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Abstract: There is an increasing demand for quantitative risk assessment tools capable of providing 
safety assurances for autonomous vehicle control systems. This demand is due to the recent rise of 
autonomous functions that are being incorporated into aerospace and automotive domains. A deductive 
implementation of Markov Cell-to-Cell Mapping Technique is proposed for the identification of risk 
significant scenarios that may lead to violations of safety goals. Challenges of the methodology are 
identified, and a breadth-first implementation of the Backtracking Process Algorithm (BPA) is proposed 
to meet these challenges. Three autonomous vehicle case studies on which BPA was successfully 
implemented are summarized.  
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1.  INTRODUCTION 
 
Emerging vehicles in today’s market are becoming increasingly intelligent due to recent advances in the 
development of autonomous functions. Such vehicles have multiple interconnected Electronic Control 
Units (ECUs) that have to realize possibly thousands of features. As the level of autonomous functions 
keeps increasing, so does the need for Validation and Verification (V&V) methods that act as 
alternatives to physical testing for ensuring safe operations of these functions.  
 
In control system theory of autonomous vehicles, reachability analysis techniques are typically used to 
provide assurance of control system performance. In [1], the authors utilize reachability analysis for the 
computation of safe sets for platoons of heavy duty vehicles. Authors of [2] apply reachability analysis 
for formal verification of automated ground vehicle safety via online prediction of vehicle occupancies 
on highway scenarios. Reachability analysis was used in [3] for the determination of states of inevitable 
collisions using car-like kinematic models in arbitrary environments. Two of the authors of the present 
paper have proposed [4] a reachability based controller design method for the computation of exact 
reachable sets from unsafe sets. Here we take a different approach. 
 
Autonomous vehicles are equipped with many components that are prone to different types of failures 
with different probability distributions associated with such failures. A component failure, in most cases, 
changes system behavior either through a change of parameters, or a complete change of dynamics. This 
makes the task of implementing analytical reachability analysis techniques a very challenging one, as 
system switching needs to be incorporated into analysis which requires utilizing system-specific 
methods with high levels of complexity. Additionally, such an analysis only serves to indicate whether 
a system violates a bound or not, rather than quantifying the likelihood of the system to do so.  
 
In an effort to overcome the problems associated with system dynamics, researchers have been 
extending the traditional Probabilistic Safety Analysis (PSA) techniques, such as the event-tree/ fault-
tree to include some dynamic elements. Authors of [5] utilize Fault Tree Analysis (FTA) for the 
generation of binary decision diagrams that are used to manipulate and quantify expressions used in the 
calculation of failure probabilities in decision making strategies for multi-phased missions. Authors of 
[6,7] use FTA in conjunction with dynamic simulations to assess Unmanned Aerial System (UAS) 
collision avoidance performance as part of a safety case framework constructed for sense and avoid 
functions. In [8], authors employ model-based simulations for the generation of system-level Failure 
Mode Effects and Analysis (FMEA) for systems within aircraft. In [9], FMEA is performed for small 
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UAS for the identification of critical fault models. System dynamic analysis was then used to study the 
change of system capabilities and vulnerabilities throughout operational envelopes. 
 
In an effort to develop more advanced techniques that are naturally capable of utilizing Model Based 
Designs (MBDs) of systems, Dynamic Probabilistic Risk Assessment (DPRA) methods have been 
developed. DPRA approaches offer an increase in the realism in modeling of stochastic system evolution 
in quantifying risk. These methods are capable of providing frameworks that allow considering 
epistemic and aleatory uncertainties in physical processes and system safety responses, including 
software behavior, on a common platform. 
 
