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Abstract: The reduction of epistemic uncertainty for safety-related events that rarely occur or require
high experimental costs is a key concern for researchers worldwide. In this study, we develop a new
framework to effectively reduce parameter uncertainty, which is one of the epistemic uncertainties, by
using the Bayesian optimal experimental design. In the experimental design, we used a decision theory
that minimizes the Bayes generalization loss. For this purpose, we used the functional variance, which is
a component of widely applicable information criterion, as a decision criterion for selecting informative
data points. Then, we conducted a case study to apply the proposed framework to reduce the parameter
uncertainty in the fracture boundary of a non-irradiated, pre-hydrided Zircaloy-4 cladding tube speci-
men under loss-of-coolant accident (LOCA) conditions. The results of our case study proved that the
proposed framework greatly reduced the Bayes generalization loss with minimal sample size compared
with the case in which experimental data were randomly obtained. Thus, the proposed framework is
useful for effectively reducing the parameter uncertainty of safety-related events that rarely occur or
require high experimental costs.
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1. INTRODUCTION

The reduction of epistemic uncertainty [1] for safety-related events that rarely occur or require high
experimental costs (hereinafter called ”rare or costly events”) has been an area of key concern. Epistemic
uncertainty is defined as the uncertainty that arises from a lack of knowledge about the system and
is thus a property of the analysts performing the study [1, 2]. The importance of reducing epistemic
uncertainty is seen in the field of nuclear engineering when performing reliability research for studying
fuel behavior under accident conditions. One major concern is the reduction of epistemic uncertainty in
the fracture boundary of the high-burnup fuel cladding tube during a loss-of-coolant accident (LOCA).
It is expensive to conduct experiments using a high-burnup fuel cladding tube specimen; therefore, only
a limited number of experiments can be conducted [3].

In this situation, the approach of the optimal experimental design has a potential benefit. The optimal
experimental design is a method for obtaining informative data points. By using the optimal experimen-
tal design method, we can effectively reduce the parameter uncertainty, which is one of the epistemic
uncertainties [2, 4]. In the field of statistics, several methods have been proposed for developing an
optimal experimental design for obtaining informative data points. For instance, optimal experimental
designs have been developed based on the minimization of a loss function [5] or“alphabetic optimality”
[6]. Certain studies have used the optimal experimental design methods for reliability engineering [7,8].
These approaches rely on the information matrix of parameters. Thus, all parameters in a model receive
equal attention, regardless of their influence on the value of the response variable [5, 9].
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Instead of using the information matrix, Paass et al. proposed an approach that minimized the loss
function in a Bayesian decision framework [5]: they used a square loss function and proposed an optimal
experimental design based on the analytical minimization of the loss function. In the field of nuclear
engineering, Yamaguchi et al. proposed an epistemic uncertainty reduction method that maximized the
expectation value of the logarithmic likelihood [10]. This approach is also considered to be an optimal
experimental design approach that intends to minimize a loss function.

In general, a sample size is always limited when we model rare or costly events based on experiments. In
this situation, it is valuable to consider the approach proposed by Paass [5], that is, a Bayesian approach
using the Markov chain Monte Carlo (MCMC) method. This is because the approach can approxi-
mate posterior distributions very well using enough MCMC samples, even when the sample size is
limited.

A small sample size may also result in overfitting. To avoid the overfitting, it is important to use a
loss function that evaluates the prediction accuracy for obtaining the subsequent data points. Here, a
Bayes generalization loss [11] is considered suitable because it is a measure of the predictive power of a
model. However, the Bayes generalization loss cannot be calculated without knowing a true distribution.
Watanabe developed a widely applicable information criterion (WAIC), the expectation value of which
is asymptotically equal to the average Bayes generalization loss in both regular and singular models [11].
Using WAIC, we can obtain an estimate of the Bayes generalization loss with a posterior distribution.
Watanabe mentioned that the WAIC could be used to design experiments [12].

In this study, we developed a new framework to reduce the parameter uncertainty in modeling rare or
costly events using the Bayesian optimal experimental design. In the experimental design, we used a de-
cision theory, which minimizes the Bayes generalization loss. For this purpose, the functional variance,
which is one of the components of WAIC, was used as a decision criterion for selecting informative data
points. Also, we applied the framework to reduce the parameter uncertainty in the fracture boundary of
a non-irradiated, pre-hydrided Zircaloy-4 cladding tube specimen under LOCA conditions.

In Section 2, we summarize a Bayesian decision theory referring to [5] and an approach of Bayesian
optimal experimental design using the functional variance. Then, in Section 3, we propose a framework
for reducing parameter uncertainty using the Bayesian optimal experimental design. In Section 4, we
perform a numerical demonstration to show the applicability of the proposed framework to reduce the
parameter uncertainty in the context of nuclear engineering. The last section concludes this paper.

