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Abstract: The rapidly evolving technology turned industrial process automation into tangible reality. 
As man-made activities are still undoubtedly necessary, especially in complex and cognitive tasks, 
human behavior and performance have become a major concern in almost every economic activity. 
Human factors are quite often pointed, direct or indirectly, as one of the main accident causes in areas 
such as aviation, chemical industry, nuclear power generation and water supply among many others. 
The present work proposes to discuss the use of game engines in the construction of virtual environments 
for Human Reliability Assessment (HRA) studies. Two well known facts motivate this work: the lack 
of good datasets for HRA estimations, and the shortage of funding for scientific research, generating 
small teams with poor interdisciplinarity. This paper discusses how to port real-world scenarios to virtual 
environments aiming to extract useful data for HRA and the use of in game Analytics, from Serious 
Games (SG) gameplay sessions, under the small teams’ perspective. The work discusses how to adapt 
scenarios, create analytics generation setups and shows which data types can be obtained. Also, a real 
scenario accident of an evacuation and toxic cloud release is modeled and analyzed to study the proposed 
methodology feasibility. 
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1.  INTRODUCTION 
 
The concern about human behavior and performance have become a major issue in almost every 
economic activity these days. The intuitive notion of human factors as one of the main causes of 
accidents, is being confirmed by studies in areas such as aviation [1], chemical industry [2], nuclear 
power generation, [3] and water supply [4], among others, turning what was intuitive into a scientific 
"de facto".  
 
The above-mentioned studies discuss the importance in analyzing and infer human performance levels 
and error probabilities in socio-technical systems. However, the scarcity of available data, specifically 
human error data, represents a relevant obstacle in the Human Reliability Assessment (HRA) field [5] – 
[7]. 
 
In this context, recent works bring interesting alternatives to overcome this problem. Refs. [8], [9] 
present digitally created virtual environments to simulate an evacuation scenario with the resulting data 
being used to successfully feed a Bayesian Network. Then, the resulting data is used to calculate the 
conditional probabilities and the likelihood of success for the tasks studied and under predefined 
circumstances. In another experiment, Ref. [10] uses a driving simulator to study sleepiness at the 
steering wheel, also showing good prospect in the use of a digital double to avoid risky situations, in 
accordance with conclusions achieve by Ref. [11]. 
 
The present work aims to explore how to create scenarios in a GE-based simulator so that they can be 
used to feed a human reliability analysis. The approach has already been discussed in the literature in 
cases of virtual environments generating data to HRA studies or to validate concepts [1]–[3], but about 
the subject of how the Virtual Environment (VE) was created, very few, or no info at all is given. At the 
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best of authors’ knowledge, Ref [4] is the only that is a bit clearer on the subject of environment creation 
though it is not tailored for HRA. 
 
For instance, in the Gas and Oil area, Visiongain's report on the oil and gas training market for the period 
2011-2021 provides a growth forecast for investment in training based on dynamic platforms such as 
Virtual Reality (VR) and Serious Games (SG) from moderate to high [5]. This large demand for rich 
content training denotes a positive environment to undertake HRA studies with virtual environments 
aggregate data, with scientific gains, optimizing costs and efforts expended. 
 
In fact, simulators use has been in a growing trend, and many of them are based on virtual reality (VR), 
which reduces costs and increases training efficiency. There are several training solutions using the so-
called Game Engines (GE), like the ones created by Immerse Inc. (2017). 
 
These tools are now at easy reach, depicting a context where a framework to assist the creation of 
immersive virtual environments (VE) to study human reactions, performance, and behavior, becomes a 
must-have solution, deserving comprehensive studies. 
 
Therefore, it is clear the relevance of researching alternatives for systematic data collection beyond 
traditional post-training assessments, and research or accident reports [12]. Then, the present work 
proposes to discuss the use of Game Engines (GE) in the construction of virtual environments for Human 
Reliability Assessment (HRA) studies. 
 