DPRA methods are generally classified into three main categories [10]: (i) continuous-time methods, 
(ii) discrete-time methods, and (iii) methods utilizing graphical interfaces. Even though Category (iii), 
in essence, is a subset of Category (ii), it can be regarded as a separate category due to its user-friendly 
features when dealing with input preparation. A comprehensive Category (i) approach is the Continuous 
Event Tree (CET) methodology [11], which uses integral equations to capture dependencies among 
failure events within process/hardware/software/firmware interactions. Markov Cell-to-Cell Mapping 
Technique (Markov/CCMT) approach is a discrete state-space version of CET. It is worthwhile to 
mention that even though Markov/CCMT can be derived from CET, it was independently developed 
[12]. Markov/CCMT has been proposed as both a Category (i) [13] and a Category (ii) method in the 
literature (e.g. [14-17]).  
 
Monte Carlo Simulation methods are among the most popular Category (ii) methods [18, 19]. These 
methods mainly emulate the actual processes involved in a given system. Another popular Category (ii) 
method is the Dynamic Event Tree (DET) [20, 21] approach. DET methods are similar to the traditional 
ET method in determination of consequences of system responses. The main difference lies in the 
modeling of the sequencing of events, which is determined subjectively (possibly with the help of a 
dynamic system model) by the analyst in ET methods, and determined mechanistically through a 
scenario generator (e.g. [21-24]) coupled to the dynamic system model in DETs.  
 
Within Category (iii) methods, system evolution is modeled using graphs that represent information 
transmission among nodes. The Dynamic Flowgraph Methodology (DFM) [25-28] is a di-graph based 
technique, where continuous process variables are discretized into a finite number of states for the 
representation of the system. Cause-effect relationships among such states are used along with system 
hardware/firmware states to constitute a deterministic mapping of the system state space on itself for the 
deductive and inductive tracing of fault propagation. Dynamic Fault Tree (DFT) methods [29-31] use 
timed housing events, or functional dependency gates for the representation of dynamic dependencies 
among events. A recent overview of DPRA methods is described in [10]. 
 
An instance of the Markov/CCMT implementation falling within the Category (ii) methods will be 
presented in this paper. Markov/CCMT is capable of accurately capturing mobile system dynamics, the 
associated control system, and system configuration interactions in a computationally feasible fashion 
(e.g. see [32] for a case of UAS dynamics.) The method utilizes a discrete state-space representation of 
the system and models transitions among different states via simulation and fault injection. It can be 
used both in inductive [14, 33] and in deductive manner [15].  
 
The Backtracking Process Algorithm (BPA) [15] was developed in order to overcome challenges 
associated with the deductive implementation of Markov/CCMT. The algorithm is deductive in a sense 
that event sequences leading to specified undesirable consequences (Top Events) are identified. BPA 
allows quantification of probabilistic system evolution in time, as well as tracing of fault propagation 
through the system. The BPA can be thought of as a search tree that uses a probabilistic map of the 
system state-space onto itself. This search tree structure is achieved by recursive enumeration of sub-
trees from a Top Event and the traversal of possible paths through a branching process. In order to avoid 
a computational explosion, only risk significant scenarios with probabilities above a user-specified cut-
off value are identified. The algorithm is capable of accounting for nonlinear system dynamics, 
configuration, and stochastic uncertainties, making it an ideal tool to use in the quantitative identification 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

of risk significant scenarios in the autonomous vehicles domain. System evolution in time is represented 
through a series of discrete-time transitions among computational cells that partition the system state-
space in a manner similar to finite element or finite difference methods. Each cell can be regarded as 
accounting for the uncertainty in the system location in the state space at a given point in time. A 
transition probability from one system cell to another is determined via system dynamics, controller 
behavior, or system constituent malfunction. Such transitions produce a probabilistic mapping of the 
system state-space onto itself, including system hardware normal or faulted states, over a user defined 
time-step. 
 
Section 2 of this paper presents an overview of Markov/CCMT. In Section 3, a breadth-first instance of 
BPA is proposed and presented. Section 4 discusses the case studies on which the method has been 
implemented, and presents a sample of the results obtained from one of the case studies. Section 5 
contains the conclusion. 
 
2.  THE MARKOV CELL-TO-CELL MAPPING TECHNIQUE 
In Section 2.1, an overview of the Markov/CCMT history is presented. Section 2.2 contains the 
assumptions required for Markov/CCMT. Section 2.3 outlines the generalized procedure for the global 
analysis of the system. Challenges with Markov/CCMT are presented in Section 2.4.  
 
