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Abstract: The Human Research Program funded the development of the Integrated Medical Model 

(IMM) to quantify the medical component of overall mission risk.  The IMM uses Monte Carlo 

simulation methodology, incorporating space flight and ground medical data, to estimate the probability 

of mission medical outcomes and resource utilization.  To determine the credibility of IMM output, the 

IMM project team completed two validation studies that compared IMM predicted output to observed 

medical events from a selection of Shuttle Transportation System (STS) and International Space Station 

(ISS) missions. The validation study results showed that the IMM under-predicted the occurrence of 

~10% of the modeled medical conditions for the STS missions and over-predicted ~20% of the modeled 

medical conditions for the ISS missions.  These findings imply that the strength of IMM predictions to 

inform decisions depends on simulated mission specifications including length.  This discrepancy could 

result from medical recording differences between ISS and STS that possibly influence observed 

incidence rates, IMM combining all “mission type” data as constant occurrence rate or fixed proportion 

across both mission types, misspecification of symptoms to conditions, and gaps in the literature 

informing the model. Some of these issues will be alleviated by updating the IMM source data through 

incorporation of the observed validation data.  
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1.  INTRODUCTION 

 

The Integrated Medical Model (IMM) represents an aspect of the NASA Human Research Program’s 

(HRP) effort to quantitatively estimate medical risks to astronauts for existing operational missions.  The 

IMM was developed to join medical and human health information acquired over years of crewed 

spaceflight to inform current mission medical risks, future space flight vehicle design, mission resource 

requirements’ specifications, and mission requirements associated with commercial space flight 

ventures.  

 

Historically, medical environment design and operation uses both qualitative and quantitative 

assessment of risk to optimize clinical outcomes and resource utilization.  In July 2001, the Joint 

Commission on Accreditation of Healthcare Organizations (JCAHO) implemented the requirement that 

accredited hospital and treatment settings must conduct at least one proactive risk analysis annually. 

This requirement serves to achieve clinical outcome optimization and maintain accreditation [1].  

Specific implementations of risk assessments vary widely but generally fall into the following programs: 

failure mode and effects analysis (FMEA), fault tree analysis, and quality management programs[2]; 

with FMEA and its derivatives historically being the most commonly used.  The common use of FMEA 

in clinical operations risk assessment likely stemmed from its acceptance in other operational 

environments like NASA who, prior to 1986, depended on FMEA and hazard analysis (HA) as the 
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means to assess mission risk [3].  FMEA is similar to multidisciplinary root cause analysis, but is 

prospective rather than retrospective when applied to healthcare [1].  It relies on the calculation of a risk 

priority number, which combines a 10-point scale of severity, occurrence, and detectability assessed by 

multidisciplinary teams at the target institutions.  Due to this focused assessment, which is based on the 

local institution’s employee experience, FMEA often does not consider population and multi-

institutional information and lacks the ability to identify complex system, combinational effects.  This 

reduces its ability to support planning and new technology development.  Efforts to use Delphi studies 

[4] or otherwise modify FMEA [5] to improve its applicability to healthcare risk assessment and prevent 

predictable failure modes have been proposed in recent years.   This continued until the general 

acceptance of other, better quantitative methods based on probabilistic analysis.   

 

The acceptance of quantitative risk analysis approaches has led to more acceptance of data-driven 

healthcare risk assessment processes, such as those based on fault tree and probabilistic risk analysis 

(PRA) approaches.  PRA techniques relate a set of potential outcomes of interest to critical events 

representing the operational environment, typically implemented via event tree and fault tree analyses. 

By parameterizing these event trees with representative probabilities and uncertainties of the events, a 

quantitative assessment of the risk of the defined outcomes can be performed [3].  In addition to 

healthcare, other technology-driven industries, such as nuclear, space, food safety, and environmental 

protection are using these techniques to prospectively evaluate existing risks and the cost-benefit of new 

technologies, processes, and the optimization of resources [6].   

 

The healthcare industry has moved to adopt PRA for the additional benefit that it quantitatively supports 

cost utility estimates and medical decision support [7]–[11].  Particularly, recent healthcare focus on 

informed decision-making has benefitted from quantitative risk modeling by improving the evidence 

supporting design and funding capture in the development of new healthcare technologies [12].  