1. DEFINING GAME ENGINES (GE)  

 
Game engines consist of a set of game design tools grouped into a unique computational environment. 
Roughly speaking, GE could be compared to text editors, where all the necessary tools are present in 
the software environment (e.g., printing modules, spelling, and formatting). In game engines, the tools 
needed from the conception to the final output of an application are implemented and designed to be 
reusable and project-independent. 

 
The various embedded features allow the creation of electronic games, simulations, or any application 
that requires real-time graphics, simulations and user interaction. The contemporary GE have layers of 
hardware abstraction that allow the creation of applications for all other devices on a single platform. 
Besides that the most common features found in game engines are [7], [8]:  
 

• Graphic engine to generate two-dimensional, three-dimensional and stereoscopic graphics; 
• Physics engine for simulations; 
• Artificial intelligence (AI) engine for character behaviors; 
• Interface for programming languages and scripts like C ++, C#, JavaScript and others; 
• Multi-player network management; 
• Virtualizers to simulate the various delivery platforms for prototyping.  

 
From the solutions on the market (or about to be), the following GE are noteworthy: Unity Engine 
www.unity3d.com, Cry Engine www.cryengine.com [9], Ogre www.ogre3d.org. The giant Amazon is 
launching Lumberyard aws.amazon.com/pt/lumberyard/, its own proprietary engine, and Autodesk, 
another giant in computer graphics, launched Stingray www.autodesk.com/products/stingray/overview. 

 
In the present article, we use the Unreal Game Engine www.unrealengine.com [10], which is free for 
academic purposes, has outstanding graphic quality and a more user friendly approach. The software 
has no working limitations and all versions are available for download at no charge. 
 
The Unreal, among the main features, has a visual programming interface called Blueprints, which 
permits almost every aspect of the environment to be programmed and controlled without any written 
code. This GE has a huge user base and excellent interoperability with the major 3D software packages 
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via FBX file pipeline. Erro! Fonte de referência não encontrada. shows an example of the created 
scenarios inside the Unreal GE with an example of its corresponding Blueprint script.  
 

Figure 1 -Scenario overview in the Unreal Game Engine. Source: the research

 

2. RELATED WORK 

 
Ref. [11] presents an interesting experiment for firefighters training using data from an external 
Computer Fluid Simulation software applied inside a Game Engine. The experiment has many 
simplifications and the dynamic process simulator data has a link that works only inwards the GE. Being 
fed at the session start so player reactions did not generate feedback for the process simulator to 
reprocess the scenario logic. 
 
The host system is quite modest for the task and authors mention some performance issues, mainly in 
the form of poor perfomance in frames per second, which is a commom benchmark for game levels. 
This means that the host system can not recalculate the changes in the scenario in a rate fast enough to 
keep all motion fluid in the simulation. Pictures from paper show some 3D models with unnecessary 
details like a car´s wheels with excessive polygons. The system uses VR glasses for immersion and a 
joystick and motion trackers for interactions. The overall assessment of the application by professional 
firefighters indicates the VE for inexperienced novices and suggested some game mechanics improve 
efficiency.  

 
Despite simplifications that players actions do not affect the fire simulation, which represents a huge 
gap in trainning firefighterst, it is an interesting initiative for desirable use of more poweful hardware to 
reduce the bottlenecks in system performance. 
 
With good ideas on 3D modeling optimizations and a good workflow for 3D modeling software and 
GE, the work in Ref. [12] brings a Virtual Reality (VR) simulator of a human heart to enhance anatomy 
classes which, according to the author, have been suffering from various difficulties in using cadaveric 
materials. The article has many suggestions on user interaction and interface, done in Unity game engine, 
with an intermediate step at 3DS Max. Recommendations are given about system performance and 
models optimization to guarantee minimal performance during the interactions. The same system has 
also a simplified version aimed at clarifying heart diseases concepts to patients. 
 
