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Abstract:  The large number of scenarios generated from a single initiating event due to time-related 
scenario evolutions has been a challenge of dynamic probabilistic risk assessment (DPRA) for years. 
Many researchers have reported that the risk insight which enhances safety of the entire system 
requires not only the full understandings of scenario evolutions but also the principal characteristics of 
the events. Since the time-related scenario evolution brings a lot of difficulties not only to organize 
such large amounts of information but also to analyze and interpret its physical meaning, clustering 
analysis has been considered to be useful to group scenarios with similar characteristics and to identify 
key features of each group so that an analyst can understand entire scenario behaviors by groups. The 
performance of clustering analysis is highly related on which distance matrix is used. For a given 
scenario dataset, this paper will perform clustering analysis with global alignment (GA) kernel 
distance matrix specialized for time-series data so as to identify and classify scenarios generated in a 
dynamic event tree (DET) analysis. Global alignment kernel is to assess similarity between time series 
data by casting the dynamic time warping (DTW) distances and similarities as positive definite kernels. 
In this study, 2500 scenarios are generated by the MOSAIQUE (Module for SAmpling Input and 
QUantifying Estimator) coupled with RELAP5 that simulates the thermal hydraulic behavior of the 
nuclear power plant (NPP), APR-1400. An application is considered with regards to the scenarios 
generated following a small break LOCA event in the NPP. The proposed classification and 
identification approach has grouped the 2500 scenarios with 53 clusters and the result can show 
marginal grace time of safety component which static PRA cannot present.  
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1. INTRODUCTION 

 
Dynamic methodologies for probabilistic risk assessment (PRA) are those that account for 

possible coupling between triggered or stochastic event through explicit consideration of the time 
element in the system evolution [1]. There are many dynamic PRA methods and dynamic event tree 
(DET) is used in many of them. DET is to determine the risk associated with sophisticated plant 
system and seeks to timing and process relationships in the stochastic system. The branching 
conditions in a DET are decided by preliminarily specified rules, such as success/failure of safety 
components on demand, system recovery timing or when state variables reach predefined set points 
during the simulation.  

 
The one of the major challenges in DET is due to the large number of scenarios generated and 

many researchers have already pointed out that the number of scenarios in DET to be analysed is 
much larger than that of the classical fault/event tree approaches [2][3]. Each branch in a random 
scenario can contain time evolutions of a large number of variables and hence infinite number of 
scenarios can be generated theoretically. Such large amounts of information are very difficult to 
organize and interpret in regard to the main trends in scenario evolutions and the main risk 
contributors for each initiating event [4]. In order to tackle aforementioned challenge, clustering 
analysis has been considered a possible solution for many years. In 2005, Kopustinkas et al. [5] 
proposed to group the DET-generated scenarios in classes of “similarity”, by combining information 
from both the event sequences and the patterns of evolution of the process variables and in 2013, 
Diego Mandelli et al. [1] proposed a solution which is to partition the set of scenarios into groups, 
called clusters, and analyze each group individually rather than all the scenarios simultaneously. The 
partition is performed by identifying similarities among scenarios and grouping them according to 
predefined similarity criteria.  

 
Since clustering analysis has been deemed a possible solution for handling a large number of 
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scenarios, several clustering methods have been introduced with dynamic event trees. In 2009, fuzzy 
c-means algorithm coupled with possibilitic clustering method is proposed to group the scenarios from 
a DET for a steam generator tube rupture event [6] and in 2013, another clustering algorithm, the 
mean-shift (MS) method has been proposed in DETs [1]. However, both approaches have limitations: 
Fuzzy c-means algorithm is susceptible to noisy data and unable to identify clusters that are non-
spherical and mean-shift method is sensitive to both the choice of clustering parameter (bandwidth) 
and to noise in the data. In addition, both algorithms are based on Euclidean distance, which is not 
adequate for clustering time series data. For most time series data mining algorithms, the quality of the 
output depends almost exclusively on the distance measure used [7] and many in the research 
community have determined that DTW is a superior choice as a time series distance measure, and it 
has been found to regularly outperform the Euclidean distance [8].  

 
The dynamic time warping distance, however, has limitation to be considered as a distance 

and similarity measurement [9] as well in that (1) DTW distance does not satisfy the triangular 
inequality and (2) similarity function with the dynamic time warping distance is not positive definite, 
which is against the condition to be a similarity function that Jeff M. Phillips et al [11] mentioned.  

