
 

Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

A Bayesian Solution to Incompleteness in Probabilistic Risk Assessment  
 
 

Chris Everetta, Homayoon Dezfulib 
a ISL, New York, NY, USA  

b NASA, Washington, DC, USA 
  
 
 

Abstract: The issue of incompleteness is a persistent challenge in probabilistic risk assessment (PRA), 
where the probabilities of accident consequences such as loss of crew (LOC) are systematically 
underestimated. The source of the problem is that quantification of the underlying logic model implicitly 
assumes model completeness when in fact the model represents only the known accident causes, which 
can be just a small fraction of the total set of causes, especially for new systems. This paper presents a 
Bayesian approach to logic model quantification, in which the quantification of every event in the model 
is treated inferentially, based not just on the logical decomposition of the event but also on belief as to 
the completeness of that decomposition. The result is an assessment methodology that accounts for both 
known and unknown accident causes, and whose quantitative results can legitimately be said to represent 
belief about the actual risk of the system. The benefits of the approach are manifold, including improved 
risk acceptance decision-making, improved risk prioritization, and explicit quantification in risk terms 
of the value of testing (at any level of integration) and the value of operational successes. 
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1.  INTRODUCTION 
 
The issue of incompleteness is a persistent challenge in probabilistic risk assessment (PRA), where the 
probabilities of occurrence of the end states of concern are systematically underestimated due to the 
presence of unknown failure causes that are not represented in the failure logic. This paper explores the 
implications of incorporating unknown failure causes into the failure logic, such that every event in the 
logic model can occur either as a result of the explicitly modeled antecedents, or as a result of some 
unknown antecedent. Quantification of such a logic model cannot be wholly done using the traditional 
“bottom up” approach of standard PRA, since the unknown failure causes have no logic structure and 
their probabilities of occurrence are therefore not anchored to the probabilities of occurrence of any set 
of basic events. Instead, quantification is treated as a Bayesian inference problem, where the quantified 
probability of an event’s explicitly modeled antecedents is interpreted as evidence for the probability of 
the event itself, through a likelihood model that accounts for belief concerning the completeness of the 
antecedents in addressing the event’s causes. 
 
Under this modeling framework it can be seen that traditional PRA represents, epistemically, the special 
case of complete knowledge of the causes of system failure. However, complete knowledge is seldom, 
if ever, the case, resulting in a disconnect between PRA results and reality. A more honest accounting 
of the state of knowledge concerning the failure of the system not only results in credible top event 
probabilities, but also provides vectors for incorporating information pertaining to the presence of 
unknown failure causes, such as the failure history of similar systems, failure-free operation of the 
current system, the technology readiness levels (TRLs) of various subsystems, and the completeness of 
failure cause identification throughout the logic model. 
 
A failure model that is, by definition, complete, and which can incorporate diverse information, also 
provides a more powerful basis for risk management than a traditional PRA, for example by identifying 
areas in the system where unknown failure causes are disproportionately believed to reside, so that 
resources can be directed towards their discovery and reduction. 
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2.  INCOMPLETENESS OF PRA 
 
As traditionally performed, PRA is a “synthetic” analysis technique, in that it produces risk estimates 
by explicitly constructing an accident scenario set and aggregating the risk contributions from each 
scenario to obtain an estimate of risk at the system level. As such, it relies on the ability of the analyst 
to identify (or bound) all scenarios that can befall the system, so that the system-level risk result 
represents the complete system risk. One principal technique used in PRA for developing an accident 
scenario set is to develop a master logic diagram (MLD) of the system, from which initiating events of 
accidents can be identified. These initiating events are the starting points for the development of accident 
scenarios, using event sequence diagrams (ESDs), event trees (ETs), and fault trees (FTs) to 
probabilistically characterize the possible ways that the initiating event might propagate through the 
system and lead to accident consequences. To quantify the probability of occurrence of each scenario, 
the events that the scenario entail are decomposed to a level where data exists. To the extent that 
uncertainties remain in the event probabilities, the probabilities are characterized as epistemically 
uncertain values rather than as point values, and these uncertainties, which originate at the “bottom” 
level of scenario decomposition, propagate through the analysis to produce uncertainty in the system-
level risk result. The process is illustrated in Figure 1. 
 