In an ingenious way to use empiric simulator data to do HRA evacuation studies, the reference [1] 
presents a virtual training environment called AVERT in which it develops route data and routing 
decisions in offshore installation evacuation. It concludes that, although the travel times are not 100% 
realistic, the interrelationships between virtual performances are very reliable to what is expected in a 
real environment. The variables studied are training, facility complexity and visibility and the 
experiment can have enough data to establish the conditional probabilities for a Bayesian Belief Network 
(BBN) [1], also making it possible to validate values for the Performance Shaping Factor (PSF) [1]. The 
research uses a proprietary virtual environment and doesn’t talk about how the metrics are collected and 
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as it is based on a proprietary system the access problem remains since there’s no free and ubiquitous 
access to the AVERT system. 
 
In Ref. [13] a serious game simulation is used in emergency preparedness for terrorist attacks on a train 
station. The experiment consisted of a simulated terrorist attack a passenger train. As the subsequent 
events unfold, the player must make decisions to survive the attack. Every wrong choice that leads to 
damage or death is pointed and explained in dialog boxes that appear on screen (Figure 2)  
 
Figure 2: Death cause informed on-screen information, and security recommendations to avoid 

that in similar scenarios. Source:(CHITTARO; SIONI, 2015) 

 
The scenario runs on a 30-inch computer screen and interaction is done via Nintendo Wii controllers 
and, despite being mentioned the use of a GE, no further specification is given. Some stimuli are applied 
to the player in order give the dimension of the threat involved and the seriousness of the consequences 
in a way similar to game mechanics. The Heart Rate (HR) and Skin Conductance Level (SCL) of the 
players are logged via an Electrodermal Activity (EDA) sensor.  

3. METHODOLY 

 
In this paper, we propose a systematic approach for generating GE based simulator scenarios (Figure 3). 
For the present work, we assume that the data generated will feed a Bayesian Network as in works like 
[7], [8], [22] – [24].  
 

Figure 3: Schematic of methodologic approach. Source: The research. 

 
The proposed experiment created a Virtual Environment (VE) for a toxic cloud release, an Analytics 
setup to gather and record player interactions and other aggregate data, as well as, the conversions to 
useable formats from the raw data stream outputted by the GE. The conceptual setup for the Bayesian 
Network is presented with all arcs and nodes, but the final calculations will be left for future works. 
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The process of creating a virtual simulator for a specific HRA scenario study, comprehends a series 
adaptations and scope narrowing choices, the related works research bought examples of good practices 
and the game development literature also had some interesting approaches. For porting such scenarios 
to virtual environments some good practices list was compiled with a brief description of each one. 
[14]–[16].  
 
Some of these steps fall at the learned lessons category and where created based to address problems 
occurred during experiment construction. The final step, which is not conducted in the present work, 
was kept here to illustrate all steps in the technique. 
 
Then, the steps are: 

 Scenario Definition – In this step, all the events to happen in the scenario are physically and 
logically described with all branches of possible actions covered; 

 Choice of the immersion style: will it be Virtual or Augmented Reality or a mix of both.  
 Interactions metaphors definition: how does the subject interact in the scenario – a realistic 

decision must be made taking into consideration the capabilities of the team;  
 3D models building, and/or CAD models conversion – Most of the design in the engineering 

process today is done in 3D, so reusing these models may streamline the scenario creation. 
 It is important to have in mind that some adaptations and cleanup in the 3D meshes will be 

necessary; 
 Objects/Actors placement on the scenario: After all the so-called assets are created, they 

must be “physically” placed in the virtual environment. Parked cars, trees, and other 
elements must be positioned in the virtual environment; 

 Intra-game programming of the working laws in the scenarios - Game engines have 
programming languages to enable environment reactions, logic processing, simulations 
tuning, and any kind of customization needed; 

 Event definition and work variables – What will happen as the user/player progresses 
through the simulation, how will the relevant data be stored. See Erro! Fonte de referência 
não encontrada. and Erro! Fonte de referência não encontrada.; 

 Quantitative approach definition: what will method be used for HRA? In this article, we 
considered the used scenario is part of an HRA performed by the Phoenix technique [17]; 

 Definition of the metrics to be collected during gameplay: In this step, all data that will be 
generated during the game session is defined, e.g. reaction times, actions taken and any 
other event that is of interest for the study (Erro! Fonte de referência não encontrada.); 

 Database taxonomy definition: how will the database records be composed of, what context 
variables will be stored or any other definition regarding data recording must be previously 
defined; 

 Game mechanics policy definition (how much interference or stimulus must be applied, 
what will simplifications be done. Sometimes some adaptations or some stimulus may be 
applied intra virtual environment to achieve determined ends, e.g., will be any time 
constraints? Will user results be visible to other users? Will some manipulations of 
components be simplified? There will be a right or wrong feedback in real-time for the user. 