Resource allocation in the planning for natural disaster response and disease outbreaks have benefitted 

from such evidence modeling [13], [14].  PRA derived techniques, such as Sociotechnical PRA (ST-

PRA) have proven to be important risk vs cost vs outcomes utility estimate tools for medical staff, 

hospital administrators, and government decision makers, when compared to qualitative techniques [1], 

[9], [15].  Hospital admittance practices and resource planning have utilized PRA type methods, such as 

probabilistic mortality models, to improve other risk-scoring admittance techniques, and as a means to 

stratify treatment allocations [7], [11], [16]–[18].  Further application in these areas has led to 

implementation of optimization techniques to refine resource allocation and placement in general 

healthcare and disaster settings [14], [19], [20].  The literature is brimming with Markov probabilistic 

models related to the risk of specific applications or treatment processes.  Predicting falls, caries, stroke 

outcomes, hospital (discharge) re-admittance after cardiac event, and  the impacts of diabetes treatment 

are just a sampling of the myriad applications to which probabilistic techniques have been used to 

evaluate healthcare treatment and technology [8], [10], [21]–[25].  Similarly, NASA recently adopted 

PRA techniques in the assessment of specific medical conditions which require additional insight due 

to the unique environment of space flight and the lack of observable events thus far such as in bone 

fracture[26], [27], head injury [28] and decompression sickness [29].   

 

The NASA-HRP intends for the IMM to provide a more global means to quantify the medical 

component of total mission risk in a manner comparable to space flight system risk estimates performed 

within engineering and mission PRAs.  The IMM utilizes PRA techniques to simultaneously incorporate 

space flight and ground medical data to assess the need for particular medical resources and capabilities 

across various mission scenarios.  The IMM approach simulates the occurrence and resolution of 

predicted medical events along a planned mission timeline to estimate the probability of mission medical 

outcomes such as medical impairment, loss of life, and resource utilization.   

 

The NASA-HRP requires all models and simulations that can have moderate to high impact on crew 

health or mission success to be vetted in accordance to NASA Standards for Models and Simulations, 

NASA-STD-7009a [30]. This standard focuses on establishing the credibility, defined as the belief that 

model output is representative of how the real world system will perform, by assessing eight credibility 

factors: Verification, Validation, Development Data Pedigree, Input Data Pedigree, Uncertainty 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

Characterization, Results Robustness, Model Use History, and Model Management. Since 7009a [30] 

focuses on engineering systems, the IMM adapted the processes established so that they can be readily 

applied to predictive models that are more prevalent in health care and biomedical research. To 

determine the credibility of IMM in support of mission planning decision making, NASA undertook a 

validation study that compared IMM predicted output to directly observed medical events and outcomes 

from a selection of Shuttle Transportation System (STS) and International Space Station (ISS) missions. 

 

2.  METHODS 

 

2.1 IMM Implementation 

 

2.1.1. IMM Concept 

Keenan et al. 2015 [31] describe the underlying concept and overall implementation of the IMM.   

Briefly, the IMM architecture follows the practices of probabilistic risk assessment as outlined in the 

NASA PRA implementation guidance [3]. However, the implementation diverges from strict PRA 

implementation to accommodate the broad assumptions required for medical treatment and outcome 

simulations.   As illustrated in Figure 1, the IMM takes as user-specified input mission characteristics 

including mission length, number of EVAs, and certain crewmember characteristics including sex and 

medical factors.  Currently, 100 medical conditions are modeled for applicable space flight medical 

conditions, and incident rates are set based on crew characteristics.  For example, the incidence rate used 

to simulate a certain condition may differ depending on if the crewmember has had surgery in the past 

or not.  

 

 
Figure 1. IMM input and output parameters.  Note that Crew Health Index is a normalized measure of 

Available Mission Time – Quality Time Lost.  Reproduced from [31]. 

 

 

2.1.2 Medical Condition Occurrence, Treatment and Outcomes 

The IMM assumes each medical condition occurs and is addressed independently of the occurrence of 

other conditions throughout the planned mission timeline.  Generated incidence rates IMM (described 

in section 2.1.3) for rate-dependent conditions are assumed constant for the duration of a simulated 

mission and event occurrences are governed by a Poisson Process (exponential waiting times between 

events).  The IMM assumes conditions associated with specific mission events, such as during 

adaptation to the spaceflight environment, extravehicular activity (EVA) or following solar particle 

events, follow a binomial distribution.  The IMM captures the severity of a simulated medical condition 

by generating a best- or worst-case event scenario; each scenario is associated with separate medical 

event outcome distributions (Figure 2). Outcomes associated with these two event paths represent a 

continuum of possible outcomes for the affected crewmember given defined resource, treatment, and 

environmental constraints.  Resource types and quantities, used to model medical risk mitigation in the 

IMM, are derived from the International Space Station (ISS) Health Maintenance System [32]. 