2.1. Markov/CCMT History 
The CCMT was proposed by [34] in the early 1980s for the global analysis of nonlinear dynamical 
systems. The technique mainly relies on definition of cells that partition the system state space, followed 
by a mapping which captures the entire system evolution process in terms of transitions among cells. 
Markov/CCMT was then developed by Aldemir [33] in the late 1980s for the reliability modelling of 
process control systems by interpreting CCMT as a Markovian process model and extending it to include 
possible component failures.. This work was one of the earliest to propose and deal with the dynamic 
PSA (DPSA) of control systems. The methodology was then further extended by [16] to utilize databases 
rather than differential equations to represent system physics. A continuous-time version of 
Markov/CCMT was developed in 1996 by authors of [13]. In 2006, Markov/CCMT was utilized for the 
dynamic reliability modelling and PRA of digital instrumentation and control systems for nuclear 
reactors [17]. In an effort to tackle the computational and memory challenges faced by Markov/CCMT 
for deductive analysis, BPA was proposed in 2016 [15], and demonstrated for a level control system. 
 
The surge of autonomous vehicle capability and applications in civil applications calls for techniques 
capable of providing quantitative assurance on control system performance for such vehicles. In 2017, 
the Markov/CCMT methodology was introduced to the autonomous vehicle domain in [32]. In this 
work, BPA was used for the identification of risk significant scenarios leading to hazardous Top Events 
of interest for UAS operating in the National Airspace as part of the National Aeronautics and Space 
Administration (NASA) Systems-wide Safety and Assurance Technologies (SSAT) program. Most 
recently, the method was extended to cope with risk significant scenario identification for UAS with 
adaptive elements across multiple phases of operation [35]. The method has also been implemented for 
an automotive application involving the identification of scenarios of risk-significance under hardware 
failures [36].  
 
2.2. Assumptions 
As indicated in Section 2.1, Markov/CCMT requires system discretization into a set of cells that partition 
the system state-space. Such a state-space possibly includes continuous states representing the physics 
of the system, along with possible system configurations. System discretization is conducted in a manner 
similar to finite element, or finite difference methods. Cells within the discretized system allow for 
accounting uncertainty in the system location within the state-space at a given point in time.  
 
A system probabilistic cell-to-cell map is constructed based on system dynamics, configuration, and 
controller behavior. Transitions in such a map reflect the mapping of the system onto itself over a user-
defined time step Δt and include system normal or faulted states. 
Two main assumptions need to be placed on the system of interest in order to employ Markov/CCMT:  



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

1) The system configurations are fixed over [𝑡, 𝑡 + 𝛥𝑡), but can change at  𝑡 + 𝛥𝑡. 
2) Transitions among cells or hardware states do not depend on system history.  

 
The first assumption means that the system components can only fail or change their mode of operation 
once during the interval Δ𝑡. Through proper selection of the time-step Δ𝑡, the system configuration 
changes and the probabilities of those changed can be realistically modeled and captured. The second 
assumption implies that the system has Markov property.  However, the second assumption can be 
relaxed via the use of sufficient number of auxiliary state variables. 
 
2.3. Generalized Procedure for Global System Analysis 
A generalized form of an autonomous control system is presented in Fig. 1. The vehicle dynamics are 
represented in a continuous 𝐿 dimensional state space represented by 𝒳 ≜ ℝ௅. This form includes the 
continuous states 𝑥 ∈ 𝒳 representing system states such as velocity, angular rate, Euler positions, etc. 
System components, or configuration, are represented by an 𝑀 dimensional discrete space 𝒩 ≜ ℤெ. 
This space includes the discrete states 𝑛 ∈ 𝒩 that are representative of system component conditions, 
modes of operation, etc. The combination of both 𝒳 and 𝒩 represents the overall system state-space. A 
control law 𝑢(𝑥, 𝑛) is implemented as a function of both 𝑥 and 𝑛 to steer the system to the desired set-
points and scenario objectives based on the implemented controllers and feedback obtained from the 
measurements and estimation module.  

