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Abstract: In the nuclear power industry, risk monitors are intended to provide a point-in-time estimate 

of the system risk given the current plant configuration. Current risk monitors are limited in that they do 

not take into account the deteriorating states of plant equipment. Current approaches to on-line risk 

monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot 

in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense 

by including temporary changes in plant and system configurations. However, information on plant 

component health (a.k.a. level of degradation) are not considered. This often leaves risk monitors using 

living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving 

over time. There is a need to develop enabling approaches to enhance risk monitors to provide time- and 

condition-dependent risk by integrating traditional PRA models with condition monitoring and 

prognostic techniques. 

This paper presents an exponential model for estimating the mean failure rate of components undergoing 

degradation, and Bayesian inference for updating the distribution of component failure rates. Such a 

degradation model is based on component performance data gathered over the service life and historical 

failures. The proposed model is demonstrated using component performance and failure data obtained 

for five motors subjected to accelerated degradation. The model provides a more realistic picture of the 

component risk and also forms an important prognostic tool capable of aiding risk-informed decision 

making. 
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1.  INTRODUCTION 
 

Current static probabilistic risk assessment (PRA) techniques prevalent in the nuclear industry are 

mainly based on event- and fault-tree analysis [1, 2]. The static PRA techniques formulate system- and 

plant-level risk scenarios based on basic event probabilities that model a system’s or plant’s response to 

component failures or initiating events and compute quantities ranging from probabilities of system failure 

to core damage frequencies. The event- and fault-tree-based PRA is commonly performed in the nuclear 

industry using PRA tools like Systems Analysis Programs for Hands-on Integrity Reliability Evaluation 

(SAPHIRE) [3] or the Computer Aided Fault Tree Analysis System (CAFTA) [4]. The risk levels of 

structures, systems, and components (SSCs) defined within existing PRA models are traditionally not 

updated as the SSCs age or as their performance degrades. The current risk assessment is typically a 

snapshot in time, and the information on plant component condition is often not considered. This limits 

current PRA models from conducting an evaluation of dynamic degradation scenarios. 

The existing approaches of incorporating component aging and degradation in PRA include physics-based 

models that are suitable for degradation phenomena with existing physical models of degradation like 

corrosion and fracture [5], and logistic function-based approaches that assess the likelihood of a failure 

event given the degradation level [6]. This paper presents a novel failure-rate-based model of incorporating 

degradation of nuclear SSCs into an existing PRA model and associated risk monitor. Several existing 

approaches that quantify component degradation from measurement data are aimed at estimating 

remaining useful life (RUL), or at performing prognosis for condition based maintenance [7-9]. This 

work is specifically aimed at estimating the component failure rate, or probability of component failure, 

as a function of the component degradation.  

The failure rates or probability of failure for components across the U.S. commercial nuclear power 

plants (NPPs) can be obtained from databases such as the U.S. Nuclear Regulatory Commission’s 

Reactor Operational Database [10]. However there does not exist any database that can provide 

performance measurements taken over specific components operating under healthy or degraded states. 
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Therefore this work utilized the data from an extensive accelerated degradation experiment performed 

over twenty electrical motors [7].  

 

2.  COMPONENT DEGRADATION AND HAZARD RATE MODEL 
 

The component failure rate 𝜆 modeled as a function of its performance measure is 𝜆 = 𝑔(𝒛) where 𝒛 =
(𝑧1, … , 𝑧𝑛) is the vector of 𝑛  parameters measured for the component. In a NPP, mechanical and 

electrical components undergo rigorous periodic measurement of parameters like flow measurement, 

temperature, pressure, vibration, and current signal, along with technical log of historical maintenance, 

operating profiles etc., that can be used to estimate the performance measure 𝒛 for the component at a 

specific point in time. In his seminal work on survival analysis, Cox [11] proposed an exponential 

variation of failure rate as a function of performance measure as 

 
𝜆(𝒛) = 𝜆0𝑒𝑥𝑝(𝛽𝒛)     (1) 

 

where 𝜆0  is the baseline hazard rate and 𝛽  is an unknown parameter. Solving equation (1) entails 

knowing the value of the failure rate 𝜆 for at least two states of the component at known degradation 

states. Let 𝒛 = 𝒛0  be the performance measure of a healthy component, i.e. a component with no 

degradation. Let 𝜆 = 𝜆0 be the failure rate of a healthy component. Commonly, 𝜆0 is the failure rate of 

the component used in the traditional static PRA calculations. In this work, the failure rate is modeled 

using performance measures obtained from running motors until failure under accelerated degradation 

conditions. The failure rate lambda was obtained by using Bayesian inference with the failure data set. 