Treatments, specified for each medical condition/scenario path, define required quantities of medical 

resources, the per-day dosage, and a resource category.  The pharmaceutical category allows for the 

model to consider suitable alternates from the same category when primary resource is depleted in the 

treatment of a simulated condition.  The IMM generates outcomes for a condition based on the 

proportion of treatment available allowing for partial credit in having some but not all of the resources 
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required for treatment of a simulated event. The IMM implements this partial credit by defining outcome 

distributions for the fully-treated and untreated distributions as the extremes, and using the proportion 

of treatment available to shift continuously between them. The IMM allocates the medical resources 

assigned to treat each medical event from the medical kit in the order of medical event occurrence (at 

the time of simulated onset).  The IMM allows for treatment modification within the simulation to 

account for remaining mission time relative to the end of the mission or to account for concurrent 

condition treatments from the same crewmember.    

 

Primary outcomes quantifying the impact of medical events on the mission are measured by the quality 

time lost (QTL) and Crew Health Index (CHI), probability of evacuation (pEVAC), probability of loss 

of crew life (pLOCL), and total number of medical events (TME). 

 

 

 

 
Figure 2. Illustration of IMM implementation of condition treatment and outcomes.  4 paths bound the 

limits of available treatment and outcome processes.  When limited or incomplete treatment is predicted, 

IMM weights outcomes on the remaining availability of critical treatment components.  

 

2.1.3 Data Informing the IMM 

A SQL database, the integrated Medical Evidence Database (iMED), houses the medical-condition-

model inputs.  Subject matter experts assess the quality of the medical data, and the iMED management 

enforces a strict configuration management process to maintain medical data consistency.  The iMED 

includes 100 medical conditions considered to be of concern by the space flight medical community.  

Whenever possible, space flight observed medical conditions, i.e. in-flight data, informs the incidence 

data for the medical conditions simulated in the IMM.  The NASA Lifetime Surveillance of Astronaut 

Health (LSAH) and published literature provides the IMM with in-flight incidence data estimates [33]–

[35].  The current version of the model uses in-flight data from shuttle missions STS 1-114, except STS-

51-L (Challenger) and STS-107 (Columbia), ISS expeditions 1-13, Apollo, Skylab, and Shuttle/Mir. 

Data from some later flights inform medical condition inputs related to Spaceflight Associated Neuro-

ocular Syndrome (SANS, formally known as visual impairment and intracranial pressure or VIIP 

syndrome).  Where observational data are insufficient to adequately define the in-flight medical risk, 

the IMM uses terrestrial analog and general population data including Bayesian analysis incorporating 

pre- and post-flight astronaut data and terrestrial data [36], analog condition terrestrial data, and external 

probabilistic modules, to estimate medical-event incident likelihoods [37].  
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2.2 IMM Validation  

 

The validation of IMM used both qualitative and quantitative techniques in order to best utilize in-flight 

observed data for comparison to model predictions. Typically, to achieve HRP-defined credibility levels 

requires the validation to take a strictly quantitative approach, which is not always possible with this 

type of predictive model.  The IMM approach attempts to address the complexities of the medical system 

data limitations, uncertainties associated with clinical interpretation of historical data, and the data-

limited scope of predictive space flight medical modeling (simply not enough observed time to obtain 

precise estimates of incidence).   

 

2.2.1 Referent Data 

To evaluate the IMM model, the referent data for validation consisted of observed medical incidence 

not previously incorporated into the primary iMED data repository.  Specifically, medical observations, 

mission lengths and crew profiles from ISS Expeditions (Exp) 14 through 39/40 and, and STS 115 

through STS 135 composed the referent real world system (RWS) dataset. This RWS medical data 

included the information from the medical record that could include information such as type of medical 

condition or symptoms, whether the condition occurred during the initial physiological adaptation to 

space or later in a mission, or if the condition occurred during extravehicular activity (EVA).  If recorded 

during the mission, the medical capabilities used to evaluate and treat each condition were also included.   