 
Fig. 1   Generalized Form of an Autonomous Vehicle Control System. 

 
The space 𝒳 ≜ ℝ௅is discretized by partitioning each continuous variable 𝑥௟  (𝑙 = 1, … , 𝐿) into intervals 
of 𝐽௟ partitions and considering combinations of those partitions to form the cells. Knowledge of the 
state-space upper bounds  𝑥, and lower bounds  𝑥 of interest for the state-space is required for the 
partitioning. The cells can be regarded as means to accommodate epistemic uncertainties (such as model 
uncertainties) or aleatory uncertainties (such as process noise and minor environmental disturbances). 
Possible states of each hardware component 𝑀 of interest are then defined (e.g. operational, degraded, 
failed), with each component m, having 𝑁௠ possible states, each denoted by 𝑛௠ (𝑚 = 1, … , 𝑀).  
 
The unique combinations of the partitioned 𝒳 ≜ ℝ௅  along with the discrete system component 
configurations forms the complete state-space of the system, denoted by 𝒱. Each cell in the cell space 
is represented by an (𝐿 + 𝑀) dimensional vector [𝐣 𝐧] ≡ [𝑗ଵ, … , 𝑗௟ , ⋯ , 𝑗௅ , 𝑛ଵ, … , 𝑛௠, ⋯ , 𝑛ெ], where 
( 𝑗௟ = 1,2, … , 𝐽௟; 𝑙 = 1, … , 𝐿) enumerate the partitioning of the interval 𝑥௟ ≤ 𝑥௟ < 𝑥௟  , and  𝑛௠  

represents the state of component  𝑚 (𝑛௠ = 1, … , 𝑁௠;  𝑚 = 1 , … , 𝑀). The cell space 𝒱 is composed of 
𝐽 × 𝑁 unique cells with 𝐽 =   𝐽ଵ × ⋯ × 𝐽௅ and 𝑁 =  𝑁ଵ × … × 𝑁ெ with𝒱𝒳 ≜ ℤ௅ denoting a subspace 
of 𝒱 containing the vectors j. Let 𝒱𝒩 ≜ ℤெ  be a subspace of 𝒱 containing the vectors n. Note that 𝒱𝒳 ∪
𝒱𝒩 = 𝒱. The discretized system, along with the relevant notations, is illustrated in Fig 2.  
 
Using the Chapman-Kolmogorov equation under the assumptions stated in Section 2.2, and as derived 
in [12], the cell-to-cell probabilities over a single time-step transition 𝛥t can be calculated from 
 

𝑞(𝒋, 𝐧| 𝐣′, 𝐧′, Δt) = ℎ(𝐧|𝐧′, 𝐣′ → 𝐣, 𝛥𝑡) × 𝑔(𝐣|𝐣ᇱ, 𝐧′, 𝛥𝑡)       (1) 
 
where 𝑔(𝐣ᇱ, 𝐧′, 𝛥𝑡) represents the transition probability from cell  𝐣′ to 𝐣 over 𝛥t under configuration 𝐧′, 
and ℎ(𝐧|𝐧′, 𝐣′ → 𝐣, 𝛥𝑡) quantifies the system configuration transition probabilities over Δt. For each 
component of interest 𝑚, a component state transition probability matrix 𝐻௡೘

 is constructed. Contents 
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of this matrix represent the probability of component state transitions over Δ𝑡. These probabilities can 
be based on hardware component data, such as failure rates, or expert opinion in the absence of reliable 
data. An example of such a matrix can be seen in Table 1 where 𝜆௡೘

ᇲ ,௡೘
 denotes the transition rate 

from 𝑛௠
ᇱ  𝑡𝑜 𝑛௠.  