When described as a random variable for a population of components, the failure rate 𝜆 follows a 

Gamma (𝛼, 𝛽)  distribution, where 𝛼  is the shape parameter and  𝛽  is the rate parameter and the 

probability density function (PDF) of 𝜆 is 

 

𝑓(𝜆; 𝛼, 𝛽) =
𝛽𝛼𝜆𝛼−1𝑒−𝛽𝜆

Γ(𝛼)
, 𝜆 > 0 and 𝛼, 𝛽 > 0.    (2) 

 

Consider a population of  𝑁𝑐 initially healthy components with failure rate described by the Gamma 

distribution in equation (2). Let each of the 𝑁𝑐  initially healthy components undergo degradation, 

culminating in failure of each component. Let the ‘time to failure’ for each of the 𝑁𝑐 components be 

denoted by 𝑡1, 𝑡2 … , 𝑡𝑁𝑐
, and assume the random variable 𝑡 describing time to failure of the population 

follows an exponential distribution  𝑡~𝐸𝑥𝑝(𝜆). Then the PDF of time to failure is 

 

𝑓(𝑡; 𝜆) = 𝜆𝑒−𝜆𝑡 .      (3) 

 

The time to failure data 𝑡1, 𝑡2 … , 𝑡𝑁𝑐
 can be used to update the PDF of failure rate 𝜆  by invoking 

Bayesian inference with prior distribution 𝑓(𝜆; 𝛼, 𝛽) from equation (2) and the likelihood 𝑓(𝑡; 𝜆)  in 

equation (3), the posterior distribution is then given by [12] 

 

𝑓(𝜆|𝑡) =
(𝛽+∑ 𝑡𝑖

𝑁𝑐
𝑖=1 )

𝛼+𝑁𝑐
𝜆𝛼+𝑁𝑐−1𝑒

−(𝛽+∑ 𝑡𝑖
𝑁𝑐
𝑖=1

)𝜆

Γ(𝛼+𝑁𝑐)
         

= 𝐺𝑎𝑚𝑚𝑎(𝛼 + 𝑁𝑐 , 𝛽 + ∑ 𝑡𝑖
𝑁𝑐
𝑖=1 ).                          (4) 

 

The mean failure rate of degraded components is given by 

 

𝜆𝐹 = (𝛼 + 𝑁𝑐) (𝛽 + ∑ 𝑡𝑖
𝑁𝑐
𝑖=1 )⁄ .      (5) 

 

The performance measure at time of failure be 𝒛𝑭 = (𝑧1, … , 𝑧𝑛), for each of the failed components. 

Recalling the failure rate for healthy components as 𝜆 = 𝜆0 when 𝒛 = 𝒛0, and now 𝜆 = 𝜆𝐹 when 𝒛 =
𝒛𝐹 can be utilized for solving equation (1) for the failure rate modeled as a function of performance 

measure. 
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3.  MOTOR TESTING AND DEGRADATION DATA 
 

Ten 5-HP U.S. Electrical Motors/Emerson general-purpose industrial motors were chosen as low cost 

analogs to the high power induction motors found throughout industry [7]. The motors were run through 

a degradation cycle on a weekly basis. A cyclic thermal aging process, designed to induce accelerated 

insulation breakdown and corrosion within the motors, was applied to each of these three-phase, 3600 

rpm motors. First, the motors were heated for three days in an oven. After the heating cycle, the motors 

were placed in a moisture testing bed with high humidity for further degradation. Then the motors were 

allowed to cool for a few hours before being placed in the second heating cycle for three additional days. 

After the second heating cycle, the motors were placed on a test bed and run for one hour. The 

accelerated aging plan has been adapted from a previous work and as suggested by IEEE Standard 117 

(1974) [13, 14]. The IEEE Standard 117 also recommends that the motors undergo moisture testing as 

well as thermal degradation to better simulate normal operating conditions. In order to achieve the 

moisture testing, the motors were placed in a condensation chamber consisting of temperature-regulated 

coolant in a sealed container for a total of 48 hours at 100 % humidity. After a thermal aging cycle, each 

motor was mounted on a test bed, connected through an elastomeric coupling to a generator, and 

instrumented with a data collection system to collect various key signals. 

Fifteen different parameters were measured for each motor as follows: Input Current and Voltage for 

each of the three phases (1-6), Phase angle (7), Vibration horizontal and vertical (8-9), Acoustic 

amplitude (10), Tachometer data (11), Speed in rpm (12), Output current and voltage (13-14), and 

temperature (15) [7]. Because the purpose of this paper is to demonstrate the methodology of modeling 

component failure rate as a function of performance measure, only one quantity was used to keep the 

methodology simple to demonstrate. The acoustic data was found to be most significant in capturing the 

degradation of motors, therefore the following results and discussion are based on acoustic data used for 

modeling the evolution of failure rate of motors. Also, of the twenty motors in the experiment, a subset 

of five motors (# 2, 3, 4, 5, and 6) that demonstrated the strongest acoustic signals was used.     