 

For a select number of conditions, where iMED incidence data included inflight experience for some of 

the missions included in this study, both observed and predicted counts of these conditions were set to 

zero for the overlapping missions. This was done to ensure that the validation data were completely 

independent of the model predicted data, validating on newly observed data only. The choice was made 

to use the most conservative estimate in assessing the time sequence to ensure that none of the observed 

comparison data for this study included any prior iMED incidence data. 

 

2.2.2 Validation Simulations and Comparisons 

The validation study utilized a separate set of IMM mission simulations corresponding to each of the 31 

ISS and 21 STS missions in the referent set.  In each simulation, iMED incidence using available US 

space flight data and the appropriate subject matter expert identified terrestrial and space analog data, 

not in the referent data set, informed the IMM.  Each simulation assessed the impact of 100 medical 

conditions that NASA medical operations have observed during spaceflight, or believe could have a 

high potential to occur, or could have a significant mission impact.  One hundred thousand trials 

(simulations of that particular mission) were generated for each mission.  Adequate model convergence 

was assessed by confirming that the main outputs exhibited a less than 5% change in their calculated 

standard deviation over the last two 1,000 trial increments. 

 

The validation comparison focused on the RWS observed and IMM predicted number of total medical 

events (TME - combined RWS observations or IMM predictions across the entire set of missions in the 

RWS dataset), medical consumable utilization and predictions of LOCL and EVAC.  Note that QTL 

and CHI cannot be used in validation comparisons as currently there exists no direct means to acquire 

these as observable outcomes on US space missions. 

 

3.  RESULTS 

 

Figure 3 illustrates the comparison of the observed and predicted medical events combined across all 

RWS missions. It should be noted that the RWS referent data contained additional observed conditions 

that are not within the 100 conditions modeled by the IMM.  The total number of observed events, 

including those not modeled by IMM (TME_O), are included in Figure 3 for completeness.  When 

considering only the 100 medical conditions in the validation study (TME_O_mc in Figure 3), referent 

observations of total medical events generally under-predicted STS observations and over-predicted the 

number of the ISS observations.  More specifically, as illustrated in Figure 4, the IMM predicted within 

a 90% CI in 13 of the 21 STS missions and 15 of the 31 ISS missions.  When observations existed 
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outside the prediction CI, IMM tended to under-predict the TME for STS missions (5 of 21 missions) 

and over-predict the TME for ISS missions (15 out of 31 missions).   

 

 

 
(a) STS 

 

 

 
(b) ISS 

Figure 3.  Distribution of total medical events predicted (_P) across trials vs. observed (_O_mc, red line) 

for RWS (a) STS and (b) ISS missions.  The subscript (O_, green line) refers to observed medical 

conditions that include additional reported medical conditions than are modelled in the IMM.   

 

 

 

 

On a condition basis, IMM predicted 20% of the STS and 15% of the ISS individual medical conditions 

events within prediction uncertainty defined by confidence limits estimated by the simulation 

percentiles.  As shown in Figure 4, 14% of STS and 24% of ISS individual medical condition predictions 

fell outside of the prediction uncertainty.  Of note, all but two of the STS out of range conditions were 
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under-predicted.  The remainder of the individual medical condition events exhibited indeterminate 

comparison due to no observed incidences in the referent data set as there is not enough resolution to 

get a stable estimate of the incidence rate. In the indeterminate case, the model is not inconsistent with 

the zero observed events, but more observed missions are needed to get stable estimates of inflight 

incidence for comparison to predicted incidence. 

 

  
(a) STS 

 

  
(b) ISS 

Figure 4. Out of range predictions for the per condition cumulative comparisons for RWS (a) STS 

missions and (b) ISS missions.  For out of range predictions, STS mission predictions under-predicted the 

number of events for all but two conditions, while ISS mission predictions over-predicted the number of 

events for all but 6 conditions 
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Each rank comparison of observed and predicted medical consumables was considered an excellent 

match if within <=2 rank difference between observed and predicted, a fair match if difference >=3 but 

<=5, and a poor match if >5 rank difference.  These qualitative assessments of resource utilization 

represent a potential threshold where IMM predictions would affect decision-making. Qualitatively, the 

IMM predictions of medication utilization showed either fair or excellent correspondence (Table 1) with 

the observed RWS for all medication categories for STS. In addition, the IMM predictions of medication 

utilization showed either fair or excellent correspondence with the observed RWS for all medication 

categories for ISS, with the exception of steroids. The IMM tended to under-predict the use of steroids 

on ISS. This discrepancy may be related to IMM resource table inputs and may present an opportunity 

to improve the IMM input data. Additionally, we estimated the correlation between the rankings of 

medical categories in terms of required resources in the observed RWS and IMM predictions (STS and 

ISS). For both scenarios, we estimated a positive correlation between the IMM predictions for STS and 

ISS with the observed RWS (Kendall Tau-b = 0.76 and Kendall Tau-b = 0.57, respectively) indicating 

not disparate orderings of categories.  