 Test Gameplay Sessions: Users will interact with the environment to generate data from 
their actions inside the game; 

 Post session debriefing for user impressions (recorded on video or audio only when 
possible): Is good to listen to the users immediately after a simulated session to catch 
impressions and valuable insights permitting to improve the simulator logic, and understand 
user interpretation in general; 

 Benchmark with prior works when possible: Compare with pre-existent data about the 
studied events, if available. 

3.1. Scenario Definitions  

A refinery was created on the simulator to allow analysis of an evacuation process without having to do 
real large-scale simulated exercises, which despite being very important are difficult to manage and 
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expensive. Based on visual research of refineries models, the digital prototype was created in scale inside 
Sketchup with the streets, sidewalks and blocks for the administration buildings were drawn in scale. 
 
The major concern in the case was to maintain similarity with a refinery at ground level so players 
walking the streets will be somewhat familiar with the surroundings. Due to the modular nature of Game 
Engines (GE), any geometry placed on the terrain could be promptly replaced keeping very simple the 
process of updating and modifying geometries in the scenario (Figure 4Figure 4. 
 
 

Figure 4: General view of the modeled Refinery, inside the Game Engine. Source: The author. 

 

The scenario consisted of an evacuation of the plant due to a leak in the Sour Water Treatment that 
generated a toxic cloud of Hydroxy Sulfide (𝐻ଶ𝑆). It is based on the scenario used by [18] a path 
optimization work. The main objective was to estimate of the possibility of successfully evacuate the 
facility in a toxic cloud situation under various conditions correlated with the random variables in a 
causal network as represented in (Figure 5). 

 
Figure 5: The Bayesian Belief Network (BBN) for the evacuation procedures. The first three 
from the left are random variables the two middle and the right ones are the dependent ones. 

Source: the research. 

  

A 20-point graph (Figure 6) of all possible routes, from the initial point to the final one, was used, with 
landmarks placed on the terrain to be used as checkpoints for the player leaving the area. The points 
were not visible to the player, but each checkpoint has a control area that when trespassed by the player, 
records his presence, a timecode of when the sensor was triggered and the cloud concentration on the 
area as a way to calculate the absorbed dose on route. 
 
For auxiliary data, an extensive mesh of 176 additional smart-sensors (Figure 7) was created so the 
movements of a player during an evacuation could be tracked for additional studies. Every sensor also 
worked as a stopwatch and had internal metadata with the concentration of 𝐻ଶ𝑆 at its location. 
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For computing the time spent in the whole exercise, a universal time counter is started at the begin of 
the session and a lap is counted every time a checkpoint is reached. For the exercise, an average speed 
of 6 km/h was assumed for walking with two upper grades for fast walking and running permitted. All 
the results were grouped into two categories, above and below the benchmark time. 
 

Figure 6: Refinery plant with all the 20 checkpoints placed on the terrain. Source: Oliveira da 
Silva (2017) 

 

For the visibility variable a copy of the scenario was built with a night lighting arrangement, so was 
possible run the same scenario in day and night situations. No auxiliary light is provided to the player 
at the night session.  

 
Figure 7: Smart sensors placement in all plant, superimposed on the original grid. Source: The 

Research. 