2. BAYESIAN OPTIMAL EXPERIMENTAL DESIGN USING FUNCTIONAL VARI-
ANCE

2.1. Bayesian Decision Theory

Let RN be an N-dimensional Euclidian space, q(y) be a true probability distribution of a scalar output
value y, n be the sample size, and Y n = (y1, y2, ..., yn) be a sequence of RN-valued random variables
that are independently subject to q(y)dy. The set of input values x and parameters ω are denoted as
X ⊂ RM and W ⊂ Rd , respectively, where RM and Rd are an M-dimensional Euclidian space and
a d-dimensional Euclidian space, respectively. The corresponding parametric model is described as
p(y|xxx,ωωω), where xxx is an input vector and ωωω is a vector of parameters. In the Bayesian decision theory,
an action a whose result depends on the unknown output y is performed based on the data DDD = (XXXn,Y n),
where XXXn = (xxx1,xxx2, ...,xxxn), xxxi = (x1i,x2i, ...,x ji), i = 1,2, ...,n, and j ∈ N, and a vector of input data xxx.
The loss function L(y,a) ∈ [0,∞) is defined as the loss if y is the true value and if we have taken the
action a ∈ A, where A is a design space. In the Bayesian decision theory, the action â that minimizes the



loss function is selected based on the data DDD and the input data xxx as follows:

â(xxx,DDD) = argmin
a∈A

∫∫
L(y,a)p(y|xxx,DDD)p(xxx)dxxxdy,

= argmin
a∈A

∫∫∫
L(y,a)p(y|xxx,ωωω)p(xxx)p(ωωω|DDD)dωωωdxxxdy,

(1)

where â(xxx,DDD) is a decision function, p(xxx) is a distribution of future inputs, which is assumed to be a
uniform distribution in this study, and p(ωωω |DDD) is a joint posterior distribution of ωωω given DDD.

The aim of the optimal experimental design is to select a new observation x̃xx in such a way that the
information obtained from x̃xx will be maximized. Together with its still unknown y value, x̃xx defines a new
observation (x̃xx, ỹ) and the new data DDD∪ (x̃xx, ỹ). The action â(xxx, D̃DDx̃xx,ỹ) that minimizes the loss function is
selected based on the data D̃DDx̃xx,ỹ = DDD∪ (x̃xx, ỹ) and the input data xxx as follows:

â(xxx, D̃DDx̃xx,ỹ) = argmin
a∈A

∫∫
L(x̃xx, ỹ,xxx)p(xxx)p(ỹ|x̃xx,DDD)dỹdxxx,

= argmin
a∈A

∫∫∫
L(y,a)p(y|xxx, D̃DDx̃xx,ỹ)p(xxx)p(ỹ|x̃xx,DDD)dỹdxxxdy.

(2)

2.2. Decision Criterion Based on Functional Variance

For optimal experimental design, it is important to select a loss function that appropriately describes
the goals of a given experiment [13]. We focus on the parameter uncertainty reduction of rare or costly
events. Therefore, we use the Bayesian generalization loss [11], which is a measure of the prediction
accuracy, as a loss function. In the rest of this section, we summarize the decision criterion based on the
functional variance that minimizes the Bayesian generalization loss.

The expectation values over Y n and the posterior distribution of ω are denoted by E[ ] and Eω [ ], respec-
tively. Here, the predictive distribution p∗(y) and the entropy S are given as follows:

p∗(y) = Eω [p(y|xxx,ωωω)], (3)

S =−
∫

q(y) logq(y)dy, (4)

where log is the natural logarithm. The Bayes generalization loss is defined as follows:

Gn =−
∫

q(y) log p∗(y)dy. (5)

Then,

Gn = S+
∫

q(y) log
q(y)
p∗(y)

dy. (6)

The second term on the right side of equation (6) is the Kullback–Leibler (KL) distance [14] of the true
and the predictive distributions. Therefore, when the value of Gn is smaller, p∗(y) provides a better
prediction of q(y). However, Gn cannot be calculated without knowing the true distribution q(y). Here,
WAIC is defined as follows using the training loss Tn and the functional variance Vω [log p(yi|xxxi,ωωω)]
which can be calculated using data and a model [11]:

WAIC = Tn +
1
n

n

∑
i=1

Vω [log p(yi|xxxi,ωωω)], (7)

Tn =−1
n

n

∑
i=1

log p∗(yi|xxxi,ωωω), (8)



Figure 1: Illustration of the proposed parameter uncertainty reduction framework.

Vω [log p(yi|xxxi,ωωω)] = Eω [(log p(yi|xxxi,ωωω))2]−Eω [log p(yi|xxxi,ωωω)]2. (9)

WAIC has the following relationship with Gn:

E[Gn] = E[WAIC]+O(
1
n2 ). (10)

From equation (10), it is clear that the expectation value of WAIC is asymptotically equal to that of the
Bayes generalization loss. Thus, WAIC can be used as a loss function and the minimization of WAIC
makes it possible to select the informative data points.