 
This paper will present a scenario clustering algorithm with partition around medoids (PAM) 

and global alignment kernel distance which does not have the issues that DTW distance has.  With the 
clustering algorithm, identification of the scenarios which have a similar behavior and association of 
scenarios within one cluster will be done first. After clusters are defined, similarity among the 
scenarios in each cluster will be identified and key patterns of clusters are discussed. With this 
analysis, clusters can help understand how the changes in sequence or timing of variables action (such 
as sequence of safety system running and recovery timing of firstly failed safety system) impact the 
overall system dynamics.  

 
2. PAM clustering algorithm with Global Alignment Kernel distance 

 
2.1 K-Medoids  
 
 Clustering is the process of grouping a set of objects into clusters so that objects within a 
cluster are similar to each other but are dissimilar to objects in other clusters [12]. The k-medoids 
algorithm is a medoid-shift clustering algorithm which is related to k-means algorithm [19]. Both the 
k-means and k-medoids algorithms are partitional and attempt to minimize the distance between points 
labeled to be in a cluster and a point designated as the center of that cluster. However, K-means 
clustering is known “sensitive” to the outliers even though its computation time is quite efficient. For 
this reason, K-medoids clustering are sometimes used, where representative objects called medoids are 
considered instead of centroids. Because it is based on the most centrally located object in a cluster, it 
is less sensitive to outliers in comparison with the K-means clustering [13]. 
 
2.2 Partitioning around Medoids (PAM) algorithm 

 
The most common realization of K-medoids clustering is the partitioning around medoids 

(PAM) algorithm [14] and is as follows: 
 

1) Initialize: randomly choose K of the n data points as the medoids 
2) Associate each data point to the closest medoid. ("closest" here is defined using any valid 

distance metric) 
3) For each medoid m 
4) For each non-medoid data point 

i) Swap m and o 
ii)   Compute the total cost of the configuration 

5) Select the configuration with the lowest cost. 
6) Repeat steps 2 to 5 until there is no change in the medoid. 
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2.3 Similarity of time series data  
 
Cuturi [9] proposed an algorithm to assess similarity between time series using kernels, which 

is called global alignment (GA) kernel. The algorithm starts by formalizing an alignment between two 
time series x and y as π, and defined the set of all possible alignments as Α(n,m), which is constrained 
by the lengths of x and y. It is shown that the DTW distance between x and y which is expressed in the 
simplest form in equation (1) can be understood as the cost associated with the minimum alignment 
[10]. 
 
                                                              DTW(x, y) =  minగ∈௮(௡,௠) 𝐷௫,௬(𝜋)    (1) 
           

The cost  
 

                                                              𝐷௫,௬(𝜋) =  ∑ 𝜑(𝑥గଵ(௜)𝑦గଶ(௜))
|గ|
௜ୀଵ     (2) 

 
 

is defined by a local divergence φ, that measures the discrepancy between any two points xi and yj 
observed in x and y where |π| is the length of π. 

 
2.4 Global Alignment Kernel distance 

 
A Global Alignment (GA) kernel is defined as in equation 3(a) and 3(b), where κ is a local 

similarity function. Cuturi et al. [15] argue that the similarity described by KGA incorporates the whole 
spectrum of costs and provides a richer statistic than the minimum of that set, which is the sole 
quantity of DTW distance. In contrast to DTW, this kernel considers the cost of all possible 
alignments by computing their exponentiated soft-minimum, so it is argued that it quantifies 
similarities in a more coherent way [10].  
 
                                                              𝐾ீ஺(𝑥, 𝑦) ≝  ∑ 𝑒ି஽ೣ,೤(గ)

గ∈஺(௡,௠)     (3a) 
 

                                                              𝐾ீ஺(𝑥, 𝑦) =  ∑ ∏ 𝜅(𝑥గଵ(௜)𝑦గଶ(௜))
|గ|
௜ୀଵగ∈஺(௡,௠)    (3b) 

 
 
In order to reduce the GA kernel’s complexity, Cuturi (2011) [9] proposed using the triangular 

local kernel for integers shown in equation (4), where T represents the kernel’s order. By combining it 
with the kernel κ in equation (5), the Triangular Global Alignment (TGA) kernel in equation (6) is 
obtained. Such a kernel is parameterized by the triangular constraint T and the Gaussian’s kernel width 
σ [10].  