 

 
For the complexity variable, two routes are set and the player must do both sessions with two complexity 
levels to complete the exercise. The first scenario was easier to complete, and the second was a bit more 
complex with a part of it passing through some equipment to slow down the player progression.  
A total of three scenarios (Table 1) were simulated: 1) day with low complexity; 2) night time with low 
complexity; 3) with daytime and high complexity. All walking or running takes places in the streets and 
sidewalks of the plant. No interaction with any type of equipment is allowed so the player really must 
leave the place as quickly as possible avoiding the risky areas. 
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At the beginning of the simulation, a brief description of the event is presented to the player and the 
suggested route is presented as a combination of the checkpoints. At the end of the route, all 
concentrations and times are used to calculate total risk of dying on route based on Probit equations. 
 
The Probit equations are used to estimate the potential lethality of a toxic load, they are basically a 
function of concentration and exposure time [19]. This equation estimates the probability of death of an 
individual exposed to a substance, with a specific concentration for certain period of time [18], [20]. 
The Probit equation have are constants in which its values dependent on the substance in study, 
concentration and exposure time [19], [18], [20]. More details about Probit equation are given in section 
3.3.   
 

Table 1: Scenario settings for data generation. Source: The research. 

Scenario # Visibility Complexity 
scn1 day low 
scn2 night low 
scn3 day high 

 
A delimited area, where the consequences of toxic cloud poisoning could be lethal, is invisibly defined 
in the scenario. If the player passes through a smart sensor, with a non-zero concentration on it, a 
biohazard event is logged with the concentration on that point being logged by the Analytics engine.  
 
In these kinds of projects normally is expected to use geometry from CAD models with minor 
modifications. The final Refinery model was not 100% faithful to any plant but general layout was made 
from visual references and is similar enough to permit extend conclusions drawn from the model to a 
real facility.  

3.2. Analytics setup and data handling 

 
Two paths of output were simultaneously used for the data generated on simulator sessions: 
 

 Via Google Analytics plugin, for real-time remote monitoring of user actions on 
scenario via Events and custom metrics and dimensions via the internet. This feature 
was successfully implemented and tested.  

 Local disk file recording, where database files containing records of all passages 
through the smart sensors with all study variables logged in each passage and their state 
throughout the role route. The files are written in JSON database exchange format, that 
can be easily read and converted to spreadsheets for posterior processing (Figure 8 and 
Table 2).  

 
For each smart sensor, a routine to output its coordinates and input it at Aloha® (Areal Locations of 
Hazardous Atmospheres) software for estimating the gas concentration in each point was created. Then, 
a CSV file would receive all concentrations in each point and write them to the smart sensors.  
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Figure 8: Blueprint implementation of Analytics recording on local disk. Source: The research 

 

 
This data will be present in the final report enabling to estimate the hazard exposition on the route for 
every session. This coupling Aloha – Unreal engine was done via datatables, an intrinsic way for the 
Unreal GE to handle external data sources, permitting the values to be updated for changing the 
characteristics of each scenario in an automated way. 

 
Table 2: Partial extract of raw data outputted from GE Analytics plugin. Source: The research. 

 
 

3.3. Calculating Hazard exposition on route  

The hazard on the route was calculated via Probit equations – Eq. (1) -, that are used to estimate the 
probability of death for an individual exposed to the hazardous substance, based on the substance 
concentration and the individual exposure time to it: 
 

Pr = 𝑎 + 𝑏. ln(𝐶௡. 𝑡௘)    (1)     
 
where:  
Pr – Probit equations, a Gaussian distribution with mean 5 and standard deviation 1. 
a, b, n - Constants related to substance toxicity. 
C - Concentration in mg/m3. 
𝒕𝒆 - Exposure time in minutes. 

 ID # TRAINING VISIBILITY ORDER IN SESSION COMPLEXITY TIME (MIN) TIME STATUS EXPOSURE STATUS ABSORBED DOSE STATUS

1 MINIMAL DAY 1st SIMPLE 17.06667 WORSE BELOW 19,235.17 SUCCEED
1 MINIMAL DAY 2nd COMPLEX 31.63333 WORSE BELOW 36,342.99 SUCCEED
1 MINIMAL NIGHT 3rd SIMPLE 20.71667 WORSE BELOW 17,275.18 SUCCEED
2 EXPANDED DAY 1st SIMPLE 9.78333 BETTER BELOW 1,752.55 SUCCEED
2 EXPANDED DAY 2nd COMPLEX 12.55000 BETTER ABOVE 390,869.48 FAILED
2 EXPANDED NIGHT 3rd SIMPLE 9.63333 BETTER ABOVE 390,448.75 FAILED
3 MINIMAL DAY 1st SIMPLE 62.08333 WORSE ABOVE 2,120,169.71 FAILED