 
The cell-to-cell state transition probabilities 𝑔(𝐣|𝐣ᇱ, 𝐧′, 𝛥𝑡)  𝛥𝑡 can be found from [12, 14, 15, 33], 

𝑔(𝐣|𝐣ᇱ, 𝐧′, 𝛥𝑡) =
ଵ

௩𝒋ᇲ
∫ 𝑢𝐣[𝐱(𝐱ᇱ, 𝐧ᇱ, 𝛥𝑡)]𝑑𝑥′

 

௩𝒋ᇲ
   (2)  

       𝑢𝐣[𝐱(𝐱ᇱ, 𝐧ᇱ, 𝛥𝑡)] =  ൜1     𝑖𝑓 x ∈ 𝑣𝐣 

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (3)  

where 𝑣𝐣 is the volume of the cell 𝐣, 

   𝐱(𝐱ᇱ, 𝐧ᇱ , 𝛥𝑡) =  ∫ 𝑓൫𝐱(𝑡ᇱ),  𝐧ᇱ൯𝒅𝒕ᇱ௧ା୼௧

௧
+ 𝐱′   (4)  

and 𝑓൫𝐱(𝑡ᇱ),  𝐧ᇱ൯ represents the system dynamics.  For most practical applications the integral in Eq.(2) 
needs to be quantified using numerical techniques.   
 

 
Fig. 2   Deductive Markov/CCMT Implementation Stages  

 
Table 1.  Sample System Configuration Transition Matrix (𝐻௡೘

) 

 Final System Configuration State 

Normal State (N) Fail State 1 (𝑭𝟏)  Fail State  N (FN) 
Initial System 
Configuration 
State 

Normal State (N) λ୒,୒Δt λ୒,୊భ
Δt . . λ୒,୊ొ

Δt 
Fail State 1 (𝑭𝟏) λ୊భ,୒Δt λ୊భ,୊భ

Δt . . λ୊భ,୊ొ
Δt 

: : : —  : 
Fail State N (FN) λ୊ొ,୒Δt λ୊ొ,୊భ

Δt . . λ୊ొ,୊ొ
Δt 
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A possible approach is to use an  equal weight quadrature scheme to sample multiple points from each 
cell, and run these samples in forward simulation over a single time-step to represent cell-to-cell 
mappings [14]:  

𝑔(𝐣|𝐣ᇱ, 𝐧′, 𝛥𝑡) =
# ௢௙ ௦௔௠௣௟௘ௗ ௣௢௜௡௧௦ ௜௡ ୡୣ୪୪ 𝐣ᇲ ௔௥௥௜௩௜௡௚ ௜௡ ௖௘௟௟ 𝐉 ௢௩௘௥ ୼௧ 

# ௢௙ ௣௢௜௡௧௦ ௦௔௠௣௟௘ௗ ௙௥௢௠  ୡୣ୪୪ 𝐣ᇲ 
  .    (5)  

 
For an inductive implementation of Markov/CCMT, system trajectories can be obtained through the 
construction of the system probabilistic cell-to-cell transition matrix 𝐐 =
{𝑞(𝒋, 𝐧| 𝐣′, 𝐧′, Δt), ∀ 𝐣, 𝐣ᇱ, 𝐧, 𝐧ᇱ ∈ 𝒱}. This matrix is depicted in Fig. 2. Trajectories are recursively 
obtained via Eq. (6) below 

𝐏୩ାଵ = 𝐐𝐏୩     (6)  
where 𝐏୩ = {𝑝௞(1,1), 𝑝௞(2,1), ⋯ , 𝑝௞(𝐽, 1), … 𝑝௞(𝐣, 𝐧), ⋯ , 𝑝௞(𝐽, 𝑁)} is a column vector with elements 
𝑝௞(𝐣, 𝐧) representing the probability of the system continuous variables being at j with a system 
configuration n at a time kΔt (k = 1,2, … ). 
 