 

                                                              ω(𝑖, 𝑗) =  ቀ1 −
|௜ି௝|

்
ቁ

ା
     (4) 

 
                                                              κ(𝑥, 𝑦) =  𝑒ିః഑(௫,௬)      (5a) 

 

                                            𝛷ఙ(𝑥, 𝑦) =  
ଵ

ଶఙమ
‖𝑥 − 𝑦‖ଶ + log ቆ2 − 𝑒

ష‖ೣష೤‖మ

మ഑మ ቇ    (5b) 

 

                           TGAK(x, y, σ, T) = 𝜏ିଵ ቀ𝜔⦻
ଵ

ଶ
𝜅ቁ (𝑖, 𝑥; 𝑗, 𝑦) =  

ఠ(௜,௝)఑(௫,௬)

ଶିఠ(௜,௝)఑(௫,௬)
    (6) 

  
 
The similarity returned by the TGAK can be normalized with equation (7) so that its values lie 

in the range [0, 1]. Hence, a distance measure for time-series can be obtained by subtracting the 
normalized value from 1. The resulting distance is symmetric and satisfies the triangle inequality. The 
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interested reader is referred to Cuturi (2011) [9] for an extensive literature review.  
 

               similarity = exp ቀlog൫TGAK(x, y, σ, T)൯ −
୪୭୥(୘ୋ୅୏(୶,୶,஢,୘))ା୪୭୥(୘ୋ୅୏(௬,୷,஢,୘))

ଶ
ቁ    (7) 

 
 

3. Identification and Classification of key features 
 

3.1 The Algorithm 
 
The objects to be classified are the DET scenarios which have been generated by system 

analysis code. The basic steps for their classification are illustrated in Figure 1. The Module for 
SAmpling Input and QUantifying Estimator (MOSAIQUE) [16] is used in this study as the DET 
generator tool while system dynamics was modelled using RELAP5 [17]. Variables of interest such as 
the number of safety injection (SI) pump available and recovery timing of failed SI pump are selected 
and relevant randomness are given in each variable. After running the entire thermal hydraulic 
simulation codes generated by MOSAIQUE, system parameters such as core liquid volume and water 
level in pressurizer are selected for clustering purpose. Since none of the clustering algorithm 
automatically decides the optimal number of clusters, an analyst should utilize additional information: 
end state of each scenario (core failure or core safe). Every scenario is either in core failure state or 
core safe state after the simulation running time. In general, it is considered as core failure if peak 
cladding temperature (PCT) is greater than 1477K. The novel algorithm using PCT of each scenario 
proposed in Table 1 can help decide the optimal number of clusters. The summation term for 
calculating 𝜀௝  in Table 1 starts from i =2 since i denotes cluster number and the minimum possible 
cluster number is two. 

 
Figure 1: the scenario classification approach 

 

 
 

3.2 Case Study: SBLOCA in a nuclear power plant 
 
For the case study, actual nuclear power plant system, APR-1400 is used for the illustration of 

the proposed clustering methodology. APR-1400 is a standard evolutionary advanced light water 
reactor and Figure 2 shows the system configuration of an APR-1400 [18]. In this case study, one top 
event has been considered: peak cladding temperature reaches the limit of 1477K. Figure 3 shows the 
temporal behavior of the PCT temperature for all the 2500 scenarios. Several assumptions are made as 
below: 
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Table 1: the algorithm of deciding the optimal number of clusters 

 
 

Figure 2: the system configuration of a PWR plant 
 

 
 
1) At time zero, small break loss of coolant accident (SBLOCA) (break size is 0.002027 m2) 

happens at cold leg. 
2) Mission time for this system analysis has been set to 10,000 sec. In the original dataset, 

however, scenarios that reach PCT of 1477K are stopped even though they did not reach 
to 10,000 sec. For those scenarios that did not reach 10,000 sec, it was decided to extend 
in time these scenarios up to 10,000 sec with the last value simulated.  

3) In this study, the status of seven safety components are of interest: safety injection (SI) 
pump (4 units), auxiliary feed water pump (2 units), shutdown cooling pump (SCP) (2 
units), safety injection tank (SIT) (4 units), atmosphere dump valve (ADV) (4 units), main 
steam safety valve (MSSV) (6 units), and pilot operated safety relief valve (POSRV) (8 
units).* Each component is in one of the three states: 1) Work well when it is requested, 2) 

fail first and then recovered after a certain time period or 3) fail to be recovered until after 
the mission time. There is a uniform distribution of recovery timing between 1,800 sec 
and 10,000 sec after SBLOCA happens. In total, 60 variables are selected and the 
variables of interest are listed in Table 2. The recovery time refers to the amount of time 
required to fix the component after the SBLOCA event begins.  

4) The availability and the recovery timing of components are assumed to be independent. 
5) Data from each scenario are monitored at every 60 second 
6) For the clustering purpose, 6 system parameters are used: 1)steam generator A dome 

pressure, 2)steam generator B dome pressure, 3)steam generator A inventory level, 4)steam 
generator B inventory level, 5)core liquid volume and 6)pressurizer collapsed water level. 