 

4.  RESULTS AND DISCUSSION 
 

The failure rates for healthy components 𝜆0 can be obtained from NUREG/CR-6928 published by the 

U.S. NRC [10]. This report lists the industry average of failure rates and probability of failure of 

mechanical and electrical components commonly used in the US commercial NPPs. Since NUREG/CR-

6928 does not list three phase motors as distinct component, 𝜆0 = 4.54 × 10−6/ℎ𝑟 and 𝛼 = 1.655 was 

chosen, which are values close to those describing failure rates of motor-driven pumps. 

The time to failure for the five motors obtained 

from the experiment are 150, 131, 156, 133, 151 

hours respectively. Plugging in equation (4) the 

failure times 𝑡𝑖 , i = 1,…,5, and 𝑁𝑐 = 5 , the 

posterior distribution of failure rate is obtained. 

Figure 1 shows the prior and the posterior 

distribution of 𝜆 . The posterior mean indicates 

failure rate of the degraded motors when the five 

motors failed, i.e. 𝜆𝐹. 

The component performance measure 𝑧   is 

obtained from the raw acoustic data in the 

following manner. During the experiment the 

acoustic data was measured at 17,000 points over 

a period of 2 seconds during each test. In this 

work, the root mean square (RMS) value of each 

signal is obtained indicating one measurement 

value for one test. Figure 2 (a) and (b) show the 

acoustic signal measured, and the RMS value for 

 
 

Figure 1. The prior Gamma distribution of failure 

rate of the motors, and the posterior distribution 

obtained from equation (4). 
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two tests, 6 and 110, indicating healthy and degraded states respectively of motor 2. There is a clear 

increase in the RMS value when the motor is in a degraded state. Figure 3 shows the RMS value of 

acoustic data of motor 2 across the 150 tests that the motor lasted. In order to successfully detect the 

distinct outliers, and to clearly identify a trend in degradation, moving variance of the RMS values was 

calculated. Figure 4 (a) shows the raw and the moving variance of the RMS values of the acoustic data 

 
(a) 

 
(b) 

Figure 2. The raw acoustic amplitude and its RMS value measured on motor 2 for two tests in (a) 

healthy and (b) degraded state of the motor.  

 
Figure 3. RMS value measured on motor 2 for each test up to the failure of the motor. 
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for motor 2. The window size for calculating the moving variance was chosen as half the length of the 

data, i.e. 𝑡𝑖/2 for each motor. It is clear that the moving variance successfully illustrates a trend of 

degradation leading up to the time to failure. Therefore the performance measure 𝑧 for modeling the 

failure rate of motors is chosen as the value of moving variance of the RMS value of acoustic amplitude 

(Figure 4 (b)). 

The moving variance results in a clear trend of motor degradation states. The initial healthy state is 

indicated by constant values of the variance, followed by a rapid transition phase indicating a degraded 

state, and then reaching a maximum value of indicative of impending failure. On observing the initial 

constant variance values it was determined that the start of motor degradation phase can be indicated by 

the variance value exceeding 0.2, i.e. the motor failure rate are assumed to stay constant at 𝜆 = 𝜆0 when 

𝑧 < 0.2. The relation between the failure rate and the performance measure is defined as 

 

𝜆(𝑧) = {
𝜆0 𝑧 < 𝑧𝑡ℎ,

𝜆0𝑒𝑥𝑝(𝛽𝑧) 𝑧 ≥ 𝑧𝑡ℎ.
     (6) 

     

where 𝑧𝑡ℎ is the threshold beyond which component starts to undergo degradation, which in case of moving 

variance is determined empirically as 𝑧𝑡ℎ = 0.2. The unknown parameter 𝛽 in equation (6) can be obtained 

by fitting the model between the two points (𝑧𝑡ℎ, 𝜆0) and (𝑧𝐹 , 𝜆𝐹), where 𝑧𝐹 is the measurement obtained 

when the component failed and 𝜆𝐹  is calculated from equation (5). Figure 5 illustrates the fitted 

exponential model along with the 95% confidence interval. Such a model can readily provide an estimate 

of mean failure rate of a component under degraded state when its performance measure is available.  

 

 

 
(a) 

 
(b) 

Figure 4. (a) Raw variance and moving variance of motor 2. (b) Moving variance of the five motors. 
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4.  CONCLUSION AND FUTURE WORK 

 

A framework to model failure rates of components as a function of their performance measure is 

demonstrated. An exponential model is proposed and is modeled using the failure rate of component in 

a healthy state and the failure rate obtained in a failed state from Bayesian inference. The model is 

demonstrated using experimental data obtained from an accelerated degradation test performed over 

five motors. The failure rate evolution is modeled as a function of moving variance of the RMS value 

of acoustic amplitude. The model can be used for estimating the mean failure rate of components under 

degradation. Future work entails incorporating multivariate covariates into the exponential model of 

failure rate, and performing rigorous validation of the proposed model. 
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