For selecting the data points that minimize WAIC, we focus on using the functional variance, which is
one of the components of WAIC. As shown in equation (9), the functional variance shows the sensitivity
of each data point to the posterior distribution of the estimated parameters. Therefore, WAIC can be
effectively reduced by acquiring data points with a large functional variance. Thus, to select data points
that maximize the functional variance, we use the following decision criterion:

â(xxx, D̃DDx̃xx,ỹ) = argmax
x̃xx∈A

Vω [log p(ỹ|x̃xx,ωωω)]. (11)

Using this method, we can design experiments if a posterior distribution is created only once.

3. PARAMETER UNCERTAINTY REDUCTION FRAMEWORK

Our proposed framework to reduce parameter uncertainty in a model is summarized in Figure 1. The
proposed framework consists of three steps. In step 1, a Bayesian inference [15] is performed using
already obtained experimental data and a prior distribution, and a posterior distribution of parameters is



obtained. In step 2, the experimental design is conducted via equation (11) using the posterior distri-
bution. Finally, in step 3, a Bayesian inference is conducted using the following equation for the prior
distribution, the already obtained experimental data, and the designed experimental data:

ppost(ωωω|D̃DD∗∗∗
x̃xx,ỹ) ∝ L(D̃DD∗∗∗

x̃xx,ỹ|ωωω)pprior(ωωω), (12)

where D̃DD∗∗∗
x̃xx,ỹ is the designed experimental data including the already obtained experimental data;

ppost(ωωω|D̃DD∗∗∗
x̃xx,ỹ) is the joint posterior distribution of ωωω given D̃DD∗∗∗

x̃xx,ỹ; L(D̃DD∗∗∗
x̃xx,ỹ|ωωω) is the likelihood of D̃DD∗∗∗

x̃xx,ỹ;
and pprior(ωωω) is the joint prior distribution of ωωω . As a result of step 3, the posterior distribution of
parameters is updated and the parameter uncertainty is reduced effectively .

4. NUMERICAL DEMONSTRATION

4.1. Fracture Probability Estimation Model of a Fuel Cladding Tube

We demonstrate the applicability of the proposed framework for reducing parameter uncertainty in the
context of nuclear engineering. In this numerical demonstration, we conducted the Bayesian optimal
experimental design using a fracture probability estimation model of a fuel cladding tube that was de-
veloped in our previous study [16]. The fracture probability estimation model was developed to provide
an estimate of the fracture probability of a non-irradiated, pre-hydrided Zircaloy-4 cladding tube spec-
imen under LOCA conditions. This non-irradiated, pre-hydrided Zircaloy-4 cladding tube specimen
is used as a surrogate specimen for a high burnup fuel cladding tube specimen. This is because the
amount of oxidation and the initial hydrogen concentration are the main contributors to the fuel fracture
boundary [17]. Although the pre-hydrided cladding tube specimen is used as a surrogate specimen for
the high-burnup fuel cladding tube specimen, it still requires high experimental costs to conduct experi-
ments using the pre-hydrided cladding tube specimen. Therefore, using the optimal experimental design,
we obtained informative data points and effectively reduced the parameter uncertainty in the model with
minimal data acquisition.

The fracture probability estimation model was developed using a generalized linear model and the ex-
perimental data of the fracture or non-fracture of the cladding tube specimen, which were obtained by
integral thermal shock tests [16]. The experimental data were converted into binary data: fracture = 1
and non-fracture = 0. Here, we define a true distribution for the binary data as follows:

Yi ∼ Bernoulli(Ptrue(Yi = 1|XXX iii)), (13)

Ptrue(Yi = 1|XXX iii) = Φ(10+7log(X1i)+20log(
X2i

104 + γtrue)), (14)

γtrue = 1, (15)

where Yi is a binary response variable for the ith observation concerning the fracture or the non-fracture
of the cladding tube specimen; Ptrue(Yi = 1|XXX iii) is the probability that Yi = 1 given XXX iii; XXX iii is the vector
of explanatory variables for the ith observation; Φ is the cumulative distribution function of the standard
normal distribution; and X1i and X2i are explanatory variables of the equivalent cladding reacted (ECR)
in (-) and the initial hydrogen concentration in weight parts per million (wppm) for the ith observation,
respectively.

The model is defined as
Yi ∼ Bernoulli(Ppred(Yi = 1|XXX iii)), (16)

Ppred(Yi = 1|XXX iii) = Φ(β0 +β1 log(X1i)+β2 log(
X2i

104 + γpred)), (17)
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Figure 2: Experimental data generated from the true distribution.