 
Figure 1. PRA Model Architecture 

 
However, although PRA methods have a history of providing insight into the relative risk significance 
of potential accident scenarios that might occur in a system, and into the relative safety performance of 
different systems, it has long been recognized that there are challenges inherent in using synthetic 
methods such as PRA to quantify a system’s actual risk, due to the inherent incompleteness of the 
scenario sets identified by these methods. The unaccounted-for scenarios typically involve 
organizational issues and/or complex intra-system interactions that may have little to do with the 
intentionally engineered functional relationships of the system. Such underappreciated interactions 
(along with other factors) were operative in both the Challenger and Columbia accidents. In the 
Challenger disaster, O-ring blow-by impinged on the external tank, leading to tank rupture and 
subsequent loss of crew. In the Columbia accident, insulating foam from the external tank impacted the 
wing leading edge reinforced carbon-carbon (RCC), puncturing it and allowing an entryway for hot 
plasma upon reentry into the Earth’s atmosphere. PRA incompleteness is a particular challenge early in 
the operational life of a system when real-world data is sparse and insight into system risk is most heavily 
dependent on analysis. This is illustrated in Figure 2, reproduced from Volume 2 of the NASA System 
Safety Handbook [1], which shows that early in the Shuttle program the Shuttle PRA identified only a 
small fraction of the risk that was ultimately revealed (red curve vs. green curve).* 
 
                                                
* The results shown in Figure 2 leverage the work of Hamlin, et al., as described in [2]. 
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Figure 2. Comparison Between Known Risk and Total Risk for the Space Shuttle 

 
3.  TOWARDS A METHOD FOR INCORPORATING UNKNOWN FAILURE 
CAUSES INTO PRA 
 
3.1.  Inclusion of Unknown Failure Causes as Undeveloped Events 
 
This paper explores the idea of incorporating unknown failure causes into PRA through the use of 
undeveloped events that act as stand-ins for the risk contributions of unidentified accident scenarios. 
The situation is that of Figure 3, which shows a system fault tree that has been augmented at two levels 
of system decomposition (System A and Subsystem B) with the inclusion of OR gates that accommodate 
unknown failure causes of the respective systems. OR gates are appropriate because the unknown failure 
causes represent unidentified accident scenarios that are in addition to those that are explicitly modeled. 
This can be seen in Equation 1 by solving the logic model to produce the cut sets that produce system 
failure. Since each cut set represents a distinct accident scenario, the event, “Unknown Failure Causes 
of X,” represents an additional clause in the disjunction of otherwise “known” cut sets. 
 

System X Fails = (Cut Set X)1 Ú … Ú (Cut Set X)n Ú (Unknown Failure Causes of X)          (1) 
 

 
Figure 3. Incorporation of Unknown Failure Causes into System Fault Tree 
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In order to quantify the probability of system failure due to unknown causes, the method of this paper 
depends on the existence of belief about the probability of failure of the system that is not merely the 
result of synthetic analysis, but which reflects an overall judgment about the probability of failure of the 
system from any cause, known or unknown, based on familiarity with systems of the type in question. 
The existence of this system-level belief is not a substantive constraint, since to lack such belief is to 
have no grounds for even suspecting the possible presence of unknown failure causes. Indeed, given the 
evolutionary, rather than revolutionary, nature of most engineered systems, there is typically a general 
consensus as to what constitutes a reasonable belief about system failure probability, even for new 
systems. For example, given that launch vehicle failure probabilities have historically bottomed out at 
around 1 in 200 per launch, it would be reasonable to believe that a new launch vehicle design is unlikely 
to have a failure probability below, say, 1 in 500.  Thus, it could be strongly argued that the lack of a 
mechanism to incorporate multi-level belief about system failure probability is a significant analytical 
deficiency that squanders important information that might otherwise be brought to bear. 
 