                                                
* In this research, pilot involved operation of POSRV is not considered for the simplicity of simulation. POSRV 
is only open at a predetermined condition: Pressure in pressuriser is greater tha17.23686 × 10଺ Pa.  

Input N total number of scenarios 
i The number of clusters 
j the largest number of cluster in a cluster group 

(e.g., entire scenarios are grouped with 33 clusters, j is 33) 
k the number of cluster to be tested 

𝑛1477↑, i the number of scenarios where PCT reached in 1477K in i-th cluster 
𝑛1477↓, i the number of scenarios where PCT did not reached in 1477K in i-th cluster 

Output 𝜖j the error rate of the case where the largest number of clusters is j 
1 For j in 2:k 
2 

𝜀௝ =
∑ min(𝑛ଵସ଻଻↑,௜ , 𝑛ଵସ଻଻↓,௜)

௝
௜ୀଶ

𝑁
 

3 End 
4 Select smallest j for the number clusters which has 𝜖j=0. 
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Table 2: variables of interest 
 

Number Variable Distribution 
1 AFW Pump 1 success/fail indicator* Uniform(-0.1, 0.9) 
2 AFW Pump 2 success/fail indicator Uniform(-0.1, 0.9) 
3 SI Pump 1 success/fail indicator Uniform(-0.1, 0.9) 
4 SI Pump 2 success/fail indicator Uniform(-0.1, 0.9) 
5 SI Pump 3 success/fail indicator Uniform(-0.1, 0.9) 
6 SI Pump 4 success/fail indicator Uniform(-0.1, 0.9) 
7 SC pump 1 success/fail indicator Uniform(-0.1, 0.9) 
8 SC pump 2 success/fail indicator Uniform(-0.1, 0.9) 
9 SIT 1 success/fail indicator Uniform(-0.1, 0.9) 

10 SIT 2 success/fail indicator Uniform(-0.1, 0.9) 
11 SIT 3 success/fail indicator Uniform(-0.1, 0.9) 
12 SIT 4 success/fail indicator Uniform(-0.1, 0.9) 
13 ADV 1 success/fail indicator Uniform(-0.1, 0.9) 
14 ADV 2 success/fail indicator Uniform(-0.1, 0.9) 
15 ADV 3 success/fail indicator Uniform(-0.1, 0.9) 
16 ADV 4 success/fail indicator Uniform(-0.1, 0.9) 
17 MSSV 1 success/fail indicator Uniform(-0.1, 0.9) 
18 MSSV 2 success/fail indicator Uniform(-0.1, 0.9) 
19 MSSV 3 success/fail indicator Uniform(-0.1, 0.9) 
20 MSSV 4 success/fail indicator Uniform(-0.1, 0.9) 
21 MSSV 5 success/fail indicator Uniform(-0.1, 0.9) 
22 MSSV 6 success/fail indicator Uniform(-0.1, 0.9) 
23 POSRV 1 success/fail indicator Uniform(-0.1, 0.9) 
24 POSRV 2 success/fail indicator Uniform(-0.1, 0.9) 
25 POSRV 3 success/fail indicator Uniform(-0.1, 0.9) 
26 POSRV 4 success/fail indicator Uniform(-0.1, 0.9) 
27 POSRV 5 success/fail indicator Uniform(-0.1, 0.9) 
28 POSRV 6 success/fail indicator Uniform(-0.1, 0.9) 
29 POSRV 7 success/fail indicator Uniform(-0.1, 0.9) 
30 POSRV 8 success/fail indicator Uniform(-0.1, 0.9) 
31 AFW Pump 1 recovery time** Uniform(1,1800, 20,000) 
32 AFW Pump 2 recovery time Uniform(1,1800, 20,000) 
33 SI Pump 1 recovery time Uniform(1,1800, 20,000) 
34 SI Pump 2 recovery time Uniform(1,1800, 20,000) 
35 SI Pump 3 recovery time Uniform(1,1800, 20,000) 
36 SI Pump 4 recovery time Uniform(1,1800, 20,000) 
37 SC Pump 1 recovery time Uniform(1,1800, 20,000) 
38 SC Pump 2 recovery time Uniform(1,1800, 20,000) 
39 SIT 1 recovery time Uniform(1,1800, 20,000) 
40 SIT 2 recovery time Uniform(1,1800, 20,000) 
41 SIT 3 recovery time Uniform(1,1800, 20,000) 
42 SIT 4 recovery time Uniform(1,1800, 20,000) 
43 ADV 1 recovery time Uniform(1,1800, 20,000) 
44 ADV 2 recovery time Uniform(1,1800, 20,000) 
45 ADV 3 recovery time Uniform(1,1800, 20,000) 
46 ADV 4 recovery time Uniform(1,1800, 20,000) 
47 MSSV 1 recovery time Uniform(1,1800, 20,000) 
48 MSSV 2 recovery time Uniform(1,1800, 20,000) 
49 MSSV 3 recovery time Uniform(1,1800, 20,000) 
50 MSSV 4 recovery time Uniform(1,1800, 20,000) 
51 MSSV 5 recovery time Uniform(1,1800, 20,000) 
52 MSSV 6 recovery time Uniform(1,1800, 20,000) 
53 POSRV 1 recovery time Uniform(1,1800, 20,000) 
54 POSRV 2 recovery time Uniform(1,1800, 20,000) 
55 POSRV 3 recovery time Uniform(1,1800, 20,000) 
56 POSRV 4 recovery time Uniform(1,1800, 20,000) 
57 POSRV 5 recovery time Uniform(1,1800, 20,000) 
58 POSRV 6 recovery time Uniform(1,1800, 20,000) 
59 POSRV 7 recovery time Uniform(1,1800, 20,000) 
60 POSRV 8 recovery time Uniform(1,1800, 20,000) 