γpred = 1, (18)

where Ppred(Yi = 1|XXX iii) is the probability that Yi = 1 when XXX iii is given, and β0, β1, and β2 are unknown
coefficients to be estimated. These unknown coefficients are estimated using Bayesian inference with
the following marginal prior distributions [16]:

pprior(β0)∼ Normal(7.59,2.10), (19)

pprior(β1)∼ Normal(6.67,1.84), (20)

pprior(β2)∼ Normal(0,100). (21)

4.2. Bayesian Optimal Experimental Design and Parameter Uncertainty Reduction

We performed the Bayesian optimal experimental design over a design space that consisted of 816
discrete data points: ECR ranged from 0% to 50% in increments of 1%, and the initial hydrogen con-
centration ranged from 0 to 1500 wppm in increments of 100 wppm.

Let us assume that experimental data generated from the true distribution are initially provided as shown
in Figure 2. Using these data, we performed Bayesian inference 1 in step 1 of Figure 1 and obtained
a joint posterior distribution of the unknown coefficients, that is, β0, β1, and β2. The joint posterior
distribution of the coefficients was approximated by numerical simulation using the MCMC algorithm.
In particular, the No-U-Turn sampler (NUTS) [18], an adaptive form of the Hamiltonian Monte Carlo
sampling for MCMC samplers, was used in this study. We performed the numerical simulations using
Stan, a probabilistic programming language [19, 20], via the rstan package version 2.15.1 [21, 22], for
the R language version 3.3.1 [23]. For the MCMC sampling for the joint posterior distribution, a total
of 27,000 iterations were run for four chains, and the first 2,000 iterations of each chain were discarded
as warm-up iterations [15]. The thinning interval of the chains was set to 1. Thus, the total number of
iterations was 105.

Then, we calculated the functional variance using equation (11) over the design space and obtained the
designed experimental data in descending order of functional variance. Here, we changed the number
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Figure 3: Calculated functional variance over the design space.

of observations of the designed experimental data from 1 to 200. Furthermore, we performed Bayesian
inference 2 in step 3 of Figure 1 using both the designed experimental data and the experimental data
shown in Figure 2. The same MCMC method as the Bayesian inference 1 in step 1 of Figure 1 was used
for the Bayesian inference 2. The total number of iterations was 20,000 for this Bayesian inference. As
a result, we obtained an updated parameter distribution with reduced parameter uncertainty.

For evaluating the effectiveness of our proposed framework, we calculated the Bayes generalization loss
using the updated parameter distribution. The Bayes generalization loss was calculated using the R
language as described by Matsuura [24].

4.3. Results and Discussion

Figure 3 shows calculated functional variances over the design space. The calculated functional variance
is high near the observed experimental data.

Figure 4 shows the relationship between the Bayes generalization loss calculated over the design space
and the number of observations of the experimental data. To illustrate the effectiveness of the proposed
framework for parameter uncertainty reduction of the fracture probability estimation model, the Bayes
generalization loss for a random experiment is also shown in this figure. Here, the random experiment
indicates that the experimental data to be obtained are not designed, but are randomly generated from
the design space. Dots and error bars in this figure show the means and the standard deviations of 100
independent experiments. As shown in this figure, when the optimal experimental design is performed,
the Bayes generalization loss converges rapidly with an increasing number of observations of the ex-
perimental data. Therefore, the proposed framework is useful for effectively reducing the parameter
uncertainty of a model.

As shown in Figure 4, even if a large number of designed experimental data are acquired, the gener-
alization loss does not converge to the entropy S. Thus, the model used in this demonstration cannot
accurately represent the true distribution. This implies that the model needs to be improved. In our
proposed methodology, we selected data points with a high functional variance. We may apply this
method sequentially along with the model selection. This simultaneous optimization of sampling and
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Figure 4: The relationship between the Bayes generalization loss and the number of observations of the
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model is seen in an active learning framework [5]. We plan to conduct further studies to implement
this active learning framework for reducing epistemic uncertainties, namely, the parameter, model, and
completeness uncertainties.

5. CONCLUSION

We developed a new framework to reduce parameter uncertainty in a model using the Bayesian optimal
experimental design. In the experimental design, we used the functional variance, which is one of the
components of WAIC, as a decision criterion for selecting informative data points. Also, using a case
study, we applied the framework to reduce parameter uncertainty in the fracture boundary of a non-
irradiated, pre-hydrided Zircaloy-4 cladding tube specimen under LOCA conditions. The results of
the case study proved that the proposed framework greatly reduced the Bayes generalization loss with
minimal sample size compared with the case in which the experimental data were randomly obtained.
Thus, the proposed framework is useful for effectively reducing parameter uncertainty of safety-related
events that rarely occur or require high experimental costs .
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