14 MINIMAL DAY 2nd SIMPLE 27.41667 WORSE BELOW 95,174.32 SUCCEED
14 MINIMAL DAY 3rd COMPLEX 15.40000 BETTER BELOW 26,914.42 SUCCEED
14 MINIMAL NIGHT 1st SIMPLE 29.33333 WORSE ABOVE 1,629,338.75 FAILED
15 EXPANDED DAY 1st SIMPLE 16.45000 BETTER ABOVE 2,276,660.83 FAILED
15 EXPANDED DAY 2nd COMPLEX 15.96667 BETTER BELOW 48,593.31 SUCCEED
15 EXPANDED NIGHT 3rd SIMPLE 13.91667 BETTER BELOW SUCCEED

REFINERY STAFF MEMBER BENCHMARK TIME
SESSIONS SUCCESS 
% 39.53%
AVG MOG 
Exposure* 3.46E-06
AVG MOG Time* 41.54000
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There are several possible values for the constants in this equation when dealing with H2S and this work 
adopted ones used in contemporary references such as [18], [21]: 
 
a= -11.5, b=1 and n=1.9  
 
The set of values has been used to estimate the dose absorbed on the route. Keep the same constants as 
other papers (e.g. [18], [21]) enables a more coherent comparison of the risks on routes and times, 
whether using the optimized ones or done by users on the simulator. a more coherent comparison. 
 
The analytics report is a JSON file outputted straight from the GE and carries context variables like 
visibility, training level of the user, unique session identifier and anonymous user tagId. There was also 
quantitative data of the simulator session containing for all activated sensors on route, position, 
activation timecode and Hydroxy Sulfide concentration as can be seen in Table 2Table 2 
 
From this report, it was quite straightforward to calculate the dose absorbed on route via a simple excel 
spreadsheet (Table 3) converted from the JSON report and estimate the hazard exposition on route [18]. 
It was also possible to calculate the hazard exposition inside GE, but the external spreadsheet was 
preferred for being more streamlined and permitted more flexibility. 
 

Table 3: Values calculated for hazard exposition from analytics report only the two rightmost 
columns were calculated on a spreadsheet. Source: The research. 

 

3.4. Data classification for Bayesian Network Creation 

As said, the present work makes a straight interface with [18] in the sense that the obtained values on 
the simulator will use the authors finding to determine if times and exposition on simulator where safe 
or not. Successful evacuations would be the ones done in times below the optimal time found for the 
route and the same rule applies for hazard exposition that should less than the ones obtained by the 
algorithm. 

Table 4: Classification of all sessions results. Source: The research 

CLASSIF. TRAINING COMPLEXITY VISIBILITY ROUTE TIME 
HAZARD 

EXPOSURE 
SUCCEED HIGH HIGH NIGHT ABOVE ABOVE 

FAIL LOW LOW DAY BELOW BELOW 

 
Finally, all the session data was put in a table following the formatting of Table 4 with all results 
following a classification status, permitting to verify the frequency of every one of the independent 
variables. Each line reported all context conditions in each one of the simulator sessions. Then the names 
for each node on the network were defined, and in this case, the first letter of each variable in Table 5. 
 