 
*  If indicator is greater than 0, component does not work. 
** A component is recovered after the recovery time, which is follow uniform distribution. If 
recovery timing is bigger than 10,000 sec, it implies that a component has not recovered until the end 
of mission time.  
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After running scenarios with 60 variables shown in Table 2, clustering analysis is followed 
using the 6 system parameters stated above. For calculating similarity presented in equation (7), σ is 
set as  

 

                                          σ =  𝑚𝑒𝑑(||𝑥 − 𝑦||) · ඥ𝑚𝑒𝑑(|𝑥|)                              (8) 
 

which is a strategy that Cuturi [9] proposed and T is given without constraint. After clustering analysis, 
it turns out that 53 are optimal number for clusters: 53 is the first total number of clusters with ε = 0. 
Figure 4 shows the ε with different number of clusters.   

 
Figure 3: graphical representation of PCT of the scenarios 

 

 
 
 

 
Figure 4: clusters numbers with ε 

                         
 
At this point, it is possible to analyse the characteristics of the clusters rather than the full 

dataset individually. It is assumed that there shall be principal characteristics to decide core failure or 
success. In this study, the timing of first unit of component j available is mainly considered to find 
key features of each cluster. In order to find key features of each cluster, novel index, called influence 
factor (IF), is developed as below: 

 

𝐼𝐹௖௢௠௣௢௡௘௡௧ ௝ ௢௙ ௖௟௨௦௧௘௥ ௜ = 1 −
଴.ହ × ୣ୶୮ቆି

భశೇೌೝ೎೚೘೛೚೙೐೙೟ ೕ,   ೌ೗೗

భశೇೌೝ೎೚೘೛೚೙೐೙೟ ೕ,   ೎೗ೠೞ೟೐ೝ ೔
ቇ

ୣ୶୮(ିଵ)
                                  (9) 
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where 𝑉𝑎𝑟௖௢௠௣௢௡௘௡௧ ௝,   ௔௟௟ is variance of the timing of first unit of component j available in all 
scenarios and 𝑉𝑎𝑟௖௢௠௣௢௡௘௡௧ ௝,   ௖௟௨௦௧௘௥ ௜ is variance of the timing of first unit of component j available 
in cluster i. In equation (9), it is assumed that component j played major role in cluster i, or in other 
words, component j’s behavior is a key characteristic of scenarios in cluster i in case that IF is close to 
1. In contrary, if component j does not play major role in cluster i, then IF will be equal or less than 
0.5. Table 3 and Table 4 show the result and Table 4 indicates the following:  
 

 SI pump, ADV, MSSV, and auxiliary feed water pump are major components which affect 
clustering scenarios. In contrary, SCP, SIT and POSRV have minor impact on clustering 
SBLOCA event scenarios.  

 It is noticeable that mean timings of the first unit of SI unit available when core fail statuses 
are “safe” (safe group) are less than 3500 seconds after SBLOCA happens. The mean timings 
of the first unit of SI unit available when core fail statuses are “fail” (failure group) stand in 
contrast. In most clusters in failure group, the numbers are bigger than 5800 seconds except a 
few outliers. Therefore, it is safe to say that fist unit of SI pump should be recovered no more 
than 3500 seconds on average.  

 Especially, the timing of the first unit of SI pumps available gets important if the timing of the 
first unit of auxiliary feed water pumps available get delayed. Comparing cluster 19 in safe 
group and cluster 25 in failure group in Table 3 and Table 4, it can be concluded that as long 
as the first SI pump is available within 1600 sec on average, the operators can have grace time 
within around 7000 seconds for making the first unit of aux feed water pumps available.   