Because the event System A Fails is the disjunction of known and unknown causes, the probability that 
System A fails is: 
 

Pr(System A Fails) = Pr(Known Failure) + Pr(Unknown Failure) 
– Pr(Known Failure) × Pr(Unknown Failure | Known Failure)   (2) 

 
At this point the assumption is made that the known and unknown causes of System A failure are 
independent of each other. This is justified on the grounds that the known causes of failure will have 
been investigated to a point where their implications are reasonably well understood, so it is likely that 
unknown causes of failure are unrelated to them. Thus, equation 2 simplifies to: 
 

PT(System A Fails) = PK(System A Fails) + PU(System A Fails) 
– PK(System A Fails) × PU(System A Fails)                                (3) 

where 
PT is the total probability due to any cause 
PK is the probability due to known causes 
PU is the probability due to unknown causes 

 
Quantification of PU is illustrated in Figure 4, where, given belief about the probability of failure of 
System A and the results of a PRA of System A, the probability of failure of System A due to unknown 
causes is: 
 

PU = (PT – PK) / (1 – PK)                                                             (4) 
where 

PK £ PT 
 
Figure 5 plots PU over the range of allowable values of PK and PT. 
 
It is clear from Equation 4 and Figure 5 that PT must be greater than or equal to PK, since the accident 
scenarios that contribute to PK also contribute to PT. But because the values given to PK and PT come 
from different sources (synthetic analysis vs. prior belief), there is the possibility that this constraint will 
be violated, indicating conflicting assumptions within the analysis. This issue is problematic when 
dealing with point values of PK and PT, but becomes tractable when epistemic uncertainty concerning 
PK and PT is incorporated into the analysis. 
 
3.2.  Accounting for Epistemic Uncertainty 
 
When epistemic uncertainty is considered, PK and PT can no longer be characterized as point values, but 
must be treated as probability density functions, i.e., fK(PK) and fT(PT). Likewise, PU is no longer a point 
value but must also be treated as a probability density function, i.e, fU(PU). Moreover, PK and PU may be 
correlated, so they must in general be treated as a joint density function, fKU(PK, PU), rather than as 
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separate functions. The analytically modeled density function, fK(PK), is now seen as a marginal density 
function of fKU(PK, PU), i.e.:  
 

fK(Pk)	=) 	fKU(PK,	PU)	∙	dPU	
.

/
																																																											(5) 

 

 
Figure 4. Quantification of Unknown Failure Causes 

 
 

 
Figure 5. PU vs. PK and PT 

 
The density function for the total probability of failure, fT(PT), is now definable as an integral of fKU(PK, 
PU). Equation 6 describes the situation, in which fKU(PK, PU) contributes to fT(PT) at every combination 
of PK and PU where PT = PK + PU – PK×PU. For other combinations of PK and PU, a delta function ensures 
that no contribution is made. 
 

fT(PT)	=2 fKU(PK, PU)	∙	δ(PT	-	(PK	+	PU	-	PK	∙	PU))	∙	dPK	dPU	

1,1

0,0

																														(6) 
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Equation 6 can be simplified to: 
 

fT(PT)	=) 	fKU(PK,	(PT	-	PK)	 	(1	-	PK)⁄ )	∙	dPK	
.

/
																																											(7) 

 
The task, then, is to deconvolve Equation 7 to solve for fKU(PK, PU), from which the marginal density, 
fU(PU), can be projected. This is a non-trivial problem that is beyond the scope of this paper. In general, 
deconvolution is done through simulation. Closed form derivation is only possible under very severe 
assumptions (for example, assuming exponential inputs and independence) [3]. However, in the special 
case of total correlation between PK and PU, the math simplifies considerably. The question of correlation 
is a challenging one, and difficult to address absent the specifics of a system in question. We cannot 
know what events contribute to PU, since they are, by definition, unknown, along with other specifics of 
the unidentified accident scenarios. Under our assumption that they are novel and do not share events 
with the known scenarios (see Equation 3), an argument can be made that PU is independent from PK 
just as A Fails due to Unknown Causes is independent from A Fails due to Known Causes. Conversely, 
assuming that systemic issues such as industrial hygiene or safety management program quality are the 
principal sources of uncertainty concerning the values of PU and PK, then an argument can be made that 
PU is highly correlated with PK. It is under the latter assumption that the following illustration is valid. 
 
