviate too much from the domains. The recommended domains of application for the proposed uniform 

corrosion model are: pH should be larger than 4 and smaller than 7; pH2S and pCO2 should be smaller 

than 10 bar because the precipitation effect of protective layers, which becomes prominent at high 

pressure, is not accounted for in this model,  whereas those for the Papavinasam model are referred to 

the paper [23].   

 

4. CONCLUSION 
 

In this research, a probabilistic model consisting of an extreme value analysis and two corrosion rate 

models for uniform corrosion and pitting corrosion has been demonstrated to study internal corrosion of 

gas pipelines subject to the aqueous CO2/H2S environment. This model is able to predict the corrosion 

rate based on specific corrosion types among uniform and pitting corrosion.  

 

Eight wet gas gathering pipelines in Sichuan province, China were studied to validate the proposed 

model. Probability distribution functions of operating and basic design variables were applied as input 

parameters for the proposed corrosion rate model for uniform corrosion and the Papavinasam model for 

pitting corrosion. Model predictions in terms of corrosion rate calculations were done by Monte Carlo 

simulation to consider the uncertainties of operating parameters. Most results show reasonable 

agreement between the observational corrosion rates and the model predictions in terms of median and 

mean values.  

 

Older pipelines were found to be more vulnerable to pitting corrosion, whereas younger pipelines tend 

to suffer mainly uniform corrosion. It is suggested that older pipelines have a higher possibility of passive 

film breakdown due to the presence of chloride ions as well as surface tension effect at more accumulated 

flaws that make them vulnerable to pitting corrosion.  
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