 Cluster 10, 40 and 50 in core failure group indicate that core may get failed if ADV and 
MSSV are not available (stuck closed) within around 5000 seconds on average even if first 
unit SI pump out of four units is available right after SBLOCA. 
 

4. CONCLUSTION 
 
Many researchers have tried to address the problem of identifying and grouping scenarios 

resulting from dynamic safety and reliability assessments for which the number of scenarios that are 
simulated is much larger than that of the classical fault/event tree approaches.  

 
In this paper, a methodology based on clustering algorithm with GA kernel based distance 

matrix which has been proven to be more accurate for clustering time series data is proposed. An 
analyst may need information of the plant system in order to find the vulnerable point of the safety 
system and the marginal grace time for repairing safety-related component. For this information to be 
of practical use, the scenarios should be grouped together on the basis not only of the occurred events 
and their end states as done in the classical fault/event tree approaches but also of the physical 
evolution of the process variables, which may depend on the order and timing of occurrence of the 
events [6].  

 
The case study presented in the paper considers scenarios generated in a dynamic event tree 

analysis of a SBLOCA event. A total of 2500 scenarios are generated, resulting from the combination 
of the possible realization of safety component: success, failure and repaired. The PAM clustering 
algorithm with GA kernel based distance is used for clustering 2500 scenarios. New algorithm 
deciding the optimal number of clusters is proposed and 53 clusters are generated after clustering 
process. Novel index for measuring influence level of each safety component in a cluster is developed.  

 
It is shown that grouping scenarios into clusters may be a resort to identify and evaluate the 

key characteristics of the entire dataset. The methodology presented in the paper may give an aid to an 
analyst to understand the characteristics of each cluster better and apply the result for finding recovery 
priority of the safety components and its marginal grace time for recovery.  
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Table 3: IF of components in each cluster* 
 

  K-number Aux FP SI SCP SIT ADV MSSV POSRV Core Fail 
3 0.646371 1 0.526712 0.437835 1 0.868517 0.470322 Safe 
4 0.690876 0.996791 0.42988 0.557764 1 0.734935 0.442253 Safe 
6 0.544335 0.966202 0.638127 0.517412 0.60855 0.697685 0.547238 Safe 
7 0.798049 0.865012 0.612585 0.474229 0.791628 0.477204 0.427014 Safe 

11 0.582621 0.773381 0.516235 0.315024 0.760609 0.993502 0.52605 Safe 
12 0.917561 0.82512 0.450314 0.658776 0.996188 0.396277 0.544812 Safe 
16 0.575146 0.912888 0.496333 0.499161 0.998592 0.519354 0.687422 Safe 
17 0.758911 0.999507 0.528873 0.610588 1 0.703852 0.69568 Safe 
19 0.870212 1 0.480732 0.36383 0.918533 1 0.058527 Safe 
21 0.767465 1 0.496869 0.573261 1 0.434527 0.415733 Safe 
22 0.597834 0.946081 0.58687 0.474971 0.889121 0.890969 0.517287 Safe 
23 0.447878 0.990907 0.740057 0.506381 0.400544 1 0.754987 Safe 
24 0.648202 0.968632 0.525485 0.510644 0.881964 0.693814 0.55749 Safe 
26 0.537891 1 0.494798 0.529123 1 0.372105 0.492823 Safe 
27 0.512786 0.809907 0.480875 0.49776 0.980668 0.28832 0.469414 Safe 
28 0.934935 0.317929 0.461364 0.426198 0.980822 0.630963 0.37269 Safe 
30 0.482637 0.784302 0.532283 0.496718 0.81008 0.725733 0.621754 Safe 
33 0.460475 0.979087 0.43368 0.505023 0.952191 0.971108 0.224587 Safe 
34 0.504218 0.812427 0.412073 0.527199 0.574999 0.438996 0.320715 Safe 
35 0.53227 0.989846 0.391875 0.637681 1 0.662777 0.4478 Safe 
36 0.981847 0.592328 0.506616 0.515991 0.936138 0.613595 0.301908 Safe 
37 0.57618 0.964217 0.6004 0.53346 0.789074 0.681297 0.388058 Safe 
38 0.57502 0.829476 0.51247 0.569054 0.965838 0.744086 0.59757 Safe 
39 0.508675 0.8135 0.502652 0.569146 0.628613 0.943816 0.608564 Safe 
41 0.864454 0.997797 0.514999 0.385986 0.700505 1 0.516858 Safe 
42 0.416191 0.999996 0.552259 0.443779 0.783862 1 0.581906 Safe 
43 0.647463 0.89509 0.481124 0.452354 0.632964 1 0.434609 Safe 
45 0.575723 0.997888 0.552283 0.448211 0.885871 0.88315 0.464105 Safe 
47 0.67906 0.861604 0.504069 0.421309 0.595192 0.880479 0.680196 Safe 
48 0.620535 0.803047 0.50859 0.490701 0.620499 0.991876 0.751307 Safe 
51 0.962983 0.498448 0.44178 0.51731 0.732342 0.706917 0.460661 Safe 
53 0.415607 0.757046 0.548888 0.59855 0.819974 0.478233 0.563024 Safe 
1 0.472116 0.776312 0.473665 0.514885 0.863567 1 0.339338 Fail 
2 0.571929 0.905582 0.561643 0.407179 0.506223 0.999999 0.760517 Fail 
5 0.620756 0.90146 0.522011 0.490006 0.597854 0.302455 0.526003 Fail 
8 0.645316 0.896034 0.530497 0.578242 0.826057 1 0.686242 Fail 
9 0.452906 0.750839 0.461541 0.464576 0.811952 0.766377 0.491597 Fail 