3.2.1.  Illustration: PU Totally Correlated with PK 
 
In the case where PU is totally correlated with PK, PU|PK = FU

-1(FK(PK)). Since PT increases both with 
increasing PK and PU, the immediate implication of this is that FK, FU, and FT always occur at 
corresponding values of C from their respective distributions, and: 
 

PU = FU
-1(C) = [FT

-1(C) – FK
-1(C)] / [1 - FK

-1(C)]                                       (8) 
 
In this case, the inequality PK £ PT results in the constraint FK

-1(C) ≤ FT
-1(C) at all percentiles C, or 

equivalently, FK(PK) ≥ FT(PT) for all values of P, as illustrated in Figure 6. 
 

 
Figure 6. Illustration of the Constraint on FK(P) and FT(P) Under Total Correlation 

 
A Monte-Carlo analysis was developed using Microsoft Excel to generate fU(PU) and FU(PU). The 
analysis takes, as input, parameters defining beta distributions for PK and PT, either in terms of values 
for the mean and standard deviations or in terms of alpha and beta. It outputs a distribution for PU, along 
with a beta distribution fit that matches the mean and standard deviation of the numerical result. Figure 
7 and Figure 8 show the results for: 
 

fK(PK) = beta(3.5, 32)  (mean = 0.1, SD = 0.05), 
fT(PT) = beta(6, 14)  (mean = 0.3, SD = 0.1). 
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The result is a distribution for PU that fits to: 
 

fU(PU) = beta(7.9, 27)  (mean = 0.23, SD = 0.07). 
 
The Monte-Carlo simulation utilized 10,000 trials and 500 histogram bins. 
 

 
Figure 7. PK, PT, and PU for Correlated PK, PU (pdfs) 

 
 

 
Figure 8. PK, PT, and PU for Correlated PK, PU (CDFs) 

 
 
3.3.  Determining fT(PT) 
 
So far it has been assumed that a probability density function, fT(PT), is available for use in Equation 7. 
Indeed, the premise of this paper is that prior belief about PT exists and should be incorporated into the 
PRA along with belief about PK, as constituted by the results of synthetic analysis. However, there is a 
difference between fT(PT) prior to analysis and fT(PT) after analysis, since belief about PT is affected by 
knowledge of fK(PK). Thus, a Bayesian treatment of PT is needed in order to get from prior belief about 
PT, i.e., fT(PT), which is what is elicited from the relevant subject matter experts, to posterior belief about 
PT, i.e., fT(PT|f(PK)), which is what must be used in Equation 7 in order to be consistent with the presence 
of fK(PK). 
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Disregarding normalization, Bayes’ theorem, applied to the current problem, is: 
 

fT(PT|fK(PK)) µ fT(PT) × L(fK(PK)|PT)                                                  (9) 
where 

fT(PT) is the prior probability density function of PT 
L(fK(PK)|PT) is the likelihood of fK(PK) given PT 

 
In order to develop a likelihood function for this problem, an analysis completeness factor CA is 
introduced, that represents the fraction of PT identified by the synthetic analysis: 
 

CA = PK/PT                                                                        (10) 
 

Moreover, since the synthetic analysis is as much an art as a science, and its effectiveness is both hard 
to quantify and hard to reproduce, CA is uncertain and therefore properly characterized as a probability 
density function fC(CA). 
 
The strategy used in this paper for developing the likelihood function, L(fK(PK)|PT), is to first develop 
the likelihood function L(PK|PT, CA), from which L(fK(PK)|PT, CA) can then be constructed by treating 
fK(PK) as the result of a large number n of individual samples PKi, each drawn from fK(PK). 
 
The likelihood function must account for analysis completeness CA, and in the case where the analysis 
is, in fact, complete, it should reproduce fK(PK). In other words, the likelihood function should have the 
property that when fC(CA) = d(1 – CA), L(PK|PT, CA) = fK(PK). 
 
The following likelihood function satisfies this constraint: 
 

L(PK|PT, CA) = fK(PK – (E[PK] – CA×PT))                                                (11) 
 
Equation 11 is just fK(PK) translated so that it is anchored to the true probability of occurrence of a 
known failure, CA×PT, rather than the mean analyzed value, E[PK]. So, for example, in the case where 
CA = E[PK]/PT, the translation is zero and L(PK|PT, E[PK]/PT) = fK(PK). In the case where both parameter 
uncertainty and analysis incompleteness are eliminated, CA = 1 and fK(PK) = d(PK – PT), and the 
likelihood function reduces to L(PK|PT, 1) = d(PK – PT), as one would expect. 
 