For a deductive implementation of BPA, system backwards trajectories can be, in principle, recursively 
inferred from Eq. (7) as (also see Fig. 2)  

𝐏୩ = [𝐐୘𝐐]ିଵ𝐐୘𝐏୩ାଵ .   (7)  
 

2.4. Challenges with the Deductive Implementation of Markov/CCMT 
There are two main challenges associated with the deductive implementation of Markov/CCMT as 
presented in Section 2.3:  
 The first challenge lies in the construction of Q. This matrix contains as many as( 𝐽 × 𝑁)ଶ entries, 

meaning that a substantial amount of memory space could be required for its storage and substantial 
processing time to determine its elements. 

 The second challenge lies in utilizing Q to perform backtracking in Eq. (6). The matrix 𝐐୘𝐐 may 
not be invertible, meaning that backtracking is not always possible.   

 
3.  BPA 
In Section 3.1, solutions to Markov/CCMT challenges are proposed. A breadth-implementation of 
BPA is presented in Section 3.2. BPA challenges and proposed solutions are discussed in Section 3.3.  
 
3.1. Proposed Solutions to Challenges 
BPA was designed to overcome the challenges described in Section 2.4. The BPA algorithm includes 
the addition of two main components to Markov/CCMT (see Fig. 3):  
 In BPA, there is no need for the storage of the Q matrix, it is sufficient to only store the sampled 

points sent to the simulator, and the results after one time-step of simulation. This reduces the 
required storage space for cell to cell transitions from (𝐽 × 𝑁)ଶ to ≤ [2𝑆(𝐽 + 𝑁)], where S is the 
number of points sampled from each cell in the quadrature scheme.  

 Rather than relying on matrix operations to identify event sequences leading to a Top Event of 
interest, a breadth-first search scheme is developed to construct paths of risk significance leading to 
the Top Event.  
 

3.2. A Breadth-First Implementation of BPA  
In this section, a deductive breadth-first search algorithm is presented for the identification of scenarios 
of risk significance leading to a user defined Top Event of interest. In order to adequately describe the 
algorithm, several variables need to be introduced. These variables are used for the construction of the 
BPA search tree and can be seen in Fig. 4. The top node of the search tree is the Top Event of interest, 
each subsequent search depth represents backwards evolution of system dynamics and configurations 
over a time-step Δ𝑡. Each depth has 𝑀௜ cells indexed by 𝑚௜ ∈ [1, 𝑀௜]. For each cell 𝑚௜ , the variable 𝐿௠೔

௞  
indicates the number of cells that cell 𝑚௜  branches into at a search depth 𝑖. A path 
probability 𝑃௠బ|௠భ|⋯|௠಼షೖశభ

 to the Top Event is defined at each cell node.  
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The stepwise implementation of BPA is explained in detail in the pseudocode provided in Table 2. A 
flowchart of the BPA breadth-first algorithm can be seen in Fig. 5. 

 
Fig. 3   Deductive BPA Implementation Stages 

 
 

Table 2: Breadth-first Pseudocode of BPA 

 
3.3. Challenges with BPA and Proposed Solutions 
While BPA can alleviate challenges associated with Markov/CCMT, use of a BPA breadth-first search 
scheme has two main limitations.  

 Large scale control systems that involve high levels of autonomy and numerous hardware are 
generally hard to accurately set up and initialize using single BPA implementations. 

Step Description 

1 Enter the desired search depth 𝐾. 
Initialize the path probability. Initialize the current search depth to 0 (at Top Event). 𝑘 = 0  

2 Identify all cells leading to the current search depth.  
There are 𝑀௄ି௞ାଵ such cells, where 𝑚௄ି௞ାଵ ∈ [1,  𝑀௄ି௞ାଵ] is used as an index to these cells.   

3 Initialize 𝑚௜ = 1 for all search depths 
4 Calculate the transition probability of the current path (Top Event to current cell).  
5 Does the calculated probability fall below the user-specified truncation value?  

If YES, go to Step 6. If NO, store the path and go to Step 6 
6 Were path probabilities calculated for all of the cells corresponding to the current parent cell?  

If YES, go to Step 7. If NO, go to Step 9 
7 Were path probabilities calculated for all cells within the current search depth? 

If YES, go to Step 8. If NO, go to Step 10    
8 Is the current search depth at the desired depth?  