10 0.47329 1 0.450095 0.494041 0.881776 0.937406 0.388072 Fail 
13 0.999201 0.987295 0.393129 0.427494 1 0.947878 1 Fail 
14 0.968805 0.930005 0.51199 0.729519 1 0.945901 0.362565 Fail 
15 0.454398 0.80123 0.456538 0.423823 0.617745 0.844857 0.609217 Fail 
18 0.539568 0.877763 0.491745 0.515444 1 0.615957 0.408052 Fail 
20 0.541085 0.707088 0.511315 0.590092 0.610183 1 0.532445 Fail 
25 0.724446 0.892652 0.807135 0.608277 0.743954 1 0.188348 Fail 
29 0.570253 0.897347 0.555421 0.310313 0.703507 0.881806 0.513902 Fail 
31 0.524109 0.806369 0.499955 0.485703 0.654309 0.721975 0.49799 Fail 
32 0.583503 0.808567 0.37559 0.454574 0.993863 0.999917 0.453612 Fail 
40 0.578989 1 0.524926 0.462031 0.938659 0.676882 0.730515 Fail 
44 0.327444 0.799642 0.19414 0.633544 1 1 0.455613 Fail 
46 0.739623 0.887598 0.477618 0.510282 0.999993 0.940717 0.425062 Fail 
49 0.812288 0.857094 0.42649 0.601534 1 0.99999 0.473768 Fail 
50 0.437904 1 0.483438 0.576736 0.802902 0.863724 0.583212 Fail 
52 0.317011 0.939673 0.371521 0.407749 0.92657 0.989084 0.376866 Fail 

* The highlighted one implies that IFs are greater than 0.7.  
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Table 4: mean timing of the first unit of component j available in cluster i. 
 

 K-number Aux FP SI SCP SIT ADV MSSV POSRV Core Fail 
3 7,885.5 0.0 5,662.7 3,907.2 88.0 834.4 1,680.8 Safe 
4 7,192.2 2,704.7 5,005.3 2,667.3 0.0 2,360.1 1,910.0 Safe 
6 6,236.7 1,706.8 6,537.2 3,343.3 4,784.4 2,856.0 1,738.7 Safe 
7 2,871.9 2,184.1 7,212.4 3,675.7 1,008.6 2,379.8 1,432.7 Safe 