Now, if fK(PK) is seen as consisting of a large number n of individual samples PKi, each drawn from 
fK(PK), then: 
 

L(fK(PK)|PT, CA) = L(PK1 Ù PK2 Ù…Ù PKn|PT, CA) = ∏ [L(PKi|PT, CA)]n
i=1                       (12) 

 
So far, the derivation of the likelihood has been conditioned on a single given value for CA. However, 
CA is uncertain, hence equation 12 must be integrated over all possible values of CA to produce the final 
likelihood L(fK(PK)|PT):† 
 

L(fK(PK)|PT) = ∫ {L(fF(PF)|PG, CA) ∙ fH(CA)} ∙ dCA
J
/                                      (13) 

 
Substituting equations 11 and 12 into equation 13 yields: 
 

L(fK(PK)|PT) = ∫ {∏ [fK(PKi - (E[PK]	-	CA×PT))]n
i=1 ∙ fH(CA)} ∙ dCA

J
/                           (14) 

 
  

                                                
† The upper limit of integration is ¥ rather than 1 to allow for the possibility that PK overestimates PT. 
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3.3.1.  Illustration: Bayesian Treatment of PT 
 
Reconciliation of fT(PT) with fK(PK) via Bayesian updating was done using the probability density 
functions from section 3.2.1. A beta distribution for completeness factor CA was used, with the following 
values: 
 

fC(CA) = beta(6.0, 14)  (mean = 0.3, SD = 0.1). 
 
Figure 9 shows fC(CA).  
 

 
Figure 9. Analysis Completeness, CA 

 
A likelihood function was developed consistent with Equation 13, with n = 100. The results of updating 
the density function fT(PT) from section 3.2.1 with fK(PK) from that same section is shown in Figure 10. 
 

 
Figure 10. Updating of fT(PT) with fK(PK) 

 
It is clear that in this example, belief about PT|PK is substantially different from belief about PK, 
and that a naïve use of fK(PK) as a proxy for fT(PT|PK) could potentially lead to poor risk-related 
decision-making and failure to meet system risk expectations. 

CA
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4.  CONCLUSION 
 
This paper points a way towards the explicit incorporation of unknown failure causes into PRA. It does 
not tackle all the issues, nor all the math, associated with doing so, but it does demonstrate a theoretically 
well-founded approach. The benefits of incorporating unknown failure causes into the analysis are 
manifold. First, it results in a “complete” risk model, in that it captures the full scope of belief concerning 
system failure probability, at any level of logical decomposition where such belief exists. Such a model 
is appropriate for risk acceptance decision-making in a way that “synthetic-only” PRA is not. In 
particular, PRA top event probabilities such as the probability of loss of crew, P(LOC), are routinely 
communicated to decision-makers as uncertainty distributions that reflect only the uncertainties in the 
basic event probabilities. History is clear that this uncertainty is seldom realistic. All it does is create the 
false impression that uncertainty has been adequately addressed in the analysis, leading to 
overconfidence in the use of what history has also shown to be systematically and often unreasonably 
optimistic risk results. Second, it provides a means of allocating uncertainty throughout the logic model, 
informing risk management decisions such as margin determination by indicating what parts of the 
system may be more likely than others to be harboring vulnerabilities. With this additional information 
it may turn out that the subsystems that dominate total system risk are not the same subsystems that a 
synthetic-only analysis would identify as the dominant contributors. Finally, it results in a model with 
the capability to incorporate diverse information such as successful operating experience, which reduces 
the likelihood that high-probability unknown failure causes are lurking in the system but has little to no 
effect on the results from a standard PRA. 
 
It might be argued that this approach places an undue data burden on the analyst, since it requires prior 
distributions on all the event probabilities in the logic model, as well as distributions for the 
completeness of the logical decomposition of all but the basic events. However, when standard PRA is 
seen as a special case of this more general method, it becomes clear that the response of standard PRA 
to this legitimate data burden is to make the most optimistic assumption possible, namely that the logical 
decomposition is complete and that knowledge of failure causes is total. This is certainly unfounded. A 
better default approach would be to begin with non-informative priors and update them with whatever 
diverse evidence can be brought to bear, such as the histories of similar systems, expert opinions, TRL 
analyses, etc. 
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