If YES, then END. If NO, go to Step 11    
9 Go to the next cell along the same level. Go to Step 4  
10 Go to the next cell along the same level, and the next cell on the level above. Go to Step 4. 
11 Go one level deeper. Go to Step 2. 
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 For autonomous systems with large state spaces such as platoons or formations of vehicles, 
combinatorial and computational issues are prone to appear. 
 

There are several extensions to BPA that can help minimize the aforementioned challenges. Two 
solutions that have been explored by the authors to address the challenges are the following:  

 Use of phase-specific BPA implementations, and the integration of analysis results that are 
obtained from runs over multiple phases. 

 Reduction of the system cell-to-cell map by use of a coarser partitioning scheme, and 
compensating for the coarser scheme by increasing the number of samples taken from each cell 
in the quadrature scheme. This in turn would reduce the number of computations needed to 
construct the search tree. Additionally, an upper limit can be imposed on the number of 
scenarios to be investigated through careful selection of the truncation criterion. Such a bound 
can be relaxed in new BPA runs once the initially identified scenarios of high risk significance 
are mitigated.  

 
Fig. 4   BPA Search Tree Relevant Notations 

 

 
Fig. 5   Breadth-first BPA Flowchart 

 
 
4.  BPA Autonomous Vehicle Case Studies 
In this section, three autonomous vehicle cases where BPA was implemented for the identification of 
risk significant scenarios will be presented, along with sample results from one of the implementations. 
These case studies were taken from [32, 35, 36]. 
 
4.1. Case Study 1: UAS Lost Link Scenario 
A hybrid-state control system was developed for a UAS performing a mission involving take-off, 
navigation through a series of waypoints, and then landing [32]. The high-level decision making module 
of the system was augmented with emergency and contingency actions that serve to guide the UAS in 
the case of a lost link scenario. The system continuous states were defined to be the UAS longitudinal 
states, where the system component prone to failure was the UAS link state. A Top Event was defined 
as the UAS falling out of the flight plan. BPA was implemented to identify scenarios of risk significance 
under the implemented contingency actions that lead to the Top Events of interest. An illustration of the 
case-study can be seen in Fig. 6a below. 
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4.2. Case Study 2: Unmanned Ground Vehicle (UGV) Collision Avoidance Scenario 
A hybrid-state control system was developed for an UGV autonomously operating in highway and urban 
scenarios [36]. Contingency actions were augmented to the decision making module for collision 
avoidance with obstacles. The model-based framework introduced in [33, 37] was implemented. BPA 
was used to identify scenarios of risk significance leading to crashes with obstacles. The information of 
these risk-significant event sequences was then used to address weaknesses in the implemented 
contingency actions. BPA was run again to verify that the corrected contingency actions did not lead to 
a risk-significant violation of the Top Event. An illustration of the scenario in this case-study can be 
seen in Fig. 6b. 
 
4.3. Case Study 3: UAS Sub-nominal Landing Scenario under Icing Conditions 
Multiple phase-specific and integrated BPA implementations were used to provide a safety assurance 
case for a UAS adaptive flight control system capable of handling variations in flight dynamics, 
hardware components, and the surrounding environment [35]. The case-study presented was for a UAS 
cruising at altitude that makes it prone to icing, and subsequent nominal/sub-nominal landing. Multiple 
mission phases were considered: cruise, initial descent, final descent, and flare. Icing accretion was also 
modeled in the system, along with possible engine failures during landing as a result of the accreted ice. 
Four instances of BPA were implemented, where each implementation was tailored for each phase of 
the mission and set up by possibly different domain experts. The Top Event of interest was defined to 
be a failed landing scenario during flare. The first instance of BPA was implemented in the Flare phase, 
which contains the Top Event of interest, and subsequent implementations were used to identify event 
sequences or risk significance that originate in the cruise phase and propagate through intermediate 
phases, eventually leading to a failure in the flare stage. An illustration of the scenario for this case-
study can be seen in Fig. 6c.  

a.  

b.   

c.  
 