 

 

 

Table 1. Rank comparison of predicted and observed medical consumable utilization by 

resource category. 
 STS ISS 

Medical Resource Category Observed Predicted Match Observed Predicted Match 

Antacids 10 13 Fair 10 12 Excellent 

Antibiotics 7 8 Excellent 7 3 Fair 

Antidiarrheals 11 7 Fair 11 8 Fair 

Antiemetics 3 1 Excellent 3 6 Fair 

Antifungals 9 10 Excellent 9 9 Excellent 

Antihistamines 4 3 Excellent 4 4 Excellent 

Antivirals 13 12 Excellent 13 14 Excellent 

Decongestants 6 5 Excellent 6 7 Excellent 

Hypnotics 2 2 Excellent 2 2 Excellent 

Laxatives 12 11 Excellent 12 10 Excellent 

Non-opioid Analgesics 1 4 Fair 1 1 Excellent 

Ophthalmic Lubricants 8 9 Excellent 8 5 Fair 

Opioid Analgesics 14 14 Excellent 14 11 Fair 

Steroids 5 6 Excellent 5 13 Poor 

 

 

 

 

The RWS did not report any instances of medically induced considerations of EVAC or observations 

of LOCL.  Consistent with this observation, the IMM estimated low probabilities for LOCL and 

EVAC (not shown).  Comparisons of observed and predicted EVAC and LOCL counts, illustrated in 

Table 2, illustrate IMM’s consistency with zero observed LOCL and EVAC events. However, as with 

indeterminate condition comparisons, without some observed events, it’s impossible to determine if 

the IMM predicted rate is accurate. 
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Table 2. LOCL and EVAC predictions compared to RWS observations.  Predicted counts are 

estimated using the median of the simulated distribution. Confidence intervals are estimated by 

the 5th and 95th percentiles of the simulation distribution. A confidence limit of (0, 0) indicates 

that IMM predicted a 0 LOCL or EVAC count in more than 95% of the generated trials, as 

estimated by the 5th and 95th percentiles of the simulation distribution. 

 

 

STS 
Predicted Number 90% Confidence 

Interval 

EVAC RWS = 0 0 (0, 1) 

LOCL RWS = 0 0 (0, 0) 

 

ISS 
Predicted Number 90% Confidence 

Interval 

EVAC RWS = 0 0 (0, 1) 

LOCL RWS = 0 0 (0, 0) 

 

 

 

4.  CONCLUSIONS 

 

With respect to the 100 medical conditions included in the IMM, IMM predictions represent a reasonable 

first estimate of the medical risk for both STS and ISS type missions, but care must be taken when 

utilizing the output for decision-making purposes.  These findings show that IMM exhibits variations in 

strength to inform decisions as mission length varies, with shorter missions having the tendency to under 

predict total medical events and longer missions the tendency to over predict total medical events. 

However, clinical evaluation of resource utilization predictions infers that the predicted required medical 

resources are representative of resource utilization on the ranked scale. There wasn’t enough data to 

determine accuracy in quantity required. The full difference in the STS and ISS IMM-modeled 

predictions compared to the reference RWS observations cannot be fully determined within the scope 

of this analysis. Differences may be due to relative proportions of space adaptation conditions, or issues 

with estimates of incidence rates made under the different ISS and STS medical reporting conditions. 

There may also be underlying differences that are not captured within the IMM approach of combining 

all “mission type” data and assuming a constant occurrence rate over a mission.   We conjecture that the 

predictive performance of the IMM will improve as the iMED is updated with reference RWS data.   

 

The success and generalization of using the NASA model and simulation credibility methods to support 

biomedical and health care modeling has also generated substantial interest by the broader medical 

community.  Institutions like the National Institutes of Health (NIH) Interagency Modeling and Analysis 

Groups – Committee for Credible Practices in Modeling and Simulation have adopted aspects of this 

approach to develop similar standards and rules for health care modeling.  

(https://www.imagwiki.nibib.nih.gov/content/committee-credible-practice-modeling-simulation-

healthcare-msm-2014).   
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