11 7,340.1 807.0 6,217.9 4,942.4 5,334.6 593.1 1,601.4 Safe 
12 4,536.1 1,863.1 4,867.7 3,151.1 414.7 2,685.5 1,476.0 Safe 
16 3,839.6 1,227.8 5,080.6 3,746.2 476.4 1,971.0 1,429.4 Safe 
17 7,936.1 417.2 5,078.8 3,696.1 0.0 1,891.9 1,187.0 Safe 
19 5,906.8 0.0 6,973.8 4,650.0 6,815.6 239.6 3,037.6 Safe 
21 7,128.1 52.8 6,315.1 3,786.2 0.0 2,962.1 1,696.6 Safe 
22 6,401.6 1,609.3 5,177.5 3,696.8 4,114.4 1,077.6 1,625.5 Safe 
23 6,899.3 1,263.8 5,677.7 4,327.4 6,758.1 0.0 1,442.9 Safe 
24 3,881.9 1,377.2 4,949.5 2,718.4 4,523.1 2,252.9 1,752.3 Safe 
26 6,667.5 2,957.0 5,036.1 3,730.2 0.0 2,249.6 1,721.4 Safe 
27 3,670.6 1,132.8 5,472.4 3,235.1 435.8 2,828.4 1,412.4 Safe 
28 911.7 2,830.8 4,957.0 3,337.6 303.6 1,823.2 1,544.5 Safe 
30 6,423.8 1,753.9 5,663.0 3,457.2 3,999.0 2,024.7 1,294.6 Safe 
33 4,661.1 697.5 5,101.9 3,801.4 3,255.2 956.4 2,045.3 Safe 
34 7,183.6 3,452.9 6,149.6 3,600.6 1,370.2 2,281.3 1,932.1 Safe 
35 7,189.4 2,575.3 3,873.9 3,910.0 0.0 2,162.9 1,552.3 Safe 
36 2,346.4 2,590.2 4,253.8 3,051.0 717.6 2,358.9 2,192.2 Safe 
37 4,232.1 845.8 4,760.6 2,570.5 902.6 1,560.9 1,568.4 Safe 
38 6,371.7 2,301.2 5,783.0 3,658.7 580.3 1,372.6 1,997.3 Safe 
39 5,628.9 2,048.4 5,291.7 3,164.2 6,214.6 702.3 1,277.5 Safe 
41 7,439.2 1,600.1 5,705.4 4,049.2 4,536.0 0.0 1,234.5 Safe 
42 6,626.5 485.9 6,718.2 2,947.0 5,250.5 0.0 1,366.5 Safe 
43 6,432.7 1,157.5 6,308.2 3,886.7 5,675.1 54.1 2,168.3 Safe 
45 4,473.4 1,000.2 5,880.3 3,478.5 5,449.2 1,571.1 1,815.2 Safe 
47 5,549.5 1,370.6 5,180.7 3,421.5 4,506.1 1,162.0 1,097.6 Safe 
48 5,994.1 1,248.9 5,205.8 3,371.9 5,705.3 336.7 1,331.5 Safe 
51 1,500.6 2,731.0 5,473.8 3,825.7 2,461.4 1,031.8 1,562.5 Safe 
53 5,244.1 1,521.2 5,061.7 2,975.3 5,632.7 1,433.4 1,194.5 Safe 
1 6,197.8 7,039.4 5,304.3 3,122.6 6,929.4 81.7 1,563.1 Fail 
2 6,079.4 6,862.2 5,286.2 4,266.9 3,851.0 207.0 908.5 Fail 
5 6,314.1 6,548.0 6,024.1 3,354.3 1,601.8 2,647.3 1,613.5 Fail 
8 7,212.0 6,580.9 5,062.9 3,484.5 4,531.3 0.0 1,112.4 Fail 
9 5,577.5 5,128.8 5,393.3 3,507.5 5,896.2 5,163.1 1,694.4 Fail 

10 4,913.9 0.0 5,665.9 3,144.1 5,789.7 5,243.1 2,360.8 Fail 
13 8,902.5 6,696.9 5,280.3 3,911.3 0.0 2,329.3 0.0 Fail 
14 8,576.2 7,391.4 7,006.5 3,443.2 0.0 1,217.8 1,401.0 Fail 
15 6,284.2 7,016.2 4,313.6 4,404.5 4,281.6 3,684.7 1,141.5 Fail 
18 6,641.5 6,764.9 5,315.0 3,168.7 0.0 3,726.4 1,632.8 Fail 
20 6,578.4 6,089.0 5,339.7 3,664.4 4,584.3 72.3 1,815.3 Fail 
25 2,460.6 6,982.5 5,036.4 3,303.8 6,556.3 0.0 2,311.5 Fail 
29 6,847.9 6,268.0 6,224.3 4,902.5 4,485.4 2,153.4 1,404.6 Fail 
31 5,980.8 6,261.0 5,655.6 3,913.3 5,196.6 1,700.8 1,713.4 Fail 
32 6,849.7 7,587.2 4,360.4 3,159.9 3,051.7 402.5 1,965.5 Fail 
40 6,466.3 0.0 5,274.1 4,335.5 6,334.2 5,160.1 1,554.1 Fail 
44 7,467.5 5,885.1 4,286.8 3,239.5 0.0 0.0 5,513.4 Fail 
46 6,991.0 7,022.8 5,300.0 3,302.8 283.8 926.5 2,306.8 Fail 
49 7,088.0 7,105.1 5,691.5 3,190.5 0.0 261.1 2,214.6 Fail 
50 5,669.2 0.0 5,774.6 3,061.5 6,636.5 5,470.4 1,423.0 Fail 
52 5,377.0 7,588.1 4,247.6 5,474.4 4,780.7 703.7 1,647.4 Fail 
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