Fig. 6 (a) UAS Lost Link Scenario [32], (b) Autonomous Ground Vehicle Urban Scenario [36], (c) 
UAS Adaptive Landing Scenario [35] 

 
4.4. Sample BPA Results 
Figure 7 below provides a table which details the discretization scheme used in the case study presented 
in Section 4.1. In Fig. 9, the user opts to define the velocity to be in the range of 40 to 60 m/s, the flight 
path angle –π/6 to π/6 rad, the pitch – π/6 to π/6, and the pitch rate -0.5 to 0.5 rad/s. The user partitions 
each of these variables into 1, 1, 1, 1, 8, and 4 partitions respectively. Lost link elapsed time is augmented 
to the system and defined to be in the range of 0 to 300s based on the implemented contingency actions. 
Three states are defined for the system component ‘Link State’: Normal, Recoverable Failure, and Non-
recoverable failure. Transitions among system states is determined using a MBD of the system over a 
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time-step Δ𝑡 =100s, along with domain expert provided data on the system component failure rate 
probabilities. The Top Event of interest is defined spatially as the UAS being at a location that is not 
among the defined waypoints. A breadth first scheme of BPA is run over three time-steps for the 
identification of scenarios that lead to the violation of the Top Event with risk significant probabilities. 
Results of this implementation can be seen in Fig. 8. Note that each cell is represented by an 8-tuple, 
where each integer corresponds the partition number of the discretized variables in Fig. 7. 
 

 
Fig. 7   Continuous Space Representation of Discretized Cell Space [32] 

 

 
Fig. 8  Breadth-first BPA Flowchart [32] 

 
Taking the shaded branch in Fig. 10 as an example to interpret the results from the search tree, we 
observe the following: 
[1 1 1 1 1 1 1 2]– The UAS initially has a velocity of 40-60 m/s, a flight path angle of –π/6 to π/6 rad, a 
pitch rate of -0.5 to 0.5 rad/s, a pitch angle of –π/6 to π/6 rad, an altitude of 5500 to 5875m, an x-Position 
of 0 to 4500m, and a recoverable loss of link after a 0-100s lost link elapsed time.  
[1 1 1 1 2 2 2 1] – One time step later, the UAS has a velocity of 40 to 60 m/s, a flight path angle of –
π/6 to π/6 rad, a pitch rate of -0.5 to 0.5 rad/s, a pitch angle of –π/6 to π/6 rad, an altitude of 5875 to 
6250m, an x-Position of 4500 to 9000m, and normal link state after a 100 to 200s lost link elapsed time.  
[1 1 1 1 3 4 1 3]– One time step later, the UAS has a velocity of 40 to 60 m/s, a flight path angle of –π/6 
to π/6 rad, a pitch rate of -0.5 to 0.5 rad/s, a pitch angle of –π/6 to π/6 rad, an altitude 6250 to 6625m, x-
Position of 13,500 to 15,000m, and non-recoverable link failure after 0 to 100s lost link elapsed time.  
Out of Flight Plan – One time step later the UAS reaches the final destination at a point that is not 
within the Flight Plan. This scenario occurs with a conditional probability of 0.0084375. 
 
5.  CONCLUSION 
The development of a set of procedures and methods for autonomous vehicle control system assurance 
is vital for the safe deployment of such systems in civilian applications. In this paper, an overview was 
presented for a deductive implementation of Markov/CCMT for such a purpose. The BPA was proposed 
as an algorithm that can be used to overcome some of the challenges typically faced by Markov/CCMT 
implementations. The capability of BPA to consider the epistemic and uncertainties on a 
phenomenologically and stochastically consistent platform is especially advantageous when considering 
the insufficient operating experience of autonomous vehicles. A summary of the different autonomous 
systems case studies on which BPA was successfully implemented was presented in this paper. In all 
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case studies, BPA was capable of identifying risk significant event sequences leading to undesirable 
Top Events. Future work will involve further development of BPA to efficiently handle large-scale 
systems, and systems with large state spaces.  
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