attributes/6/nameattributes/6/valueattributes/7/nameattributes/7/valueattributes/8/nameattributes/8/valueConcentr. mg/m3 Exp. Time (min) DOSE PER SEGMENT
timecodeX100 1411 Concentration 21.690001 visibilityLevel 1 31.258637 0.00000 -                                  

timecodeX100 1678 Concentration 78.610001 visibilityLevel 1 113.289135 0.44500 3,558.92                          DOSE ON ROUTE
timecodeX100 2826 Concentration 648.729980 visibilityLevel 1 934.919954 1.91333 843,843.78                       1,850,224.80                       

timecodeX100 3940 Concentration 593.590027 visibilityLevel 1 855.454778 1.85667 691,684.98                       PROBIT EQ RESULT
timecodeX100 5075 Concentration 198.259995 visibilityLevel 1 285.723230 1.89167 87,728.59                         2.930817703
timecodeX100 6082 Concentration 54.970001 visibilityLevel 1 79.220249 1.67833 6,802.48                          CASUALITY PROBABILITY
timecodeX100 6950 Concentration 16.900000 visibilityLevel 1 24.355506 1.44667 623.60                             1.93%
timecodeX100 8285 Concentration 248.410004 visibilityLevel 1 357.997128 2.22500 158,380.29                       

timecodeX100 8518 Concentration 0.000000 visibilityLevel 1 0.000000 0.38833 -                                  

timecodeX100 9259 Concentration 148.970001 visibilityLevel 1 214.688747 1.23500 33,273.97                         

timecodeX100 10734 Concentration 0.000000 visibilityLevel 1 0.000000 2.45833 -                                  

timecodeX100 12075 Concentration 0.000000 visibilityLevel 1 0.000000 2.23500 -                                  

timecodeX100 12496 Concentration 0.000000 visibilityLevel 1 0.000000 0.70167 -                                  

timecodeX100 13083 Concentration 0.000000 visibilityLevel 1 0.000000 0.97833 -                                  

timecodeX100 16092 Concentration 4.040000 visibilityLevel 1 5.822263 5.01500 142.54                             

timecodeX100 16773 Concentration 9.580000 visibilityLevel 1 13.806258 1.13500 166.39                             

timecodeX100 17901 Concentration 72.260002 visibilityLevel 1 104.137807 1.88000 12,811.91                         

timecodeX100 21164 Concentration 38.480000 visibilityLevel 1 55.455615 5.43833 11,193.41                         

timecodeX100 22612 Concentration 0.000000 visibilityLevel 1 0.000000 2.41333 -                                  

timecodeX100 23994 Concentration 1.790000 visibilityLevel 1 2.579666 2.30333 13.94                               
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Table 5: Variables Denomination for Bayesian Nodes. Source: The Research 

Variable Node Denomination 
Evacuation status E 

Training T 

Complexity C 

Visibility V 

Route Time R 

Hazard Exposure  H 

 
The next steps would consist in feeding the Bayesian Network (Figure 9) with the obtained data and 
generate the conditional probabilities tables (CPT) for the scenario a process very well covered in [22]–
[24]. This step was left for future works. 

Figure 9: Directed Acyclic Graph (DAG) with dependencies between nodes. Source: The 
Research. 

 
 
The created simulator worked properly, with the analytics events written to disk in a JSON file in real-
time as the player passed through the smart sensor, giving all information about the conditions on the 
route. The selected events also triggered google analytics events permitting telemetry over the web. The 
developer has the freedom to record all data with no processing at all or do, inside the GE, some pre-
processing to the data before recording it to the log files. Either way, was tested and worked flawlessly. 
 
For outputted for data consistency, special attention to units must be payed and is recommended to run 
a few sessions and test the numbers obtained, before committing the definitive and more extensive 
sessions. In the test sessions even though the sample sizes were not the ideal ones, identifying and 
addressing issues will save valuable time in the experiment. 
 
After the conversions step, the outputted data becomes an MS Excel file permitting further processing, 
testing, and analysis.  
 

4. CONCLUSIONS 

The overall process was very successful, using GEs to build VE is a quite straightforward process, all 
the graphics display parts and a great amount of physics simulation can be handled inside the GE. One 
main issue to be kept in mind is that a GE is not a dynamic simulator, it don´t has the precision in the 
results for simulating complex dynamic processes. This limitation can be compensated by using data 
interchange formats as was used in the present work to input the concentrations simulated in Aloha tm.  
Respected this limitation, the possibilities are endless, and with the bonus of always starting with a good-
looking environment.  
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